cpuset.c 76.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58
#include <linux/backing-dev.h>
#include <linux/sort.h>
59
#include <linux/oom.h>
L
Linus Torvalds 已提交
60

61
#include <linux/uaccess.h>
A
Arun Sharma 已提交
62
#include <linux/atomic.h>
63
#include <linux/mutex.h>
64
#include <linux/cgroup.h>
65
#include <linux/wait.h>
L
Linus Torvalds 已提交
66

67
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69

70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
75
	time64_t time;		/* clock (secs) when val computed */
76 77 78
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
79
struct cpuset {
80 81
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
82
	unsigned long flags;		/* "unsigned long" so bitops work */
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

104 105 106 107 108 109 110
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

124
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
125

126 127 128 129 130 131
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
132 133
	/* partition number for rebuild_sched_domains() */
	int pn;
134

135 136
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
137 138
};

139
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140
{
141
	return css ? container_of(css, struct cpuset, css) : NULL;
142 143 144 145 146
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
147
	return css_cs(task_css(task, cpuset_cgrp_id));
148 149
}

150
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
151
{
T
Tejun Heo 已提交
152
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
168 169
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
170
	CS_ONLINE,
L
Linus Torvalds 已提交
171 172
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
173
	CS_MEM_HARDWALL,
174
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
175
	CS_SCHED_LOAD_BALANCE,
176 177
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
178 179 180
} cpuset_flagbits_t;

/* convenient tests for these bits */
181
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
182
{
183
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
184 185
}

L
Linus Torvalds 已提交
186 187
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
188
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
189 190 191 192
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
193
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
194 195
}

196 197 198 199 200
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
201 202 203 204 205
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

206 207
static inline int is_memory_migrate(const struct cpuset *cs)
{
208
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 210
}

211 212 213 214 215 216 217 218 219 220
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
221
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
222 223
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
224 225
};

226 227 228
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
229
 * @pos_css: used for iteration
230 231 232 233 234
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
235 236 237
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238

239 240 241
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
242
 * @pos_css: used for iteration
243 244 245
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
246
 * with RCU read locked.  The caller may modify @pos_css by calling
247 248
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
249
 */
250 251 252
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253

L
Linus Torvalds 已提交
254
/*
255 256 257 258
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
259
 *
260
 * A task must hold both locks to modify cpusets.  If a task holds
261
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262
 * is the only task able to also acquire callback_lock and be able to
263 264 265
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
266 267
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
268
 * everyone else.
269 270
 *
 * Calls to the kernel memory allocator can not be made while holding
271
 * callback_lock, as that would risk double tripping on callback_lock
272 273 274
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
275
 * If a task is only holding callback_lock, then it has read-only
276 277
 * access to cpusets.
 *
278 279 280
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
281
 *
282
 * The cpuset_common_file_read() handlers only hold callback_lock across
283 284 285
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
286 287
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
288 289
 */

290
static DEFINE_MUTEX(cpuset_mutex);
291
static DEFINE_SPINLOCK(callback_lock);
292

293 294
static struct workqueue_struct *cpuset_migrate_mm_wq;

295 296 297 298 299 300
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

301 302
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

303 304 305 306 307 308 309 310 311 312
/*
 * Cgroup v2 behavior is used when on default hierarchy or the
 * cgroup_v2_mode flag is set.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

313 314
/*
 * This is ugly, but preserves the userspace API for existing cpuset
315
 * users. If someone tries to mount the "cpuset" filesystem, we
316 317
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
318 319
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
320
{
321
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
322
	struct dentry *ret = ERR_PTR(-ENODEV);
323 324 325 326
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
327 328
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
329 330 331
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
332 333 334 335
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
336
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
337 338 339
};

/*
340
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
341
 * are online.  If none are online, walk up the cpuset hierarchy
342
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
343 344
 *
 * One way or another, we guarantee to return some non-empty subset
345
 * of cpu_online_mask.
L
Linus Torvalds 已提交
346
 *
347
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
348
 */
349
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
350
{
351
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
352
		cs = parent_cs(cs);
353 354 355 356 357 358 359 360 361 362 363 364
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
365
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
366 367 368 369
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
370 371
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
372
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
373 374
 *
 * One way or another, we guarantee to return some non-empty subset
375
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
376
 *
377
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
378
 */
379
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
380
{
381
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
382
		cs = parent_cs(cs);
383
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
384 385
}

386 387 388
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
389
 * Call with callback_lock or cpuset_mutex held.
390 391 392 393 394
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
395
		task_set_spread_page(tsk);
396
	else
397 398
		task_clear_spread_page(tsk);

399
	if (is_spread_slab(cs))
400
		task_set_spread_slab(tsk);
401
	else
402
		task_clear_spread_slab(tsk);
403 404
}

L
Linus Torvalds 已提交
405 406 407 408 409
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
410
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
411 412 413 414
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
415
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
416 417 418 419 420
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

421 422 423 424
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
425
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426
{
427 428 429 430 431 432
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

433 434 435 436
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
437

438 439
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440
	return trial;
441 442 443 444 445 446

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
447 448 449 450 451 452 453 454
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
455
	free_cpumask_var(trial->effective_cpus);
456
	free_cpumask_var(trial->cpus_allowed);
457 458 459
	kfree(trial);
}

L
Linus Torvalds 已提交
460 461 462 463 464 465 466
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
467
 * cpuset_mutex held.
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477 478 479
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

480
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
481
{
482
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
483
	struct cpuset *c, *par;
484 485 486
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
487 488

	/* Each of our child cpusets must be a subset of us */
489
	ret = -EBUSY;
490
	cpuset_for_each_child(c, css, cur)
491 492
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
493 494

	/* Remaining checks don't apply to root cpuset */
495
	ret = 0;
496
	if (cur == &top_cpuset)
497
		goto out;
L
Linus Torvalds 已提交
498

T
Tejun Heo 已提交
499
	par = parent_cs(cur);
500

501
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
502
	ret = -EACCES;
503
	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504
		goto out;
L
Linus Torvalds 已提交
505

506 507 508 509
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
510
	ret = -EINVAL;
511
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
512 513
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
514
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515
			goto out;
L
Linus Torvalds 已提交
516 517 518
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
519
			goto out;
L
Linus Torvalds 已提交
520 521
	}

522 523
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
524
	 * be changed to have empty cpus_allowed or mems_allowed.
525
	 */
526
	ret = -ENOSPC;
527
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 529 530 531 532 533 534
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

546 547 548 549
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
550 551
}

552
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
553
/*
554
 * Helper routine for generate_sched_domains().
555
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
556 557 558
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
559
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
560 561
}

562 563 564 565 566 567 568 569
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

570 571
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
572
{
573
	struct cpuset *cp;
574
	struct cgroup_subsys_state *pos_css;
575

576
	rcu_read_lock();
577
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 579
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
580
			pos_css = css_rightmost_descendant(pos_css);
581
			continue;
582
		}
583 584 585 586

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
587
	rcu_read_unlock();
588 589
}

P
Paolo Bonzini 已提交
590 591 592 593 594 595 596
/* Must be called with cpuset_mutex held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

P
Paul Jackson 已提交
597
/*
598 599 600 601 602
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
603
 * The output of this function needs to be passed to kernel/sched/core.c
604 605 606
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
607
 *
L
Li Zefan 已提交
608
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
609 610 611 612 613 614 615
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
616
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
617 618
 *
 * The three key local variables below are:
619
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
620 621 622 623 624 625 626 627 628 629 630 631
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
632
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
651
static int generate_sched_domains(cpumask_var_t **domains,
652
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
653 654 655 656 657
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
658
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
659
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
660
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
661
	int ndoms = 0;		/* number of sched domains in result */
662
	int nslot;		/* next empty doms[] struct cpumask slot */
663
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
664 665

	doms = NULL;
666
	dattr = NULL;
667
	csa = NULL;
P
Paul Jackson 已提交
668

669 670 671 672
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
673 674
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
675 676
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
677
		if (!doms)
678 679
			goto done;

680 681 682
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
683
			update_domain_attr_tree(dattr, &top_cpuset);
684
		}
685 686
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
687 688

		goto done;
P
Paul Jackson 已提交
689 690
	}

691
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
692 693 694 695
	if (!csa)
		goto done;
	csn = 0;

696
	rcu_read_lock();
697
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
698 699
		if (cp == &top_cpuset)
			continue;
700
		/*
701 702 703 704 705 706
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
707
		 */
708
		if (!cpumask_empty(cp->cpus_allowed) &&
709 710
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
711
			continue;
712

713 714 715 716
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
717
		pos_css = css_rightmost_descendant(pos_css);
718 719
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

748 749 750 751
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
752
	doms = alloc_sched_domains(ndoms);
753
	if (!doms)
754 755 756 757 758 759
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
760
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
761 762 763

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
764
		struct cpumask *dp;
P
Paul Jackson 已提交
765 766
		int apn = a->pn;

767 768 769 770 771
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

772
		dp = doms[nslot];
773 774 775 776

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
777 778
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
779
				warnings--;
P
Paul Jackson 已提交
780
			}
781 782
			continue;
		}
P
Paul Jackson 已提交
783

784
		cpumask_clear(dp);
785 786 787 788 789 790
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
791
				cpumask_or(dp, dp, b->effective_cpus);
792
				cpumask_and(dp, dp, non_isolated_cpus);
793 794 795 796 797
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
798 799
			}
		}
800
		nslot++;
P
Paul Jackson 已提交
801 802 803
	}
	BUG_ON(nslot != ndoms);

804
done:
805
	free_cpumask_var(non_isolated_cpus);
806 807
	kfree(csa);

808 809 810 811 812 813 814
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

815 816 817 818 819 820 821 822
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
823 824 825 826 827
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
828
 *
829
 * Call with cpuset_mutex held.  Takes get_online_cpus().
830
 */
831
static void rebuild_sched_domains_locked(void)
832 833
{
	struct sched_domain_attr *attr;
834
	cpumask_var_t *doms;
835 836
	int ndoms;

837
	lockdep_assert_held(&cpuset_mutex);
838
	get_online_cpus();
839

840 841 842 843 844
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
845
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
846 847
		goto out;

848 849 850 851 852
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
853
out:
854
	put_online_cpus();
855
}
856
#else /* !CONFIG_SMP */
857
static void rebuild_sched_domains_locked(void)
858 859 860
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
861

862 863
void rebuild_sched_domains(void)
{
864
	mutex_lock(&cpuset_mutex);
865
	rebuild_sched_domains_locked();
866
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
867 868
}

869 870 871 872
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
873 874 875
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
876
 */
877
static void update_tasks_cpumask(struct cpuset *cs)
878
{
879 880 881
	struct css_task_iter it;
	struct task_struct *task;

882
	css_task_iter_start(&cs->css, 0, &it);
883
	while ((task = css_task_iter_next(&it)))
884
		set_cpus_allowed_ptr(task, cs->effective_cpus);
885
	css_task_iter_end(&it);
886 887
}

888
/*
889 890 891 892 893 894
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
895
 *
896
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
897 898 899
 *
 * Called with cpuset_mutex held
 */
900
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
901 902
{
	struct cpuset *cp;
903
	struct cgroup_subsys_state *pos_css;
904
	bool need_rebuild_sched_domains = false;
905 906

	rcu_read_lock();
907 908 909 910 911
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

912 913 914 915
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
916
		if (is_in_v2_mode() && cpumask_empty(new_cpus))
917 918
			cpumask_copy(new_cpus, parent->effective_cpus);

919 920 921 922
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
923
		}
924

925
		if (!css_tryget_online(&cp->css))
926 927 928
			continue;
		rcu_read_unlock();

929
		spin_lock_irq(&callback_lock);
930
		cpumask_copy(cp->effective_cpus, new_cpus);
931
		spin_unlock_irq(&callback_lock);
932

933
		WARN_ON(!is_in_v2_mode() &&
934 935
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

936
		update_tasks_cpumask(cp);
937

938 939 940 941 942 943 944 945
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

946 947 948 949
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
950 951 952

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
953 954
}

C
Cliff Wickman 已提交
955 956 957
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
958
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
959 960
 * @buf: buffer of cpu numbers written to this cpuset
 */
961 962
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
963
{
C
Cliff Wickman 已提交
964
	int retval;
L
Linus Torvalds 已提交
965

966
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
967 968 969
	if (cs == &top_cpuset)
		return -EACCES;

970
	/*
971
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
972 973 974
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
975
	 */
976
	if (!*buf) {
977
		cpumask_clear(trialcs->cpus_allowed);
978
	} else {
979
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
980 981
		if (retval < 0)
			return retval;
982

983 984
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
985
			return -EINVAL;
986
	}
P
Paul Jackson 已提交
987

P
Paul Menage 已提交
988
	/* Nothing to do if the cpus didn't change */
989
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
990
		return 0;
C
Cliff Wickman 已提交
991

992 993 994 995
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

996
	spin_lock_irq(&callback_lock);
997
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
998
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
999

1000 1001
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
1002
	return 0;
L
Linus Torvalds 已提交
1003 1004
}

1005
/*
1006 1007 1008 1009 1010
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1011 1012
 */

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1031 1032 1033
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1034
	struct cpuset_migrate_mm_work *mwork;
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1047

1048
static void cpuset_post_attach(void)
1049 1050
{
	flush_workqueue(cpuset_migrate_mm_wq);
1051 1052
}

1053
/*
1054 1055 1056 1057
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1058 1059 1060 1061
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1062 1063 1064 1065
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1066 1067
	task_lock(tsk);

1068 1069
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1070

1071
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1072
	mpol_rebind_task(tsk, newmems);
1073
	tsk->mems_allowed = *newmems;
1074

1075 1076
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1077

1078
	task_unlock(tsk);
1079 1080
}

1081 1082
static void *cpuset_being_rebound;

1083 1084 1085 1086
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1087 1088 1089
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1090
 */
1091
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1092
{
1093
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1094 1095
	struct css_task_iter it;
	struct task_struct *task;
1096

1097
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1098

1099
	guarantee_online_mems(cs, &newmems);
1100

1101
	/*
1102 1103 1104 1105
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1106
	 * the global cpuset_mutex, we know that no other rebind effort
1107
	 * will be contending for the global variable cpuset_being_rebound.
1108
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1109
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1110
	 */
1111
	css_task_iter_start(&cs->css, 0, &it);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1127 1128
		else
			mmput(mm);
1129 1130
	}
	css_task_iter_end(&it);
1131

1132 1133 1134 1135 1136 1137
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1138
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1139
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1140 1141
}

1142
/*
1143 1144 1145
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1146
 *
1147 1148
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1149
 *
1150
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1151 1152 1153
 *
 * Called with cpuset_mutex held
 */
1154
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1155 1156
{
	struct cpuset *cp;
1157
	struct cgroup_subsys_state *pos_css;
1158 1159

	rcu_read_lock();
1160 1161 1162 1163 1164
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1165 1166 1167 1168
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1169
		if (is_in_v2_mode() && nodes_empty(*new_mems))
1170 1171
			*new_mems = parent->effective_mems;

1172 1173 1174 1175
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1176
		}
1177

1178
		if (!css_tryget_online(&cp->css))
1179 1180 1181
			continue;
		rcu_read_unlock();

1182
		spin_lock_irq(&callback_lock);
1183
		cp->effective_mems = *new_mems;
1184
		spin_unlock_irq(&callback_lock);
1185

1186
		WARN_ON(!is_in_v2_mode() &&
1187
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1188

1189
		update_tasks_nodemask(cp);
1190 1191 1192 1193 1194 1195 1196

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1197 1198 1199
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1200 1201 1202 1203
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1204
 *
1205
 * Call with cpuset_mutex held. May take callback_lock during call.
1206 1207 1208 1209
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1210 1211
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1212 1213 1214 1215
{
	int retval;

	/*
1216
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1217 1218
	 * it's read-only
	 */
1219 1220 1221 1222
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1223 1224 1225 1226 1227 1228 1229 1230

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1231
		nodes_clear(trialcs->mems_allowed);
1232
	} else {
1233
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1234 1235 1236
		if (retval < 0)
			goto done;

1237
		if (!nodes_subset(trialcs->mems_allowed,
1238 1239
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1240 1241
			goto done;
		}
1242
	}
1243 1244

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1245 1246 1247
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1248
	retval = validate_change(cs, trialcs);
1249 1250 1251
	if (retval < 0)
		goto done;

1252
	spin_lock_irq(&callback_lock);
1253
	cs->mems_allowed = trialcs->mems_allowed;
1254
	spin_unlock_irq(&callback_lock);
1255

1256
	/* use trialcs->mems_allowed as a temp variable */
1257
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1258 1259 1260 1261
done:
	return retval;
}

1262 1263
int current_cpuset_is_being_rebound(void)
{
1264 1265 1266 1267 1268 1269 1270
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1271 1272
}

1273
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1274
{
1275
#ifdef CONFIG_SMP
1276
	if (val < -1 || val >= sched_domain_level_max)
1277
		return -EINVAL;
1278
#endif
1279 1280 1281

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1282 1283
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1284
			rebuild_sched_domains_locked();
1285 1286 1287 1288 1289
	}

	return 0;
}

1290
/**
1291 1292 1293
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1294 1295 1296
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1297
 */
1298
static void update_tasks_flags(struct cpuset *cs)
1299
{
1300 1301 1302
	struct css_task_iter it;
	struct task_struct *task;

1303
	css_task_iter_start(&cs->css, 0, &it);
1304 1305 1306
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1307 1308
}

L
Linus Torvalds 已提交
1309 1310
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1311 1312 1313
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1314
 *
1315
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1316 1317
 */

1318 1319
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1320
{
1321
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1322
	int balance_flag_changed;
1323 1324
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1325

1326 1327 1328 1329
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1330
	if (turning_on)
1331
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1332
	else
1333
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1334

1335
	err = validate_change(cs, trialcs);
1336
	if (err < 0)
1337
		goto out;
P
Paul Jackson 已提交
1338 1339

	balance_flag_changed = (is_sched_load_balance(cs) !=
1340
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1341

1342 1343 1344
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1345
	spin_lock_irq(&callback_lock);
1346
	cs->flags = trialcs->flags;
1347
	spin_unlock_irq(&callback_lock);
1348

1349
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1350
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1351

1352
	if (spread_flag_changed)
1353
		update_tasks_flags(cs);
1354 1355 1356
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1357 1358
}

1359
/*
A
Adrian Bunk 已提交
1360
 * Frequency meter - How fast is some event occurring?
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1405
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1421 1422 1423 1424 1425
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1460 1461
static struct cpuset *cpuset_attach_old_cs;

1462
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1463
static int cpuset_can_attach(struct cgroup_taskset *tset)
1464
{
1465 1466
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1467 1468
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1469

1470
	/* used later by cpuset_attach() */
1471 1472
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1473

1474 1475
	mutex_lock(&cpuset_mutex);

1476
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1477
	ret = -ENOSPC;
1478
	if (!is_in_v2_mode() &&
1479
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1480
		goto out_unlock;
1481

1482
	cgroup_taskset_for_each(task, css, tset) {
1483 1484
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1485 1486 1487 1488
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1489
	}
1490

1491 1492 1493 1494 1495
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1496 1497 1498 1499
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1500
}
1501

1502
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1503
{
1504 1505 1506 1507 1508 1509
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1510
	mutex_lock(&cpuset_mutex);
1511
	css_cs(css)->attach_in_progress--;
1512
	mutex_unlock(&cpuset_mutex);
1513
}
L
Linus Torvalds 已提交
1514

1515
/*
1516
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1517 1518 1519 1520 1521
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1522
static void cpuset_attach(struct cgroup_taskset *tset)
1523
{
1524
	/* static buf protected by cpuset_mutex */
1525
	static nodemask_t cpuset_attach_nodemask_to;
1526
	struct task_struct *task;
1527
	struct task_struct *leader;
1528 1529
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1530
	struct cpuset *oldcs = cpuset_attach_old_cs;
1531

1532 1533 1534
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1535 1536
	mutex_lock(&cpuset_mutex);

1537 1538 1539 1540
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1541
		guarantee_online_cpus(cs, cpus_attach);
1542

1543
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1544

1545
	cgroup_taskset_for_each(task, css, tset) {
1546 1547 1548 1549 1550 1551 1552 1553 1554
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1555

1556
	/*
1557 1558
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1559
	 */
1560
	cpuset_attach_nodemask_to = cs->effective_mems;
1561
	cgroup_taskset_for_each_leader(leader, css, tset) {
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1575
			if (is_memory_migrate(cs))
1576 1577
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1578 1579
			else
				mmput(mm);
1580
		}
1581
	}
1582

1583
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1584

1585
	cs->attach_in_progress--;
1586 1587
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1588 1589

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1595
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1596 1597
	FILE_CPULIST,
	FILE_MEMLIST,
1598 1599
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1600 1601
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1602
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1603
	FILE_SCHED_LOAD_BALANCE,
1604
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1605 1606
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1607 1608
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1609 1610
} cpuset_filetype_t;

1611 1612
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1613
{
1614
	struct cpuset *cs = css_cs(css);
1615
	cpuset_filetype_t type = cft->private;
1616
	int retval = 0;
1617

1618
	mutex_lock(&cpuset_mutex);
1619 1620
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1621
		goto out_unlock;
1622
	}
1623 1624

	switch (type) {
L
Linus Torvalds 已提交
1625
	case FILE_CPU_EXCLUSIVE:
1626
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1627 1628
		break;
	case FILE_MEM_EXCLUSIVE:
1629
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1630
		break;
1631 1632 1633
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1634
	case FILE_SCHED_LOAD_BALANCE:
1635
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1636
		break;
1637
	case FILE_MEMORY_MIGRATE:
1638
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1639
		break;
1640
	case FILE_MEMORY_PRESSURE_ENABLED:
1641
		cpuset_memory_pressure_enabled = !!val;
1642
		break;
1643
	case FILE_SPREAD_PAGE:
1644
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1645 1646
		break;
	case FILE_SPREAD_SLAB:
1647
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1648
		break;
L
Linus Torvalds 已提交
1649 1650
	default:
		retval = -EINVAL;
1651
		break;
L
Linus Torvalds 已提交
1652
	}
1653 1654
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1655 1656 1657
	return retval;
}

1658 1659
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1660
{
1661
	struct cpuset *cs = css_cs(css);
1662
	cpuset_filetype_t type = cft->private;
1663
	int retval = -ENODEV;
1664

1665 1666 1667
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1668

1669 1670 1671 1672 1673 1674 1675 1676
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1677 1678
out_unlock:
	mutex_unlock(&cpuset_mutex);
1679 1680 1681
	return retval;
}

1682 1683 1684
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1685 1686
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1687
{
1688
	struct cpuset *cs = css_cs(of_css(of));
1689
	struct cpuset *trialcs;
1690
	int retval = -ENODEV;
1691

1692 1693
	buf = strstrip(buf);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1704 1705 1706 1707 1708 1709 1710 1711
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1712
	 */
1713 1714
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1715 1716
	flush_work(&cpuset_hotplug_work);

1717 1718 1719
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1720

1721
	trialcs = alloc_trial_cpuset(cs);
1722 1723
	if (!trialcs) {
		retval = -ENOMEM;
1724
		goto out_unlock;
1725
	}
1726

1727
	switch (of_cft(of)->private) {
1728
	case FILE_CPULIST:
1729
		retval = update_cpumask(cs, trialcs, buf);
1730 1731
		break;
	case FILE_MEMLIST:
1732
		retval = update_nodemask(cs, trialcs, buf);
1733 1734 1735 1736 1737
		break;
	default:
		retval = -EINVAL;
		break;
	}
1738 1739

	free_trial_cpuset(trialcs);
1740 1741
out_unlock:
	mutex_unlock(&cpuset_mutex);
1742 1743
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1744
	flush_workqueue(cpuset_migrate_mm_wq);
1745
	return retval ?: nbytes;
1746 1747
}

L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753 1754 1755
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1756
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1757
{
1758 1759
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1760
	int ret = 0;
L
Linus Torvalds 已提交
1761

1762
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1763 1764 1765

	switch (type) {
	case FILE_CPULIST:
1766
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1767 1768
		break;
	case FILE_MEMLIST:
1769
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1770
		break;
1771
	case FILE_EFFECTIVE_CPULIST:
1772
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1773 1774
		break;
	case FILE_EFFECTIVE_MEMLIST:
1775
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1776
		break;
L
Linus Torvalds 已提交
1777
	default:
1778
		ret = -EINVAL;
L
Linus Torvalds 已提交
1779 1780
	}

1781
	spin_unlock_irq(&callback_lock);
1782
	return ret;
L
Linus Torvalds 已提交
1783 1784
}

1785
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1786
{
1787
	struct cpuset *cs = css_cs(css);
1788 1789 1790 1791 1792 1793
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1794 1795
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1811 1812 1813

	/* Unreachable but makes gcc happy */
	return 0;
1814
}
L
Linus Torvalds 已提交
1815

1816
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1817
{
1818
	struct cpuset *cs = css_cs(css);
1819 1820 1821 1822 1823 1824 1825
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1826 1827 1828

	/* Unrechable but makes gcc happy */
	return 0;
1829 1830
}

L
Linus Torvalds 已提交
1831 1832 1833 1834 1835

/*
 * for the common functions, 'private' gives the type of file
 */

1836 1837 1838
static struct cftype files[] = {
	{
		.name = "cpus",
1839
		.seq_show = cpuset_common_seq_show,
1840
		.write = cpuset_write_resmask,
1841
		.max_write_len = (100U + 6 * NR_CPUS),
1842 1843 1844 1845 1846
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1847
		.seq_show = cpuset_common_seq_show,
1848
		.write = cpuset_write_resmask,
1849
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1850 1851 1852
		.private = FILE_MEMLIST,
	},

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1879 1880 1881 1882 1883 1884 1885
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1886 1887 1888 1889 1890 1891 1892 1893 1894
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1895 1896
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
1910
		.private = FILE_MEMORY_PRESSURE,
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1926

1927 1928 1929 1930 1931 1932 1933
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1934

1935 1936
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1937 1938

/*
1939
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1940
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1941 1942
 */

1943 1944
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1945
{
T
Tejun Heo 已提交
1946
	struct cpuset *cs;
L
Linus Torvalds 已提交
1947

1948
	if (!parent_css)
1949
		return &top_cpuset.css;
1950

T
Tejun Heo 已提交
1951
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1952
	if (!cs)
1953
		return ERR_PTR(-ENOMEM);
1954 1955 1956 1957
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1958

P
Paul Jackson 已提交
1959
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1960
	cpumask_clear(cs->cpus_allowed);
1961
	nodes_clear(cs->mems_allowed);
1962 1963
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1964
	fmeter_init(&cs->fmeter);
1965
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1966

T
Tejun Heo 已提交
1967
	return &cs->css;
1968 1969 1970 1971 1972 1973

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1974 1975
}

1976
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1977
{
1978
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1979
	struct cpuset *parent = parent_cs(cs);
1980
	struct cpuset *tmp_cs;
1981
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1982 1983 1984 1985

	if (!parent)
		return 0;

1986 1987
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1988
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1989 1990 1991 1992
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1993

1994
	cpuset_inc();
1995

1996
	spin_lock_irq(&callback_lock);
1997
	if (is_in_v2_mode()) {
1998 1999 2000
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
2001
	spin_unlock_irq(&callback_lock);
2002

2003
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2004
		goto out_unlock;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2019
	rcu_read_lock();
2020
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2021 2022
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2023
			goto out_unlock;
2024
		}
2025
	}
2026
	rcu_read_unlock();
2027

2028
	spin_lock_irq(&callback_lock);
2029
	cs->mems_allowed = parent->mems_allowed;
2030
	cs->effective_mems = parent->mems_allowed;
2031
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2032
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2033
	spin_unlock_irq(&callback_lock);
2034 2035
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2036 2037 2038
	return 0;
}

2039 2040 2041 2042 2043 2044
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2045
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2046
{
2047
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2048

2049
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2050 2051 2052 2053

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2054
	cpuset_dec();
T
Tejun Heo 已提交
2055
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2056

2057
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2058 2059
}

2060
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2061
{
2062
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2063

2064
	free_cpumask_var(cs->effective_cpus);
2065
	free_cpumask_var(cs->cpus_allowed);
2066
	kfree(cs);
L
Linus Torvalds 已提交
2067 2068
}

2069 2070 2071
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2072
	spin_lock_irq(&callback_lock);
2073

2074
	if (is_in_v2_mode()) {
2075 2076 2077 2078 2079 2080 2081 2082
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2083
	spin_unlock_irq(&callback_lock);
2084 2085 2086
	mutex_unlock(&cpuset_mutex);
}

2087 2088 2089 2090 2091
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2092
static void cpuset_fork(struct task_struct *task)
2093 2094 2095 2096 2097 2098 2099 2100
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2101
struct cgroup_subsys cpuset_cgrp_subsys = {
2102 2103 2104 2105 2106 2107 2108
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2109
	.post_attach	= cpuset_post_attach,
2110
	.bind		= cpuset_bind,
2111
	.fork		= cpuset_fork,
2112
	.legacy_cftypes	= files,
2113
	.early_init	= true,
2114 2115
};

L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2124
	int err = 0;
L
Linus Torvalds 已提交
2125

N
Nicholas Mc Guire 已提交
2126 2127
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2128

2129
	cpumask_setall(top_cpuset.cpus_allowed);
2130
	nodes_setall(top_cpuset.mems_allowed);
2131 2132
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2133

2134
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2135
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2136
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2137 2138 2139

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2140 2141
		return err;

N
Nicholas Mc Guire 已提交
2142
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2143

2144
	return 0;
L
Linus Torvalds 已提交
2145 2146
}

2147
/*
2148
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2149 2150
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2151 2152
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2153
 */
2154 2155 2156 2157 2158 2159 2160 2161
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2162
	parent = parent_cs(cs);
2163
	while (cpumask_empty(parent->cpus_allowed) ||
2164
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2165
		parent = parent_cs(parent);
2166

2167
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2168
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2169 2170
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2171
	}
2172 2173
}

2174 2175 2176 2177
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2178 2179 2180
{
	bool is_empty;

2181
	spin_lock_irq(&callback_lock);
2182 2183 2184 2185
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2186
	spin_unlock_irq(&callback_lock);
2187 2188 2189 2190 2191

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2192
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2193
		update_tasks_cpumask(cs);
2194
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2213 2214 2215 2216
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2217
{
2218 2219 2220 2221 2222
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2223
	spin_lock_irq(&callback_lock);
2224 2225
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2226
	spin_unlock_irq(&callback_lock);
2227

2228
	if (cpus_updated)
2229
		update_tasks_cpumask(cs);
2230
	if (mems_updated)
2231 2232 2233
		update_tasks_nodemask(cs);
}

2234
/**
2235
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2236
 * @cs: cpuset in interest
2237
 *
2238 2239 2240
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2241
 */
2242
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2243
{
2244 2245 2246 2247
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2248 2249
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2250

2251
	mutex_lock(&cpuset_mutex);
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2262 2263
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2264

2265 2266
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2267

2268
	if (is_in_v2_mode())
2269 2270
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2271
	else
2272 2273
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2274

2275
	mutex_unlock(&cpuset_mutex);
2276 2277
}

2278 2279 2280 2281 2282 2283 2284
static bool force_rebuild;

void cpuset_force_rebuild(void)
{
	force_rebuild = true;
}

2285
/**
2286
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2287
 *
2288 2289 2290 2291 2292
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2293
 *
2294
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2295 2296
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2297
 *
2298 2299
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2300
 */
2301
static void cpuset_hotplug_workfn(struct work_struct *work)
2302
{
2303 2304
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2305
	bool cpus_updated, mems_updated;
2306
	bool on_dfl = is_in_v2_mode();
2307

2308
	mutex_lock(&cpuset_mutex);
2309

2310 2311 2312
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2313

2314 2315
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2316

2317 2318
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2319
		spin_lock_irq(&callback_lock);
2320 2321
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2322
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2323
		spin_unlock_irq(&callback_lock);
2324 2325
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2326

2327 2328
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2329
		spin_lock_irq(&callback_lock);
2330 2331
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2332
		top_cpuset.effective_mems = new_mems;
2333
		spin_unlock_irq(&callback_lock);
2334
		update_tasks_nodemask(&top_cpuset);
2335
	}
2336

2337 2338
	mutex_unlock(&cpuset_mutex);

2339 2340
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2341
		struct cpuset *cs;
2342
		struct cgroup_subsys_state *pos_css;
2343

2344
		rcu_read_lock();
2345
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2346
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2347 2348
				continue;
			rcu_read_unlock();
2349

2350
			cpuset_hotplug_update_tasks(cs);
2351

2352 2353 2354 2355 2356
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2357

2358
	/* rebuild sched domains if cpus_allowed has changed */
2359 2360
	if (cpus_updated || force_rebuild) {
		force_rebuild = false;
2361
		rebuild_sched_domains();
2362
	}
2363 2364
}

2365
void cpuset_update_active_cpus(void)
2366
{
2367 2368 2369 2370 2371 2372
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
2373 2374
}

2375 2376 2377 2378 2379
void cpuset_wait_for_hotplug(void)
{
	flush_work(&cpuset_hotplug_work);
}

2380
/*
2381 2382
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2383
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2384
 */
2385 2386
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2387
{
2388
	schedule_work(&cpuset_hotplug_work);
2389
	return NOTIFY_OK;
2390
}
2391 2392 2393 2394 2395

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2396

L
Linus Torvalds 已提交
2397 2398 2399 2400
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2401
 */
L
Linus Torvalds 已提交
2402 2403
void __init cpuset_init_smp(void)
{
2404
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2405
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2406
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2407

2408 2409 2410
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2411
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2412 2413 2414

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2415 2416 2417 2418 2419
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2420
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2421
 *
2422
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2423
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2424
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2425 2426 2427
 * tasks cpuset.
 **/

2428
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2429
{
2430 2431 2432
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2433
	rcu_read_lock();
2434
	guarantee_online_cpus(task_cs(tsk), pmask);
2435
	rcu_read_unlock();
2436
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2437 2438
}

2439
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2440 2441
{
	rcu_read_lock();
2442
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2458 2459 2460
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2461 2462 2463
	 */
}

2464
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2465
{
2466
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2467 2468
}

2469 2470 2471 2472 2473 2474
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2475
 * subset of node_states[N_MEMORY], even if this means going outside the
2476 2477 2478 2479 2480 2481
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2482
	unsigned long flags;
2483

2484
	spin_lock_irqsave(&callback_lock, flags);
2485
	rcu_read_lock();
2486
	guarantee_online_mems(task_cs(tsk), &mask);
2487
	rcu_read_unlock();
2488
	spin_unlock_irqrestore(&callback_lock, flags);
2489 2490 2491 2492

	return mask;
}

2493
/**
2494 2495
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2496
 *
2497
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2498
 */
2499
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2500
{
2501
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2502 2503
}

2504
/*
2505 2506
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2507
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2508
 * (an unusual configuration), then returns the root cpuset.
2509
 */
2510
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2511
{
T
Tejun Heo 已提交
2512 2513
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2514 2515 2516
	return cs;
}

2517
/**
2518
 * cpuset_node_allowed - Can we allocate on a memory node?
2519
 * @node: is this an allowed node?
2520
 * @gfp_mask: memory allocation flags
2521
 *
2522 2523 2524
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2525
 * yes.  If current has access to memory reserves as an oom victim, yes.
2526 2527 2528
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2529
 * and do not allow allocations outside the current tasks cpuset
2530
 * unless the task has been OOM killed.
2531
 * GFP_KERNEL allocations are not so marked, so can escape to the
2532
 * nearest enclosing hardwalled ancestor cpuset.
2533
 *
2534
 * Scanning up parent cpusets requires callback_lock.  The
2535 2536 2537 2538
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2539
 * cpuset are short of memory, might require taking the callback_lock.
2540
 *
2541
 * The first call here from mm/page_alloc:get_page_from_freelist()
2542 2543 2544
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2545 2546 2547 2548 2549 2550
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2551 2552
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2553
 *	tsk_is_oom_victim   - any node ok
2554
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2555
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2556
 */
2557
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2558
{
2559
	struct cpuset *cs;		/* current cpuset ancestors */
2560
	int allowed;			/* is allocation in zone z allowed? */
2561
	unsigned long flags;
2562

2563
	if (in_interrupt())
2564
		return true;
2565
	if (node_isset(node, current->mems_allowed))
2566
		return true;
2567 2568 2569 2570
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
2571
	if (unlikely(tsk_is_oom_victim(current)))
2572
		return true;
2573
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2574
		return false;
2575

2576
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2577
		return true;
2578

2579
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2580
	spin_lock_irqsave(&callback_lock, flags);
2581

2582
	rcu_read_lock();
2583
	cs = nearest_hardwall_ancestor(task_cs(current));
2584
	allowed = node_isset(node, cs->mems_allowed);
2585
	rcu_read_unlock();
2586

2587
	spin_unlock_irqrestore(&callback_lock, flags);
2588
	return allowed;
L
Linus Torvalds 已提交
2589 2590
}

2591
/**
2592 2593
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2618
static int cpuset_spread_node(int *rotor)
2619
{
2620
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2621
}
2622 2623 2624

int cpuset_mem_spread_node(void)
{
2625 2626 2627 2628
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2629 2630 2631 2632 2633
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2634 2635 2636 2637
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2638 2639 2640
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2641 2642
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2643
/**
2644 2645 2646 2647 2648 2649 2650 2651
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2652 2653
 **/

2654 2655
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2656
{
2657
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2658 2659
}

2660
/**
2661
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2662
 *
2663
 * Description: Prints current's name, cpuset name, and cached copy of its
2664
 * mems_allowed to the kernel log.
2665
 */
2666
void cpuset_print_current_mems_allowed(void)
2667
{
2668
	struct cgroup *cgrp;
2669

2670
	rcu_read_lock();
2671

2672 2673
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2674
	pr_cont_cgroup_name(cgrp);
2675 2676
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2677

2678
	rcu_read_unlock();
2679 2680
}

2681 2682 2683 2684 2685 2686
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2687
int cpuset_memory_pressure_enabled __read_mostly;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2709
	rcu_read_lock();
2710
	fmeter_markevent(&task_cs(current)->fmeter);
2711
	rcu_read_unlock();
2712 2713
}

2714
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2715 2716 2717 2718
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2719 2720
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2721
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2722
 *    anyway.
L
Linus Torvalds 已提交
2723
 */
Z
Zefan Li 已提交
2724 2725
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2726
{
2727
	char *buf;
2728
	struct cgroup_subsys_state *css;
2729
	int retval;
L
Linus Torvalds 已提交
2730

2731
	retval = -ENOMEM;
T
Tejun Heo 已提交
2732
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2733
	if (!buf)
2734 2735
		goto out;

2736
	css = task_get_css(tsk, cpuset_cgrp_id);
2737 2738
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2739
	css_put(css);
2740
	if (retval >= PATH_MAX)
2741 2742
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2743
		goto out_free;
2744
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2745
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2746
	retval = 0;
2747
out_free:
L
Linus Torvalds 已提交
2748
	kfree(buf);
2749
out:
L
Linus Torvalds 已提交
2750 2751
	return retval;
}
2752
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2753

2754
/* Display task mems_allowed in /proc/<pid>/status file. */
2755 2756
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2757 2758 2759 2760
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2761
}