arch_timer.c 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52

53
u64 kvm_phys_timer_read(void)
54 55 56 57
{
	return timecounter->cc->read(timecounter->cc);
}

58
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
59
{
60
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
61 62 63
		      HRTIMER_MODE_ABS);
}

64
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
65
{
66
	hrtimer_cancel(hrt);
67 68
	if (work)
		cancel_work_sync(work);
69 70
}

71
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
72
{
73
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
74 75

	/*
76 77 78 79 80 81 82
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
83
	 */
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

	if (!vcpu) {
		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
		return IRQ_NONE;
	}
	vtimer = vcpu_vtimer(vcpu);

	if (!vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		if (kvm_timer_irq_can_fire(vtimer))
			kvm_timer_update_irq(vcpu, true, vtimer);
	}

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_vtimer_update_mask_user(vcpu);

110 111 112
	return IRQ_HANDLED;
}

113 114 115 116
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
117 118 119 120 121
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
122

123 124 125 126
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
127
	kvm_vcpu_wake_up(vcpu);
128 129
}

130
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
131
{
132
	u64 cval, now;
133

134 135
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
136 137 138 139 140 141 142 143 144 145 146 147 148 149

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

179
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
180 181
{
	struct arch_timer_cpu *timer;
182 183 184
	struct kvm_vcpu *vcpu;
	u64 ns;

185
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
186 187 188 189 190 191 192
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
193
	ns = kvm_timer_earliest_exp(vcpu);
194 195 196 197 198
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

199
	schedule_work(&timer->expired);
200 201 202
	return HRTIMER_NORESTART;
}

203 204 205 206 207 208
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
	WARN(1, "Timer only used to ensure guest exit - unexpected event.");
	return HRTIMER_NORESTART;
}

209
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
210
{
211
	u64 cval, now;
212

213
	if (!kvm_timer_irq_can_fire(timer_ctx))
214 215
		return false;

216 217
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
218 219 220 221

	return cval <= now;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

240 241
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
242 243 244
{
	int ret;

245 246 247
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
248

249 250 251
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
252 253
					  timer_ctx->irq.level,
					  timer_ctx);
254 255
		WARN_ON(ret);
	}
256 257 258 259 260 261
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
262
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
263 264
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
265
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
266
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
267 268 269

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
270
	 * the vgic was initialized, we mustn't set the vtimer->irq.level value
271 272 273
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
274
	if (unlikely(!timer->enabled))
275
		return;
276

277 278
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
279

280 281
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
282 283
}

284
/* Schedule the background timer for the emulated timer. */
285
static void phys_timer_emulate(struct kvm_vcpu *vcpu,
286 287 288 289 290 291 292 293 294 295 296
			      struct arch_timer_context *timer_ctx)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (kvm_timer_should_fire(timer_ctx))
		return;

	if (!kvm_timer_irq_can_fire(timer_ctx))
		return;

	/*  The timer has not yet expired, schedule a background timer */
297
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(timer_ctx));
298 299
}

300
static void vtimer_save_state(struct kvm_vcpu *vcpu)
301 302 303
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
304 305 306 307 308 309
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
310 311 312 313 314 315 316 317

	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
318 319 320 321

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
322 323
}

324 325 326 327 328 329 330 331
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
332
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
333
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
334

335 336
	vtimer_save_state(vcpu);

337
	/*
338
	 * No need to schedule a background timer if any guest timer has
339 340 341
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
342
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
343 344 345
		return;

	/*
346
	 * If both timers are not capable of raising interrupts (disabled or
347 348
	 * masked), then there's no more work for us to do.
	 */
349
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
350 351
		return;

352 353 354 355
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
356
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
357 358
}

359
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
360 361 362
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
363 364 365 366 367 368
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
369 370 371 372 373 374

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
375 376 377 378

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
379 380
}

381 382 383
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
384

385 386
	vtimer_restore_state(vcpu);

387
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
388 389
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

405
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
406
{
407
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
408 409
	bool phys_active;
	int ret;
410

411
	phys_active = vtimer->irq.level ||
412
		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
413

414
	ret = irq_set_irqchip_state(host_vtimer_irq,
415 416 417
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
418
}
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

	if (has_vhe())
		disable_el1_phys_timer_access();
444 445
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

/**
 * kvm_timer_flush_hwstate - prepare timers before running the vcpu
 * @vcpu: The vcpu pointer
 *
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case, making sure the timer is
 * masked or disabled on the host so that we keep executing.  Also schedule a
 * software timer for the physical timer if it is enabled.
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
475
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
476 477 478 479

	if (unlikely(!timer->enabled))
		return;

480 481
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
482 483

	/* Set the background timer for the physical timer emulation. */
484
	phys_timer_emulate(vcpu, vcpu_ptimer(vcpu));
485
}
486

487 488 489
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	if (unlikely(!timer->enabled))
		return;

	if (has_vhe())
		enable_el1_phys_timer_access();

	vtimer_save_state(vcpu);

	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_vtimer_update_mask_user(vcpu);
		return;
	}

	/*
	 * If the guest disabled the timer without acking the interrupt, then
	 * we must make sure the physical and virtual active states are in
	 * sync by deactivating the physical interrupt, because otherwise we
	 * wouldn't see the next timer interrupt in the host.
	 */
	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
		int ret;
		ret = irq_set_irqchip_state(host_vtimer_irq,
					    IRQCHIP_STATE_ACTIVE,
					    false);
		WARN_ON(ret);
	}
530 531
}

532 533 534 535
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
536
 * Check if any of the timers have expired while we were running in the guest,
537
 * and inject an interrupt if that was the case.
538 539 540 541
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
542
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
543

544 545 546 547
	/*
	 * This is to cancel the background timer for the physical timer
	 * emulation if it is set.
	 */
548
	soft_timer_cancel(&timer->phys_timer, NULL);
549

550
	/*
551 552 553
	 * If we entered the guest with the vtimer output asserted we have to
	 * check if the guest has modified the timer so that we should lower
	 * the line at this point.
554
	 */
555 556 557 558 559 560 561 562
	if (vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			unmask_vtimer_irq(vcpu);
		}
	}
563 564
}

565
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
566
{
567
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
568
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
569

570 571 572 573 574 575
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
576
	vtimer->cnt_ctl = 0;
577
	ptimer->cnt_ctl = 0;
578
	kvm_timer_update_state(vcpu);
579

580
	return 0;
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

602 603 604
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
605 606
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
607

608 609
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
610
	vcpu_ptimer(vcpu)->cntvoff = 0;
611

612
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
613 614
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
615

616 617 618
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

619 620
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
621 622 623 624
}

static void kvm_timer_init_interrupt(void *info)
{
625
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
626 627
}

628 629
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
630
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
631
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
632 633 634

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
635
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
636 637
		break;
	case KVM_REG_ARM_TIMER_CNT:
638
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
639 640
		break;
	case KVM_REG_ARM_TIMER_CVAL:
641
		vtimer->cnt_cval = value;
642
		break;
643 644 645 646 647 648 649
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

650 651 652
	default:
		return -1;
	}
653 654

	kvm_timer_update_state(vcpu);
655 656 657
	return 0;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

672 673
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
674
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
675
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
676 677 678

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
679
		return read_timer_ctl(vtimer);
680
	case KVM_REG_ARM_TIMER_CNT:
681
		return kvm_phys_timer_read() - vtimer->cntvoff;
682
	case KVM_REG_ARM_TIMER_CVAL:
683
		return vtimer->cnt_cval;
684 685 686 687 688 689
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
690 691 692
	}
	return (u64)-1;
}
693

694
static int kvm_timer_starting_cpu(unsigned int cpu)
695
{
696 697
	kvm_timer_init_interrupt(NULL);
	return 0;
698 699
}

700 701 702 703 704
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
705 706 707

int kvm_timer_hyp_init(void)
{
708
	struct arch_timer_kvm_info *info;
709 710
	int err;

711 712
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
713

714 715 716 717 718
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

719 720 721
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
722 723
		return -ENODEV;
	}
724
	host_vtimer_irq = info->virtual_irq;
725

726 727 728 729 730 731 732 733
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

734
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
735 736 737
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
738
			host_vtimer_irq, err);
739
		return err;
740 741
	}

742 743 744 745 746 747
	err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
		goto out_free_irq;
	}

748
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
749

750
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
751
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
752
			  kvm_timer_dying_cpu);
753 754 755
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
756 757 758 759 760 761
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
762
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
763

764
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
765
	soft_timer_cancel(&timer->phys_timer, NULL);
766
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
767 768
}

769
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
770 771
{
	int vtimer_irq, ptimer_irq;
772
	int i, ret;
773 774

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
775 776 777
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
778

779 780 781
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
782 783
		return false;

784
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
785 786 787 788 789 790 791 792
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

793
int kvm_timer_enable(struct kvm_vcpu *vcpu)
794
{
795
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
796
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
797 798 799 800 801 802 803 804
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

805 806 807 808 809 810 811
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

812
	if (!timer_irqs_are_valid(vcpu)) {
813 814 815 816
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
836
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
837 838 839
	if (ret)
		return ret;

840
no_vgic:
841
	timer->enabled = 1;
842
	return 0;
843
}
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}