mballoc.c 144.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
14
 * You should have received a copy of the GNU General Public License
15 16 17 18 19 20 21 22 23
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

B
Bobi Jam 已提交
24
#include "ext4_jbd2.h"
25
#include "mballoc.h"
26
#include <linux/log2.h>
27
#include <linux/module.h>
28
#include <linux/slab.h>
29
#include <linux/backing-dev.h>
30 31
#include <trace/events/ext4.h>

32 33 34 35 36 37 38
#ifdef CONFIG_EXT4_DEBUG
ushort ext4_mballoc_debug __read_mostly;

module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
#endif

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
63 64 65 66 67 68 69 70 71
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
72 73
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
74
 * ensure that we have small files closer together on the disk.
75
 *
T
Theodore Ts'o 已提交
76 77 78 79
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
80 81 82
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
83 84
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
85 86 87
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
88 89
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
90 91 92 93 94 95 96
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
97
 * prealloc space. These are per CPU prealloc list represented as
98 99 100 101 102 103 104
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
105
 * enough free space (pa_free) within the prealloc space.
106 107 108 109 110 111 112 113 114 115 116 117
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
118
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 120 121
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
122
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
139 140
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
141
 * 512 blocks. This can be tuned via
142
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 144
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
145 146
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
147
 *
148
 * The regular allocator (using the buddy cache) supports a few tunables.
149
 *
T
Theodore Ts'o 已提交
150 151 152
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
153
 *
T
Theodore Ts'o 已提交
154
 * The regular allocator uses buddy scan only if the request len is power of
155 156
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
157
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
159 160 161
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
162
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
163
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 165 166
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
167
 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
350 351
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
B
Bobi Jam 已提交
352
static struct kmem_cache *ext4_free_data_cachep;
353 354 355 356

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
357
#define NR_GRPINFO_CACHES 8
358 359
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

360 361 362 363 364 365
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

366 367
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
368 369
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
B
Bobi Jam 已提交
370 371
static void ext4_free_data_callback(struct super_block *sb,
				struct ext4_journal_cb_entry *jce, int rc);
372

373 374
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
375
#if BITS_PER_LONG == 64
376 377
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
378
#elif BITS_PER_LONG == 32
379 380
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
381 382 383
#else
#error "how many bits you are?!"
#endif
384 385
	return addr;
}
386 387 388 389 390 391 392

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
393
	addr = mb_correct_addr_and_bit(&bit, addr);
394 395 396 397 398
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
399
	addr = mb_correct_addr_and_bit(&bit, addr);
400 401 402 403 404
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
405
	addr = mb_correct_addr_and_bit(&bit, addr);
406 407 408
	ext4_clear_bit(bit, addr);
}

409 410 411 412 413 414
static inline int mb_test_and_clear_bit(int bit, void *addr)
{
	addr = mb_correct_addr_and_bit(&bit, addr);
	return ext4_test_and_clear_bit(bit, addr);
}

415 416
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
417
	int fix = 0, ret, tmpmax;
418
	addr = mb_correct_addr_and_bit(&fix, addr);
419
	tmpmax = max + fix;
420 421
	start += fix;

422 423 424 425
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
426 427 428 429
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
430
	int fix = 0, ret, tmpmax;
431
	addr = mb_correct_addr_and_bit(&fix, addr);
432
	tmpmax = max + fix;
433 434
	start += fix;

435 436 437 438
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
439 440
}

441 442 443 444
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

445
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 447 448 449 450 451 452 453
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
454 455
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
456
		return e4b->bd_bitmap;
C
Coly Li 已提交
457
	}
458

459
	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 461 462 463 464 465 466 467 468 469 470 471 472 473
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
474
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 476 477
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
478 479

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481
			ext4_grp_locked_error(sb, e4b->bd_group,
482 483 484 485 486
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
487 488 489 490 491 492 493 494 495 496 497
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
498
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
514 515 516 517 518
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

601
			/* both bits in buddy2 must be 1 */
602 603 604 605 606 607
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
608
					!mb_test_bit(k, e4b->bd_bitmap));
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
643 644
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646
		for (i = 0; i < pa->pa_len; i++)
647 648 649 650 651 652
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653
					__FILE__, __func__, __LINE__)
654 655 656 657
#else
#define mb_check_buddy(e4b)
#endif

658 659 660 661 662 663
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
664
static void ext4_mb_mark_free_simple(struct super_block *sb,
665
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 667 668
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
669 670 671
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
672 673
	unsigned short border;

674
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

721 722
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
723 724 725
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726
	struct ext4_sb_info *sbi = EXT4_SB(sb);
727
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 729 730
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
731 732 733 734 735 736
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
737
	i = mb_find_next_zero_bit(bitmap, max, 0);
738 739 740 741
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
742
		i = mb_find_next_bit(bitmap, max, i);
743 744 745 746 747 748 749
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
750
			i = mb_find_next_zero_bit(bitmap, max, i);
751 752 753 754
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
755
		ext4_grp_locked_error(sb, group, 0, 0,
756 757
				      "block bitmap and bg descriptor "
				      "inconsistent: %u vs %u free clusters",
758
				      free, grp->bb_free);
759
		/*
760
		 * If we intend to continue, we consider group descriptor
761 762
		 * corrupt and update bb_free using bitmap value
		 */
763
		grp->bb_free = free;
764 765 766
		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
			percpu_counter_sub(&sbi->s_freeclusters_counter,
					   grp->bb_free);
767
		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768
	}
769
	mb_set_largest_free_order(sb, grp);
770 771 772 773 774 775 776 777 778 779

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void mb_regenerate_buddy(struct ext4_buddy *e4b)
{
	int count;
	int order = 1;
	void *buddy;

	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
		ext4_set_bits(buddy, 0, count);
	}
	e4b->bd_info->bb_fragments = 0;
	memset(e4b->bd_info->bb_counters, 0,
		sizeof(*e4b->bd_info->bb_counters) *
		(e4b->bd_sb->s_blocksize_bits + 2));

	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
		e4b->bd_bitmap, e4b->bd_group);
}

798 799 800 801 802 803 804
/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
805
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 807 808 809
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
810
 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
811 812
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
813 814 815
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
816 817
 */

818
static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819
{
820
	ext4_group_t ngroups;
821 822 823 824 825
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
826
	ext4_group_t first_group, group;
827 828 829
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
830
	struct buffer_head **bh = NULL;
831 832 833
	struct inode *inode;
	char *data;
	char *bitmap;
834
	struct ext4_group_info *grinfo;
835

836
	mb_debug(1, "init page %lu\n", page->index);
837 838 839

	inode = page->mapping->host;
	sb = inode->i_sb;
840
	ngroups = ext4_get_groups_count(sb);
841
	blocksize = 1 << inode->i_blkbits;
842
	blocks_per_page = PAGE_SIZE / blocksize;
843 844 845 846 847 848 849 850

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		i = sizeof(struct buffer_head *) * groups_per_page;
851
		bh = kzalloc(i, gfp);
852 853
		if (bh == NULL) {
			err = -ENOMEM;
854
			goto out;
855
		}
856 857 858 859 860 861
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
862 863
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (group >= ngroups)
864 865
			break;

866
		grinfo = ext4_get_group_info(sb, group);
867 868 869 870 871 872 873 874 875 876
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}
877 878 879 880
		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
		if (IS_ERR(bh[i])) {
			err = PTR_ERR(bh[i]);
			bh[i] = NULL;
881
			goto out;
882
		}
883
		mb_debug(1, "read bitmap for group %u\n", group);
884 885 886
	}

	/* wait for I/O completion */
887
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 889 890 891 892 893 894
		int err2;

		if (!bh[i])
			continue;
		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
		if (!err)
			err = err2;
895
	}
896 897 898 899

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		group = (first_block + i) >> 1;
900
		if (group >= ngroups)
901 902
			break;

903 904 905 906
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

907 908 909 910 911
		if (!buffer_verified(bh[group - first_group]))
			/* Skip faulty bitmaps */
			continue;
		err = 0;

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
928
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929
				group, page->index, i * blocksize);
930
			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 932 933
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
934 935
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
936 937 938
			/*
			 * incore got set to the group block bitmap below
			 */
939
			ext4_lock_group(sb, group);
940 941
			/* init the buddy */
			memset(data, 0xff, blocksize);
942
			ext4_mb_generate_buddy(sb, data, incore, group);
943
			ext4_unlock_group(sb, group);
944 945 946 947
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
948
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949
				group, page->index, i * blocksize);
950
			trace_ext4_mb_bitmap_load(sb, group);
951 952 953 954 955 956 957

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
958
			ext4_mb_generate_from_freelist(sb, data, group);
959 960 961 962 963 964 965 966 967 968 969 970
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
971
		for (i = 0; i < groups_per_page; i++)
972 973 974 975 976 977 978
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

979
/*
980 981 982 983
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984
 */
985
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986
		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987
{
988 989
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
990
	int blocks_per_page;
991 992 993 994
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
995

996
	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 998 999 1000 1001 1002 1003
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
1004
	poff = block % blocks_per_page;
1005
	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006
	if (!page)
1007
		return -ENOMEM;
1008 1009 1010 1011 1012 1013 1014
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
1015
	}
1016 1017 1018

	block++;
	pnum = block / blocks_per_page;
1019
	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020
	if (!page)
1021
		return -ENOMEM;
1022 1023 1024
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
1025 1026
}

1027
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028
{
1029 1030
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
1031
		put_page(e4b->bd_bitmap_page);
1032 1033 1034
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
1035
		put_page(e4b->bd_buddy_page);
1036 1037 1038
	}
}

1039 1040 1041 1042 1043
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1044
static noinline_for_stack
1045
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 1047 1048
{

	struct ext4_group_info *this_grp;
1049 1050 1051
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1052

1053
	might_sleep();
1054 1055 1056
	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1057 1058 1059 1060
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1061
	 * would have pinned buddy page to page cache.
1062 1063
	 * The call to ext4_mb_get_buddy_page_lock will mark the
	 * page accessed.
1064
	 */
1065
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 1068 1069 1070 1071 1072
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1073 1074

	page = e4b.bd_bitmap_page;
1075
	ret = ext4_mb_init_cache(page, NULL, gfp);
1076 1077 1078
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1079 1080 1081 1082
		ret = -EIO;
		goto err;
	}

1083
	if (e4b.bd_buddy_page == NULL) {
1084 1085 1086 1087 1088
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1089 1090
		ret = 0;
		goto err;
1091
	}
1092 1093
	/* init buddy cache */
	page = e4b.bd_buddy_page;
1094
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 1096 1097
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1098 1099 1100 1101
		ret = -EIO;
		goto err;
	}
err:
1102
	ext4_mb_put_buddy_page_lock(&e4b);
1103 1104 1105
	return ret;
}

1106 1107 1108 1109 1110
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1111
static noinline_for_stack int
1112 1113
ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
		       struct ext4_buddy *e4b, gfp_t gfp)
1114 1115 1116 1117 1118 1119
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1120
	int ret;
1121 1122 1123
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1124

1125
	might_sleep();
1126
	mb_debug(1, "load group %u\n", group);
1127

1128
	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129
	grp = ext4_get_group_info(sb, group);
1130 1131

	e4b->bd_blkbits = sb->s_blocksize_bits;
1132
	e4b->bd_info = grp;
1133 1134 1135 1136 1137
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1138 1139 1140 1141 1142
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
1143
		ret = ext4_mb_init_group(sb, group, gfp);
1144 1145 1146 1147
		if (ret)
			return ret;
	}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
1159
	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 1161
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1162 1163 1164 1165 1166 1167 1168 1169
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1170
			put_page(page);
1171
		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 1173 1174
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1175
				ret = ext4_mb_init_cache(page, NULL, gfp);
1176 1177 1178 1179
				if (ret) {
					unlock_page(page);
					goto err;
				}
1180 1181 1182 1183 1184 1185
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1186 1187 1188 1189 1190
	if (page == NULL) {
		ret = -ENOMEM;
		goto err;
	}
	if (!PageUptodate(page)) {
1191
		ret = -EIO;
1192
		goto err;
1193
	}
1194 1195

	/* Pages marked accessed already */
1196 1197 1198 1199 1200 1201 1202
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

1203
	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 1205
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1206
			put_page(page);
1207
		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 1209
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1210
			if (!PageUptodate(page)) {
1211 1212
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
							 gfp);
1213 1214 1215 1216 1217
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1218 1219 1220
			unlock_page(page);
		}
	}
1221 1222 1223 1224 1225
	if (page == NULL) {
		ret = -ENOMEM;
		goto err;
	}
	if (!PageUptodate(page)) {
1226
		ret = -EIO;
1227
		goto err;
1228
	}
1229 1230

	/* Pages marked accessed already */
1231 1232 1233 1234 1235 1236 1237 1238 1239
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1240
	if (page)
1241
		put_page(page);
1242
	if (e4b->bd_bitmap_page)
1243
		put_page(e4b->bd_bitmap_page);
1244
	if (e4b->bd_buddy_page)
1245
		put_page(e4b->bd_buddy_page);
1246 1247
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1248
	return ret;
1249 1250
}

1251 1252 1253 1254 1255 1256
static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
			      struct ext4_buddy *e4b)
{
	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
}

1257
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 1259
{
	if (e4b->bd_bitmap_page)
1260
		put_page(e4b->bd_bitmap_page);
1261
	if (e4b->bd_buddy_page)
1262
		put_page(e4b->bd_buddy_page);
1263 1264 1265 1266 1267 1268
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
1269
	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 1271
	void *bb;

1272
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 1274
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

1275
	bb = e4b->bd_buddy;
1276 1277 1278 1279 1280 1281
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
1282 1283
		bb += bb_incr;
		bb_incr >>= 1;
1284 1285 1286 1287 1288
		order++;
	}
	return 0;
}

1289
static void mb_clear_bits(void *bm, int cur, int len)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1302
		mb_clear_bit(cur, bm);
1303 1304 1305 1306
		cur++;
	}
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/* clear bits in given range
 * will return first found zero bit if any, -1 otherwise
 */
static int mb_test_and_clear_bits(void *bm, int cur, int len)
{
	__u32 *addr;
	int zero_bit = -1;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			if (*addr != (__u32)(-1) && zero_bit == -1)
				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
			*addr = 0;
			cur += 32;
			continue;
		}
		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
			zero_bit = cur;
		cur++;
	}

	return zero_bit;
}

1334
void ext4_set_bits(void *bm, int cur, int len)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1347
		mb_set_bit(cur, bm);
1348 1349 1350 1351
		cur++;
	}
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * _________________________________________________________________ */

static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
{
	if (mb_test_bit(*bit + side, bitmap)) {
		mb_clear_bit(*bit, bitmap);
		(*bit) -= side;
		return 1;
	}
	else {
		(*bit) += side;
		mb_set_bit(*bit, bitmap);
		return -1;
	}
}

static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
{
	int max;
	int order = 1;
	void *buddy = mb_find_buddy(e4b, order, &max);

	while (buddy) {
		void *buddy2;

		/* Bits in range [first; last] are known to be set since
		 * corresponding blocks were allocated. Bits in range
		 * (first; last) will stay set because they form buddies on
		 * upper layer. We just deal with borders if they don't
		 * align with upper layer and then go up.
		 * Releasing entire group is all about clearing
		 * single bit of highest order buddy.
		 */

		/* Example:
		 * ---------------------------------
		 * |   1   |   1   |   1   |   1   |
		 * ---------------------------------
		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
		 * ---------------------------------
		 *   0   1   2   3   4   5   6   7
		 *      \_____________________/
		 *
		 * Neither [1] nor [6] is aligned to above layer.
		 * Left neighbour [0] is free, so mark it busy,
		 * decrease bb_counters and extend range to
		 * [0; 6]
		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
		 * mark [6] free, increase bb_counters and shrink range to
		 * [0; 5].
		 * Then shift range to [0; 2], go up and do the same.
		 */


		if (first & 1)
			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
		if (!(last & 1))
			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
		if (first > last)
			break;
		order++;

		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
			mb_clear_bits(buddy, first, last - first + 1);
			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
			break;
		}
		first >>= 1;
		last >>= 1;
		buddy = buddy2;
	}
}

1426
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427
			   int first, int count)
1428
{
1429 1430 1431 1432
	int left_is_free = 0;
	int right_is_free = 0;
	int block;
	int last = first + count - 1;
1433 1434
	struct super_block *sb = e4b->bd_sb;

1435 1436
	if (WARN_ON(count == 0))
		return;
1437
	BUG_ON(last >= (sb->s_blocksize << 3));
1438
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 1440 1441 1442
	/* Don't bother if the block group is corrupt. */
	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
		return;

1443 1444 1445 1446 1447 1448 1449
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

1450 1451 1452
	/* access memory sequentially: check left neighbour,
	 * clear range and then check right neighbour
	 */
1453
	if (first != 0)
1454 1455 1456 1457 1458 1459
		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);

	if (unlikely(block != -1)) {
1460
		struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 1462 1463 1464 1465 1466 1467 1468
		ext4_fsblk_t blocknr;

		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
		blocknr += EXT4_C2B(EXT4_SB(sb), block);
		ext4_grp_locked_error(sb, e4b->bd_group,
				      inode ? inode->i_ino : 0,
				      blocknr,
				      "freeing already freed block "
1469 1470
				      "(bit %u); block bitmap corrupt.",
				      block);
1471 1472 1473
		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
			percpu_counter_sub(&sbi->s_freeclusters_counter,
					   e4b->bd_info->bb_free);
1474 1475 1476
		/* Mark the block group as corrupt. */
		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
			&e4b->bd_info->bb_state);
1477 1478 1479 1480 1481 1482
		mb_regenerate_buddy(e4b);
		goto done;
	}

	/* let's maintain fragments counter */
	if (left_is_free && right_is_free)
1483
		e4b->bd_info->bb_fragments--;
1484
	else if (!left_is_free && !right_is_free)
1485 1486
		e4b->bd_info->bb_fragments++;

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/* buddy[0] == bd_bitmap is a special case, so handle
	 * it right away and let mb_buddy_mark_free stay free of
	 * zero order checks.
	 * Check if neighbours are to be coaleasced,
	 * adjust bitmap bb_counters and borders appropriately.
	 */
	if (first & 1) {
		first += !left_is_free;
		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
	}
	if (!(last & 1)) {
		last -= !right_is_free;
		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
	}
1501

1502 1503
	if (first <= last)
		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504

1505
done:
1506
	mb_set_largest_free_order(sb, e4b->bd_info);
1507 1508 1509
	mb_check_buddy(e4b);
}

1510
static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 1512 1513
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
1514
	int max, order;
1515 1516
	void *buddy;

1517
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 1519
	BUG_ON(ex == NULL);

1520
	buddy = mb_find_buddy(e4b, 0, &max);
1521 1522 1523 1524 1525 1526 1527 1528 1529
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

1530 1531 1532
	/* find actual order */
	order = mb_find_order_for_block(e4b, block);
	block = block >> order;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
A
Alan Cox 已提交
1544
	       mb_find_buddy(e4b, order, &max)) {
1545 1546 1547 1548 1549

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
1550
		if (mb_test_bit(next, e4b->bd_bitmap))
1551 1552
			break;

1553
		order = mb_find_order_for_block(e4b, next);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1577
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 1579 1580 1581 1582 1583 1584 1585 1586
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
1587
		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589
		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1630
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631

1632
	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1662 1663 1664 1665 1666 1667 1668
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1669 1670 1671 1672 1673
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1674
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1696 1697
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
1718
		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1744 1745
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1795 1796
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
1810
	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811 1812 1813 1814 1815 1816 1817

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1818
	ext4_mb_unload_buddy(e4b);
1819 1820 1821 1822

	return 0;
}

1823 1824
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 1826 1827 1828 1829 1830
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 1833 1834 1835
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;
1836 1837
	if (grp->bb_free == 0)
		return 0;
1838 1839 1840 1841 1842

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

1843 1844 1845 1846 1847
	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
		ext4_mb_unload_buddy(e4b);
		return 0;
	}

1848
	ext4_lock_group(ac->ac_sb, group);
1849
	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850
			     ac->ac_g_ex.fe_len, &ex);
1851
	ex.fe_logical = 0xDEADFA11; /* debug value */
1852 1853 1854 1855

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1856 1857
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1882
	ext4_mb_unload_buddy(e4b);
1883 1884 1885 1886 1887 1888 1889 1890

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1891 1892
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1910
		k = mb_find_next_zero_bit(buddy, max, 0);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1935 1936
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 1938 1939
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
1940
	void *bitmap = e4b->bd_bitmap;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951
		i = mb_find_next_zero_bit(bitmap,
1952 1953
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954
			/*
1955
			 * IF we have corrupt bitmap, we won't find any
1956 1957 1958
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1959
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960
					"%d free clusters as per "
1961
					"group info. But bitmap says 0",
1962
					free);
1963 1964 1965
			break;
		}

1966
		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967
		BUG_ON(ex.fe_len <= 0);
1968
		if (free < ex.fe_len) {
1969
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970
					"%d free clusters as per "
1971
					"group info. But got %d blocks",
1972
					free, ex.fe_len);
1973 1974 1975 1976 1977 1978
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1979
		}
1980
		ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1992
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993
 */
1994 1995
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 1997 1998 1999
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2000
	void *bitmap = e4b->bd_bitmap;
2001 2002 2003 2004 2005 2006 2007 2008 2009
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
2010 2011
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

2012 2013 2014 2015
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

2016
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017
		if (!mb_test_bit(i, bitmap)) {
2018
			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 2020
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
2021
				ex.fe_logical = 0xDEADF00D; /* debug value */
2022 2023 2024 2025 2026 2027 2028 2029 2030
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

2031 2032 2033 2034 2035 2036
/*
 * This is now called BEFORE we load the buddy bitmap.
 * Returns either 1 or 0 indicating that the group is either suitable
 * for the allocation or not. In addition it can also return negative
 * error code when something goes wrong.
 */
2037 2038 2039 2040
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
2041
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 2043 2044
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
2045

2046 2047 2048 2049 2050 2051
	free = grp->bb_free;
	if (free == 0)
		return 0;
	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
		return 0;

2052 2053 2054
	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
		return 0;

2055 2056
	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057
		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058
		if (ret)
2059
			return ret;
2060
	}
2061 2062 2063 2064 2065 2066 2067 2068 2069

	fragments = grp->bb_fragments;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

2070 2071 2072 2073 2074 2075
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

2076 2077 2078 2079 2080 2081 2082
		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
		    (free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;

		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

2083
		return 1;
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

2101 2102
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103
{
2104
	ext4_group_t ngroups, group, i;
2105
	int cr;
2106
	int err = 0, first_err = 0;
2107 2108 2109 2110 2111 2112
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
2113
	ngroups = ext4_get_groups_count(sb);
2114
	/* non-extent files are limited to low blocks/groups */
2115
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 2117
		ngroups = sbi->s_blockfile_groups;

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
2138
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 2140 2141 2142 2143 2144 2145 2146 2147
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

2148 2149
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 2151 2152 2153 2154 2155
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
2166 2167 2168 2169 2170 2171
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

2172
		for (i = 0; i < ngroups; group++, i++) {
2173
			int ret = 0;
2174
			cond_resched();
2175 2176 2177 2178 2179
			/*
			 * Artificially restricted ngroups for non-extent
			 * files makes group > ngroups possible on first loop.
			 */
			if (group >= ngroups)
2180 2181
				group = 0;

2182
			/* This now checks without needing the buddy page */
2183 2184 2185 2186
			ret = ext4_mb_good_group(ac, group, cr);
			if (ret <= 0) {
				if (!first_err)
					first_err = ret;
2187
				continue;
2188
			}
2189 2190 2191 2192 2193 2194

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
2195 2196 2197 2198 2199

			/*
			 * We need to check again after locking the
			 * block group
			 */
2200 2201
			ret = ext4_mb_good_group(ac, group, cr);
			if (ret <= 0) {
2202
				ext4_unlock_group(sb, group);
2203
				ext4_mb_unload_buddy(&e4b);
2204 2205
				if (!first_err)
					first_err = ret;
2206 2207 2208 2209
				continue;
			}

			ac->ac_groups_scanned++;
2210
			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211
				ext4_mb_simple_scan_group(ac, &e4b);
2212 2213
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 2215 2216 2217 2218
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2219
			ext4_mb_unload_buddy(&e4b);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
2252 2253
	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
		err = first_err;
2254 2255 2256 2257 2258 2259 2260 2261
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2262
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 2264
		return NULL;
	group = *pos + 1;
2265
	return (void *) ((unsigned long) group);
2266 2267 2268 2269 2270 2271 2272 2273
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2274
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 2276
		return NULL;
	group = *pos + 1;
2277
	return (void *) ((unsigned long) group);
2278 2279 2280 2281 2282
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2283
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284
	int i;
2285
	int err, buddy_loaded = 0;
2286
	struct ext4_buddy e4b;
2287
	struct ext4_group_info *grinfo;
2288 2289
	struct sg {
		struct ext4_group_info info;
2290
		ext4_grpblk_t counters[16];
2291 2292 2293 2294
	} sg;

	group--;
	if (group == 0)
2295 2296
		seq_puts(seq, "#group: free  frags first ["
			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2297
			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2298 2299 2300

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
2301 2302 2303 2304 2305 2306 2307 2308 2309
	grinfo = ext4_get_group_info(sb, group);
	/* Load the group info in memory only if not already loaded. */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
		err = ext4_mb_load_buddy(sb, group, &e4b);
		if (err) {
			seq_printf(seq, "#%-5u: I/O error\n", group);
			return 0;
		}
		buddy_loaded = 1;
2310
	}
2311

2312
	memcpy(&sg, ext4_get_group_info(sb, group), i);
2313 2314 2315

	if (buddy_loaded)
		ext4_mb_unload_buddy(&e4b);
2316

2317
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2331
static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 2333 2334 2335 2336 2337 2338 2339
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2340
	struct super_block *sb = PDE_DATA(inode);
2341 2342 2343 2344
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2345
		struct seq_file *m = file->private_data;
2346 2347 2348 2349 2350 2351
		m->private = sb;
	}
	return rc;

}

2352
const struct file_operations ext4_seq_mb_groups_fops = {
2353 2354 2355 2356 2357 2358 2359
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2360 2361 2362 2363 2364 2365 2366 2367
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/*
 * Allocate the top-level s_group_info array for the specified number
 * of groups
 */
int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned size;
	struct ext4_group_info ***new_groupinfo;

	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
		EXT4_DESC_PER_BLOCK_BITS(sb);
	if (size <= sbi->s_group_info_size)
		return 0;

	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
	if (!new_groupinfo) {
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
		return -ENOMEM;
	}
	if (sbi->s_group_info) {
		memcpy(new_groupinfo, sbi->s_group_info,
		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
A
Al Viro 已提交
2393
		kvfree(sbi->s_group_info);
2394 2395 2396 2397 2398 2399 2400 2401
	}
	sbi->s_group_info = new_groupinfo;
	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
		   sbi->s_group_info_size);
	return 0;
}

2402
/* Create and initialize ext4_group_info data for the given group. */
2403
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2404 2405
			  struct ext4_group_desc *desc)
{
2406
	int i;
2407 2408 2409
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2410
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411 2412 2413 2414 2415 2416 2417 2418 2419

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
2420
		meta_group_info = kmalloc(metalen, GFP_NOFS);
2421
		if (meta_group_info == NULL) {
2422
			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423
				 "for a buddy group");
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2434
	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435
	if (meta_group_info[i] == NULL) {
2436
		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		goto exit_group_info;
	}
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2448
			ext4_free_clusters_after_init(sb, group, desc);
2449 2450
	} else {
		meta_group_info[i]->bb_free =
2451
			ext4_free_group_clusters(sb, desc);
2452 2453 2454
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2455
	init_rwsem(&meta_group_info[i]->alloc_sem);
2456
	meta_group_info[i]->bb_free_root = RB_ROOT;
2457
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2458 2459 2460 2461 2462

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
2463
			kmalloc(sb->s_blocksize, GFP_NOFS);
2464 2465
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
2466
		BUG_ON(IS_ERR_OR_NULL(bh));
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2477
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2478
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2479 2480
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2481 2482 2483 2484
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2485 2486
static int ext4_mb_init_backend(struct super_block *sb)
{
2487
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2488 2489
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2490
	int err;
2491
	struct ext4_group_desc *desc;
2492
	struct kmem_cache *cachep;
2493

2494 2495 2496
	err = ext4_mb_alloc_groupinfo(sb, ngroups);
	if (err)
		return err;
2497 2498 2499

	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2500
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2501 2502
		goto err_freesgi;
	}
2503 2504 2505 2506 2507
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2508
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2509
	for (i = 0; i < ngroups; i++) {
2510 2511
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2512
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2513 2514
			goto err_freebuddy;
		}
2515 2516
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2517 2518 2519 2520 2521
	}

	return 0;

err_freebuddy:
2522
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2523
	while (i-- > 0)
2524
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2525
	i = sbi->s_group_info_size;
2526
	while (i-- > 0)
2527 2528 2529
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
A
Al Viro 已提交
2530
	kvfree(sbi->s_group_info);
2531 2532 2533
	return -ENOMEM;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2572 2573
	ext4_groupinfo_caches[cache_index] = cachep;

2574 2575
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2576 2577
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2578 2579 2580 2581 2582 2583
		return -ENOMEM;
	}

	return 0;
}

2584
int ext4_mb_init(struct super_block *sb)
2585 2586
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
	unsigned i, j;
2588
	unsigned offset, offset_incr;
2589
	unsigned max;
2590
	int ret;
2591

2592
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2593 2594 2595

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2596 2597
		ret = -ENOMEM;
		goto out;
2598
	}
2599

2600
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2601 2602
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2603 2604 2605 2606
		ret = -ENOMEM;
		goto out;
	}

2607 2608 2609
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2610 2611 2612 2613 2614 2615 2616

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
2617
	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2618 2619 2620 2621
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
2622 2623
		offset += offset_incr;
		offset_incr = offset_incr >> 1;
2624 2625 2626 2627 2628 2629
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);
2630
	sbi->s_mb_free_pending = 0;
2631 2632 2633 2634 2635 2636

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2663

2664
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2665
	if (sbi->s_locality_groups == NULL) {
2666
		ret = -ENOMEM;
2667
		goto out;
2668
	}
2669
	for_each_possible_cpu(i) {
2670
		struct ext4_locality_group *lg;
2671
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2672
		mutex_init(&lg->lg_mutex);
2673 2674
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2675 2676 2677
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2678 2679
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2680 2681
	if (ret != 0)
		goto out_free_locality_groups;
2682

2683 2684 2685 2686 2687
	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
2688
out:
2689 2690 2691 2692
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2693
	return ret;
2694 2695
}

2696
/* need to called with the ext4 group lock held */
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2707
		kmem_cache_free(ext4_pspace_cachep, pa);
2708 2709
	}
	if (count)
2710
		mb_debug(1, "mballoc: %u PAs left\n", count);
2711 2712 2713 2714 2715

}

int ext4_mb_release(struct super_block *sb)
{
2716
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2717 2718 2719 2720
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2721
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2722 2723

	if (sbi->s_group_info) {
2724
		for (i = 0; i < ngroups; i++) {
2725 2726 2727 2728 2729 2730 2731
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2732
			kmem_cache_free(cachep, grinfo);
2733
		}
2734
		num_meta_group_infos = (ngroups +
2735 2736 2737 2738
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
A
Al Viro 已提交
2739
		kvfree(sbi->s_group_info);
2740 2741 2742
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
2743
	iput(sbi->s_buddy_cache);
2744
	if (sbi->s_mb_stats) {
2745 2746
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2747 2748 2749
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2750 2751 2752
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2753 2754 2755 2756 2757
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2758 2759
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2760
				sbi->s_mb_buddies_generated,
2761
				sbi->s_mb_generation_time);
2762 2763
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2764 2765 2766 2767
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2768
	free_percpu(sbi->s_locality_groups);
2769 2770 2771 2772

	return 0;
}

2773
static inline int ext4_issue_discard(struct super_block *sb,
2774
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2775 2776 2777
{
	ext4_fsblk_t discard_block;

2778 2779 2780
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2781 2782
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2783
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2784 2785
}

2786 2787 2788 2789
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
B
Bobi Jam 已提交
2790 2791 2792
static void ext4_free_data_callback(struct super_block *sb,
				    struct ext4_journal_cb_entry *jce,
				    int rc)
2793
{
B
Bobi Jam 已提交
2794
	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2795
	struct ext4_buddy e4b;
2796
	struct ext4_group_info *db;
2797
	int err, count = 0, count2 = 0;
2798

B
Bobi Jam 已提交
2799 2800
	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
		 entry->efd_count, entry->efd_group, entry);
2801

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
	if (test_opt(sb, DISCARD)) {
		err = ext4_issue_discard(sb, entry->efd_group,
					 entry->efd_start_cluster,
					 entry->efd_count);
		if (err && err != -EOPNOTSUPP)
			ext4_msg(sb, KERN_WARNING, "discard request in"
				 " group:%d block:%d count:%d failed"
				 " with %d", entry->efd_group,
				 entry->efd_start_cluster,
				 entry->efd_count, err);
	}
2813

B
Bobi Jam 已提交
2814 2815 2816
	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
	/* we expect to find existing buddy because it's pinned */
	BUG_ON(err != 0);
2817

2818 2819 2820
	spin_lock(&EXT4_SB(sb)->s_md_lock);
	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2821

B
Bobi Jam 已提交
2822 2823 2824 2825 2826 2827 2828 2829
	db = e4b.bd_info;
	/* there are blocks to put in buddy to make them really free */
	count += entry->efd_count;
	count2++;
	ext4_lock_group(sb, entry->efd_group);
	/* Take it out of per group rb tree */
	rb_erase(&entry->efd_node, &(db->bb_free_root));
	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2830

B
Bobi Jam 已提交
2831 2832 2833 2834 2835 2836 2837 2838
	/*
	 * Clear the trimmed flag for the group so that the next
	 * ext4_trim_fs can trim it.
	 * If the volume is mounted with -o discard, online discard
	 * is supported and the free blocks will be trimmed online.
	 */
	if (!test_opt(sb, DISCARD))
		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2839

B
Bobi Jam 已提交
2840 2841 2842 2843
	if (!db->bb_free_root.rb_node) {
		/* No more items in the per group rb tree
		 * balance refcounts from ext4_mb_free_metadata()
		 */
2844 2845
		put_page(e4b.bd_buddy_page);
		put_page(e4b.bd_bitmap_page);
2846
	}
B
Bobi Jam 已提交
2847 2848 2849
	ext4_unlock_group(sb, entry->efd_group);
	kmem_cache_free(ext4_free_data_cachep, entry);
	ext4_mb_unload_buddy(&e4b);
2850

2851
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2852 2853
}

2854
int __init ext4_init_mballoc(void)
2855
{
2856 2857
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2858 2859 2860
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2861 2862
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2863 2864 2865 2866
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2867

B
Bobi Jam 已提交
2868 2869 2870
	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
					   SLAB_RECLAIM_ACCOUNT);
	if (ext4_free_data_cachep == NULL) {
2871 2872 2873 2874
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2875 2876 2877
	return 0;
}

2878
void ext4_exit_mballoc(void)
2879
{
2880
	/*
2881 2882 2883 2884
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2885
	kmem_cache_destroy(ext4_pspace_cachep);
2886
	kmem_cache_destroy(ext4_ac_cachep);
B
Bobi Jam 已提交
2887
	kmem_cache_destroy(ext4_free_data_cachep);
2888
	ext4_groupinfo_destroy_slabs();
2889 2890 2891 2892
}


/*
2893
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2894 2895
 * Returns 0 if success or error code
 */
2896 2897
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2898
				handle_t *handle, unsigned int reserv_clstrs)
2899 2900 2901 2902 2903 2904 2905
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2906
	int err, len;
2907 2908 2909 2910 2911 2912 2913

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

2914
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2915 2916 2917
	if (IS_ERR(bitmap_bh)) {
		err = PTR_ERR(bitmap_bh);
		bitmap_bh = NULL;
2918
		goto out_err;
2919
	}
2920

2921
	BUFFER_TRACE(bitmap_bh, "getting write access");
2922 2923 2924 2925 2926 2927 2928 2929 2930
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2931
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2932
			ext4_free_group_clusters(sb, gdp));
2933

2934
	BUFFER_TRACE(gdp_bh, "get_write_access");
2935 2936 2937 2938
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2939
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2940

2941
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2942
	if (!ext4_data_block_valid(sbi, block, len)) {
2943
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2944
			   "fs metadata", block, block+len);
2945 2946 2947 2948
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2949
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2950 2951
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2952
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2953
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2954 2955 2956
		if (!err)
			err = -EAGAIN;
		goto out_err;
2957
	}
2958 2959

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2960 2961 2962 2963 2964 2965 2966 2967 2968
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2969 2970
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2971 2972
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2973
		ext4_free_group_clusters_set(sb, gdp,
2974
					     ext4_free_clusters_after_init(sb,
2975
						ac->ac_b_ex.fe_group, gdp));
2976
	}
2977 2978
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2979
	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2980
	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2981 2982

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2983
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2984
	/*
2985
	 * Now reduce the dirty block count also. Should not go negative
2986
	 */
2987 2988
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2989 2990
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2991

2992 2993 2994
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2995 2996
		atomic64_sub(ac->ac_b_ex.fe_len,
			     &sbi->s_flex_groups[flex_group].free_clusters);
2997 2998
	}

2999
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3000 3001
	if (err)
		goto out_err;
3002
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3003 3004

out_err:
3005
	brelse(bitmap_bh);
3006 3007 3008 3009 3010
	return err;
}

/*
 * here we normalize request for locality group
3011 3012 3013
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
3014
 * /sys/fs/ext4/<partition>/mb_group_prealloc
3015 3016 3017 3018 3019 3020 3021 3022 3023
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
3024
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3025
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3026 3027 3028 3029 3030 3031 3032
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
3033 3034
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3035 3036
				struct ext4_allocation_request *ar)
{
3037
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3038 3039
	int bsbits, max;
	ext4_lblk_t end;
3040 3041
	loff_t size, start_off;
	loff_t orig_size __maybe_unused;
3042
	ext4_lblk_t start;
3043
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3044
	struct ext4_prealloc_space *pa;
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
3069
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3070 3071 3072
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
3073
	orig_size = size;
3074

3075 3076
	/* max size of free chunks */
	max = 2 << bsbits;
3077

3078 3079
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
3098
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3099
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3100 3101 3102
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3103 3104 3105 3106
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3107
					(8<<20)>>bsbits, max, 8 * 1024)) {
3108 3109 3110 3111
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
3112 3113 3114
		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
					      ac->ac_o_ex.fe_len) << bsbits;
3115
	}
3116 3117
	size = size >> bsbits;
	start = start_off >> bsbits;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
3131
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3132
		ext4_lblk_t pa_end;
3133 3134 3135 3136 3137 3138 3139 3140 3141

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

3142 3143
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
3144 3145 3146 3147 3148

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

3149 3150
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
3151 3152 3153 3154 3155
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

3156
		/* adjust start or end to be adjacent to this pa */
3157 3158 3159
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
3160
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
3171
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3172
		ext4_lblk_t pa_end;
3173

3174 3175
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
3176 3177
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3178 3179 3180 3181 3182 3183 3184 3185
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3186 3187 3188 3189
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3190
		BUG();
3191
	}
3192
	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3193 3194 3195 3196 3197 3198

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3199
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3217
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3228
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3229 3230 3231 3232 3233 3234 3235 3236 3237
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3238 3239 3240 3241
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3242 3243
}

3244 3245 3246 3247 3248 3249 3250 3251 3252
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;
3253 3254
	struct ext4_buddy e4b;
	int err;
3255

3256
	if (pa == NULL) {
3257 3258
		if (ac->ac_f_ex.fe_len == 0)
			return;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
		if (err) {
			/*
			 * This should never happen since we pin the
			 * pages in the ext4_allocation_context so
			 * ext4_mb_load_buddy() should never fail.
			 */
			WARN(1, "mb_load_buddy failed (%d)", err);
			return;
		}
		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
			       ac->ac_f_ex.fe_len);
		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3273
		ext4_mb_unload_buddy(&e4b);
3274 3275 3276
		return;
	}
	if (pa->pa_type == MB_INODE_PA)
3277
		pa->pa_free += ac->ac_b_ex.fe_len;
3278 3279
}

3280 3281 3282 3283 3284 3285
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3286
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3287 3288 3289 3290 3291 3292
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3293 3294 3295
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3296 3297 3298 3299 3300 3301 3302
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3303
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3304 3305 3306
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3307
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3308 3309 3310 3311 3312 3313 3314 3315
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3316
	unsigned int len = ac->ac_o_ex.fe_len;
3317

3318 3319 3320 3321 3322 3323 3324 3325
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3326
	 * possible race when the group is being loaded concurrently
3327
	 * instead we correct pa later, after blocks are marked
3328 3329
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3330
	 */
3331
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3332 3333
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
A
Andrew Morton 已提交
3351 3352
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);
3353

3354
	if (cur_distance <= new_distance)
3355 3356 3357 3358 3359 3360 3361 3362
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3363 3364 3365
/*
 * search goal blocks in preallocated space
 */
3366 3367
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3368
{
3369
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3370
	int order, i;
3371 3372
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3373 3374
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3375 3376 3377 3378 3379 3380 3381

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3382
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3383 3384 3385 3386

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3387 3388
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3389 3390
			continue;

3391
		/* non-extent files can't have physical blocks past 2^32 */
3392
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3393 3394
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3395 3396
			continue;

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3419 3420 3421 3422 3423
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3424
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3425 3426 3427 3428
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3429 3430 3431 3432 3433 3434 3435
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3436 3437 3438

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3439
			}
3440 3441
			spin_unlock(&pa->pa_lock);
		}
3442
		rcu_read_unlock();
3443
	}
3444 3445 3446 3447 3448
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3449 3450 3451
	return 0;
}

3452 3453 3454 3455
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3456
 * Need to be called with the ext4 group lock held
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
B
Bobi Jam 已提交
3469 3470
		entry = rb_entry(n, struct ext4_free_data, efd_node);
		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3471 3472 3473 3474 3475
		n = rb_next(n);
	}
	return;
}

3476 3477 3478
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3479
 * Need to be called with ext4 group lock held
3480
 */
3481 3482
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3511
		ext4_set_bits(bitmap, start, len);
3512 3513
		preallocated += len;
	}
3514
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3515 3516 3517 3518 3519 3520
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3521 3522 3523

	BUG_ON(atomic_read(&pa->pa_count));
	BUG_ON(pa->pa_deleted == 0);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3534
	ext4_group_t grp;
3535
	ext4_fsblk_t grp_blk;
3536 3537 3538

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
3539 3540 3541 3542 3543
	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
		spin_unlock(&pa->pa_lock);
		return;
	}

3544 3545 3546 3547 3548 3549 3550 3551
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3552
	grp_blk = pa->pa_pstart;
3553
	/*
3554 3555 3556 3557
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3558 3559
		grp_blk--;

3560
	grp = ext4_get_group_number(sb, grp_blk);
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3590 3591
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3592 3593
{
	struct super_block *sb = ac->ac_sb;
3594
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3626
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3627 3628 3629 3630

		/* the smallest one defines real window */
		win = min(winl, wins);

3631 3632
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3633 3634 3635
		if (offs && offs < win)
			win = offs;

3636
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3637
			EXT4_NUM_B2C(sbi, win);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3652 3653
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3654
	pa->pa_deleted = 0;
3655
	pa->pa_type = MB_INODE_PA;
3656

3657
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3658
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3659
	trace_ext4_mb_new_inode_pa(ac, pa);
3660 3661

	ext4_mb_use_inode_pa(ac, pa);
3662
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3684 3685
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3712
	INIT_LIST_HEAD(&pa->pa_inode_list);
3713
	INIT_LIST_HEAD(&pa->pa_group_list);
3714
	pa->pa_deleted = 0;
3715
	pa->pa_type = MB_GROUP_PA;
3716

3717
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3718 3719
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3735 3736 3737 3738
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3761 3762
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3763
			struct ext4_prealloc_space *pa)
3764 3765 3766
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3767 3768
	unsigned int end;
	unsigned int next;
3769 3770
	ext4_group_t group;
	ext4_grpblk_t bit;
3771
	unsigned long long grp_blk_start;
3772 3773 3774 3775 3776
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3777
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3778 3779 3780 3781
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3782
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3783 3784
		if (bit >= end)
			break;
3785
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3786
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3787 3788
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3789 3790
		free += next - bit;

3791
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3792 3793
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3794
					       next - bit);
3795 3796 3797 3798
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3799 3800 3801 3802 3803
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3804
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3805
					free, pa->pa_free);
3806 3807 3808 3809
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3810 3811 3812 3813 3814 3815
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3816 3817
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3818
				struct ext4_prealloc_space *pa)
3819 3820 3821 3822 3823
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3824
	trace_ext4_mb_release_group_pa(sb, pa);
3825 3826 3827 3828 3829
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3830
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3844 3845
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3857
	mb_debug(1, "discard preallocation for group %u\n", group);
3858 3859 3860 3861

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3862
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3863 3864 3865 3866
	if (IS_ERR(bitmap_bh)) {
		err = PTR_ERR(bitmap_bh);
		ext4_error(sb, "Error %d reading block bitmap for %u",
			   err, group);
3867
		return 0;
3868 3869 3870
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3871
	if (err) {
3872
		ext4_error(sb, "Error loading buddy information for %u", group);
3873 3874 3875
		put_bh(bitmap_bh);
		return 0;
	}
3876 3877

	if (needed == 0)
3878
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
L
Lukas Czerner 已提交
3912
		cond_resched();
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3930
		if (pa->pa_type == MB_GROUP_PA)
3931
			ext4_mb_release_group_pa(&e4b, pa);
3932
		else
3933
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3934 3935 3936 3937 3938 3939 3940

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3941
	ext4_mb_unload_buddy(&e4b);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3955
void ext4_discard_preallocations(struct inode *inode)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3966
	if (!S_ISREG(inode->i_mode)) {
3967 3968 3969 3970
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3971
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3972
	trace_ext4_discard_preallocations(inode);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3989 3990
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4026
		BUG_ON(pa->pa_type != MB_INODE_PA);
4027
		group = ext4_get_group_number(sb, pa->pa_pstart);
4028 4029

		err = ext4_mb_load_buddy(sb, group, &e4b);
4030
		if (err) {
4031 4032
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4033 4034
			continue;
		}
4035

4036
		bitmap_bh = ext4_read_block_bitmap(sb, group);
4037 4038 4039 4040
		if (IS_ERR(bitmap_bh)) {
			err = PTR_ERR(bitmap_bh);
			ext4_error(sb, "Error %d reading block bitmap for %u",
					err, group);
4041
			ext4_mb_unload_buddy(&e4b);
4042
			continue;
4043 4044 4045 4046
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4047
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4048 4049
		ext4_unlock_group(sb, group);

4050
		ext4_mb_unload_buddy(&e4b);
4051 4052 4053 4054 4055 4056 4057
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

4058
#ifdef CONFIG_EXT4_DEBUG
4059 4060 4061
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
4062
	ext4_group_t ngroups, i;
4063

4064
	if (!ext4_mballoc_debug ||
4065
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4066 4067
		return;

4068
	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4069
			" Allocation context details:");
4070
	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4071
			ac->ac_status, ac->ac_flags);
4072
	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4073 4074
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
E
Eric Sandeen 已提交
4088
	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4089
	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4090 4091
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
4104 4105
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
4106
		}
4107
		ext4_unlock_group(sb, i);
4108 4109 4110

		if (grp->bb_free == 0)
			continue;
4111
		printk(KERN_ERR "%u: %d/%d \n",
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
4128
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

4139 4140 4141
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

4142
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4143 4144
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
4145

4146 4147 4148 4149 4150 4151 4152
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

4153 4154 4155 4156 4157
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

4158
	/* don't use group allocation for large files */
4159
	size = max(size, isize);
4160
	if (size > sbi->s_mb_stream_request) {
4161
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4162
		return;
4163
	}
4164 4165 4166 4167 4168 4169 4170

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
4171
	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4172 4173 4174 4175 4176 4177 4178 4179

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

4180 4181
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4182 4183 4184 4185 4186 4187
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
4188 4189
	unsigned int len;
	ext4_fsblk_t goal;
4190 4191 4192 4193 4194 4195
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
4196 4197
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
		len = EXT4_CLUSTERS_PER_GROUP(sb);
4198 4199 4200 4201 4202 4203 4204 4205 4206

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4207
	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4208 4209 4210
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4211
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4212 4213 4214
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4215
	ac->ac_g_ex = ac->ac_o_ex;
4216 4217 4218 4219 4220 4221
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4222
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4243
	mb_debug(1, "discard locality group preallocation\n");
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4265
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

4289
		group = ext4_get_group_number(sb, pa->pa_pstart);
4290
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4291 4292
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4293 4294 4295 4296
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4297
		ext4_mb_release_group_pa(&e4b, pa);
4298 4299
		ext4_unlock_group(sb, group);

4300
		ext4_mb_unload_buddy(&e4b);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
4327
	spin_lock(&lg->lg_prealloc_lock);
4328 4329 4330 4331
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4332
			spin_unlock(&tmp_pa->pa_lock);
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
4351
	spin_unlock(&lg->lg_prealloc_lock);
4352 4353 4354 4355

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
4356
						  order, lg_prealloc_count);
4357 4358 4359 4360 4361
		return;
	}
	return ;
}

4362 4363 4364 4365 4366
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4367
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4368 4369
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4370
		if (pa->pa_type == MB_GROUP_PA) {
4371
			/* see comment in ext4_mb_use_group_pa() */
4372
			spin_lock(&pa->pa_lock);
4373 4374
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4375 4376 4377
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4378 4379
		}
	}
A
Aneesh Kumar K.V 已提交
4380 4381 4382 4383 4384
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4385
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4386
		 */
4387
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4388 4389 4390 4391 4392 4393 4394
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4395
	if (ac->ac_bitmap_page)
4396
		put_page(ac->ac_bitmap_page);
4397
	if (ac->ac_buddy_page)
4398
		put_page(ac->ac_buddy_page);
4399 4400 4401 4402 4403 4404 4405 4406
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4407
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4408 4409 4410
	int ret;
	int freed = 0;

4411
	trace_ext4_mb_discard_preallocations(sb, needed);
4412
	for (i = 0; i < ngroups && needed > 0; i++) {
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4427
				struct ext4_allocation_request *ar, int *errp)
4428
{
4429
	int freed;
4430
	struct ext4_allocation_context *ac = NULL;
4431 4432 4433
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4434
	unsigned int inquota = 0;
4435
	unsigned int reserv_clstrs = 0;
4436

4437
	might_sleep();
4438 4439 4440
	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4441
	trace_ext4_request_blocks(ar);
4442

4443 4444 4445 4446
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4447
	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4448 4449 4450
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4451
		 */
4452
		while (ar->len &&
4453
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4454

A
Aneesh Kumar K.V 已提交
4455
			/* let others to free the space */
L
Lukas Czerner 已提交
4456
			cond_resched();
A
Aneesh Kumar K.V 已提交
4457 4458 4459
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4460 4461 4462
			*errp = -ENOSPC;
			return 0;
		}
4463
		reserv_clstrs = ar->len;
4464
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4465 4466
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4467 4468
		} else {
			while (ar->len &&
4469 4470
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4471 4472 4473 4474

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4475 4476 4477 4478
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4479
			goto out;
4480
		}
4481
	}
4482

4483
	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4484
	if (!ac) {
4485
		ar->len = 0;
4486
		*errp = -ENOMEM;
4487
		goto out;
4488 4489 4490
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4491 4492
	if (*errp) {
		ar->len = 0;
4493
		goto out;
4494 4495
	}

4496 4497 4498 4499
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4500 4501
repeat:
		/* allocate space in core */
4502
		*errp = ext4_mb_regular_allocator(ac);
4503 4504
		if (*errp)
			goto discard_and_exit;
4505 4506

		/* as we've just preallocated more space than
4507
		 * user requested originally, we store allocated
4508
		 * space in a special descriptor */
4509
		if (ac->ac_status == AC_STATUS_FOUND &&
4510 4511 4512 4513 4514 4515 4516
		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			*errp = ext4_mb_new_preallocation(ac);
		if (*errp) {
		discard_and_exit:
			ext4_discard_allocated_blocks(ac);
			goto errout;
		}
4517
	}
4518
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4519
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4520
		if (*errp == -EAGAIN) {
4521 4522 4523 4524 4525
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4526 4527 4528 4529 4530
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4531
		} else if (*errp) {
4532
			ext4_discard_allocated_blocks(ac);
4533 4534
			goto errout;
		} else {
4535 4536 4537
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4538
	} else {
4539
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4540 4541 4542
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4543 4544
	}

4545
errout:
4546
	if (*errp) {
4547
		ac->ac_b_ex.fe_len = 0;
4548
		ar->len = 0;
4549
		ext4_mb_show_ac(ac);
4550
	}
4551
	ext4_mb_release_context(ac);
4552 4553 4554
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4555
	if (inquota && ar->len < inquota)
4556
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4557
	if (!ar->len) {
4558
		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4559
			/* release all the reserved blocks if non delalloc */
4560
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4561
						reserv_clstrs);
4562
	}
4563

4564
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4565

4566 4567 4568
	return block;
}

4569 4570 4571 4572 4573 4574 4575 4576
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
B
Bobi Jam 已提交
4577 4578 4579
	if ((entry1->efd_tid == entry2->efd_tid) &&
	    (entry1->efd_group == entry2->efd_group) &&
	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4580 4581 4582 4583
		return 1;
	return 0;
}

4584 4585
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4586
		      struct ext4_free_data *new_entry)
4587
{
4588
	ext4_group_t group = e4b->bd_group;
4589
	ext4_grpblk_t cluster;
4590
	ext4_grpblk_t clusters = new_entry->efd_count;
4591
	struct ext4_free_data *entry;
4592 4593 4594
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4595 4596 4597
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4598
	BUG_ON(!ext4_handle_valid(handle));
4599 4600 4601
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

B
Bobi Jam 已提交
4602 4603
	new_node = &new_entry->efd_node;
	cluster = new_entry->efd_start_cluster;
4604 4605 4606 4607 4608 4609 4610

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
4611 4612
		get_page(e4b->bd_buddy_page);
		get_page(e4b->bd_bitmap_page);
4613 4614 4615
	}
	while (*n) {
		parent = *n;
B
Bobi Jam 已提交
4616 4617
		entry = rb_entry(parent, struct ext4_free_data, efd_node);
		if (cluster < entry->efd_start_cluster)
4618
			n = &(*n)->rb_left;
B
Bobi Jam 已提交
4619
		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4620 4621
			n = &(*n)->rb_right;
		else {
4622
			ext4_grp_locked_error(sb, group, 0,
4623 4624
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4625
				"Block already on to-be-freed list");
4626
			return 0;
4627
		}
4628
	}
4629

4630 4631 4632 4633 4634 4635
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
B
Bobi Jam 已提交
4636
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4637 4638
		if (can_merge(entry, new_entry) &&
		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
B
Bobi Jam 已提交
4639 4640
			new_entry->efd_start_cluster = entry->efd_start_cluster;
			new_entry->efd_count += entry->efd_count;
4641
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4642
			kmem_cache_free(ext4_free_data_cachep, entry);
4643
		}
4644
	}
4645

4646 4647
	node = rb_next(new_node);
	if (node) {
B
Bobi Jam 已提交
4648
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4649 4650
		if (can_merge(new_entry, entry) &&
		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
B
Bobi Jam 已提交
4651
			new_entry->efd_count += entry->efd_count;
4652
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4653
			kmem_cache_free(ext4_free_data_cachep, entry);
4654 4655
		}
	}
4656
	/* Add the extent to transaction's private list */
4657 4658 4659 4660 4661
	new_entry->efd_jce.jce_func = ext4_free_data_callback;
	spin_lock(&sbi->s_md_lock);
	_ext4_journal_callback_add(handle, &new_entry->efd_jce);
	sbi->s_mb_free_pending += clusters;
	spin_unlock(&sbi->s_md_lock);
4662 4663 4664
	return 0;
}

4665 4666 4667 4668 4669 4670
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4671
 * @flags:		flags used by ext4_free_blocks
4672
 */
4673
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4674 4675
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4676
{
4677
	struct buffer_head *bitmap_bh = NULL;
4678 4679
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4680
	unsigned int overflow;
4681 4682 4683 4684 4685
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4686
	unsigned int count_clusters;
4687 4688 4689
	int err = 0;
	int ret;

4690
	might_sleep();
4691 4692 4693 4694 4695 4696
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4697 4698

	sbi = EXT4_SB(sb);
4699 4700
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4701
		ext4_error(sb, "Freeing blocks not in datazone - "
4702
			   "block = %llu, count = %lu", block, count);
4703 4704 4705
		goto error_return;
	}

4706
	ext4_debug("freeing block %llu\n", block);
4707 4708
	trace_ext4_free_blocks(inode, block, count, flags);

4709 4710
	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
		BUG_ON(count > 1);
4711

4712 4713
		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
			    inode, bh, block);
4714 4715
	}

4716 4717 4718 4719 4720 4721 4722
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
4723
	overflow = EXT4_PBLK_COFF(sbi, block);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
4737
	overflow = EXT4_LBLK_COFF(sbi, count);
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4748 4749
	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
		int i;
4750
		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4751 4752 4753

		for (i = 0; i < count; i++) {
			cond_resched();
4754 4755 4756
			if (is_metadata)
				bh = sb_find_get_block(inode->i_sb, block + i);
			ext4_forget(handle, is_metadata, inode, bh, block + i);
4757 4758 4759
		}
	}

4760 4761 4762 4763
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

4764 4765 4766 4767
	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
			ext4_get_group_info(sb, block_group))))
		return;

4768 4769 4770 4771
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4772 4773 4774
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4775 4776
		count -= overflow;
	}
4777
	count_clusters = EXT4_NUM_B2C(sbi, count);
4778
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4779 4780 4781
	if (IS_ERR(bitmap_bh)) {
		err = PTR_ERR(bitmap_bh);
		bitmap_bh = NULL;
4782
		goto error_return;
4783
	}
4784
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4785 4786
	if (!gdp) {
		err = -EIO;
4787
		goto error_return;
4788
	}
4789 4790 4791 4792

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4793
		     EXT4_SB(sb)->s_itb_per_group) ||
4794
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4795
		     EXT4_SB(sb)->s_itb_per_group)) {
4796

4797
		ext4_error(sb, "Freeing blocks in system zone - "
4798
			   "Block = %llu, count = %lu", block, count);
4799 4800
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4820
		for (i = 0; i < count_clusters; i++)
4821 4822 4823
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4824
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4825

4826 4827 4828
	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
				     GFP_NOFS|__GFP_NOFAIL);
4829 4830
	if (err)
		goto error_return;
4831

4832 4833 4834 4835 4836 4837 4838 4839 4840
	/*
	 * We need to make sure we don't reuse the freed block until after the
	 * transaction is committed. We make an exception if the inode is to be
	 * written in writeback mode since writeback mode has weak data
	 * consistency guarantees.
	 */
	if (ext4_handle_valid(handle) &&
	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
	     !ext4_should_writeback_data(inode))) {
4841 4842
		struct ext4_free_data *new_entry;
		/*
4843 4844
		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
		 * to fail.
4845
		 */
4846 4847
		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
				GFP_NOFS|__GFP_NOFAIL);
B
Bobi Jam 已提交
4848 4849 4850 4851
		new_entry->efd_start_cluster = bit;
		new_entry->efd_group = block_group;
		new_entry->efd_count = count_clusters;
		new_entry->efd_tid = handle->h_transaction->t_tid;
4852

4853
		ext4_lock_group(sb, block_group);
4854
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4855
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4856
	} else {
4857 4858 4859 4860
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4861 4862 4863 4864 4865 4866 4867
		if (test_opt(sb, DISCARD)) {
			err = ext4_issue_discard(sb, block_group, bit, count);
			if (err && err != -EOPNOTSUPP)
				ext4_msg(sb, KERN_WARNING, "discard request in"
					 " group:%d block:%d count:%lu failed"
					 " with %d", block_group, bit, count,
					 err);
4868 4869
		} else
			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4870

4871
		ext4_lock_group(sb, block_group);
4872 4873
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4874 4875
	}

4876 4877
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4878
	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4879
	ext4_group_desc_csum_set(sb, block_group, gdp);
4880
	ext4_unlock_group(sb, block_group);
4881

4882 4883
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4884 4885
		atomic64_add(count_clusters,
			     &sbi->s_flex_groups[flex_group].free_clusters);
4886 4887
	}

4888
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4889
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4890 4891 4892
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);

	ext4_mb_unload_buddy(&e4b);
4893

4894 4895 4896 4897
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4898 4899
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4900
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4915

4916
/**
4917
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4918 4919
 * @handle:			handle to this transaction
 * @sb:				super block
4920
 * @block:			start physical block to add to the block group
4921 4922
 * @count:			number of blocks to free
 *
4923
 * This marks the blocks as free in the bitmap and buddy.
4924
 */
4925
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4926 4927 4928 4929 4930 4931 4932 4933 4934
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4935
	struct ext4_buddy e4b;
4936 4937 4938 4939 4940
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4941 4942 4943
	if (count == 0)
		return 0;

4944 4945 4946 4947 4948
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4949
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4950
		ext4_warning(sb, "too much blocks added to group %u",
4951 4952
			     block_group);
		err = -EINVAL;
4953
		goto error_return;
4954
	}
4955

4956
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4957 4958 4959
	if (IS_ERR(bitmap_bh)) {
		err = PTR_ERR(bitmap_bh);
		bitmap_bh = NULL;
4960
		goto error_return;
4961 4962
	}

4963
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4964 4965
	if (!desc) {
		err = -EIO;
4966
		goto error_return;
4967
	}
4968 4969 4970 4971 4972 4973 4974 4975 4976

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4977
		err = -EINVAL;
4978 4979 4980
		goto error_return;
	}

4981 4982
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4995

4996 4997
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4998
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4999 5000 5001 5002 5003 5004 5005
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
5016
	ext4_lock_group(sb, block_group);
5017 5018
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
5019 5020
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5021
	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5022
	ext4_group_desc_csum_set(sb, block_group, desc);
5023
	ext4_unlock_group(sb, block_group);
5024
	percpu_counter_add(&sbi->s_freeclusters_counter,
5025
			   EXT4_NUM_B2C(sbi, blocks_freed));
5026 5027 5028

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5029 5030
		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
			     &sbi->s_flex_groups[flex_group].free_clusters);
5031
	}
5032 5033

	ext4_mb_unload_buddy(&e4b);
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
5048
	return err;
5049 5050
}

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
5063
static int ext4_trim_extent(struct super_block *sb, int start, int count,
5064
			     ext4_group_t group, struct ext4_buddy *e4b)
5065 5066
__releases(bitlock)
__acquires(bitlock)
5067 5068
{
	struct ext4_free_extent ex;
5069
	int ret = 0;
5070

T
Tao Ma 已提交
5071 5072
	trace_ext4_trim_extent(sb, group, start, count);

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
5085
	ret = ext4_issue_discard(sb, group, start, count);
5086 5087
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5088
	return ret;
5089 5090 5091 5092 5093
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
5094
 * @group:		group to be trimmed
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
5109
static ext4_grpblk_t
5110 5111 5112
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
5113 5114
{
	void *bitmap;
5115
	ext4_grpblk_t next, count = 0, free_count = 0;
5116
	struct ext4_buddy e4b;
5117
	int ret = 0;
5118

T
Tao Ma 已提交
5119 5120
	trace_ext4_trim_all_free(sb, group, start, max);

5121 5122 5123 5124 5125 5126 5127
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
5128 5129

	ext4_lock_group(sb, group);
5130 5131 5132 5133
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

5134 5135
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
5136

5137 5138 5139
	while (start <= max) {
		start = mb_find_next_zero_bit(bitmap, max + 1, start);
		if (start > max)
5140
			break;
5141
		next = mb_find_next_bit(bitmap, max + 1, start);
5142 5143

		if ((next - start) >= minblocks) {
5144 5145 5146 5147 5148
			ret = ext4_trim_extent(sb, start,
					       next - start, group, &e4b);
			if (ret && ret != -EOPNOTSUPP)
				break;
			ret = 0;
5149 5150
			count += next - start;
		}
5151
		free_count += next - start;
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

5165
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5166 5167
			break;
	}
5168

5169 5170
	if (!ret) {
		ret = count;
5171
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5172
	}
5173
out:
5174
	ext4_unlock_group(sb, group);
5175
	ext4_mb_unload_buddy(&e4b);
5176 5177 5178 5179

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

5180
	return ret;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
5197
	struct ext4_group_info *grp;
5198
	ext4_group_t group, first_group, last_group;
5199
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5200
	uint64_t start, end, minlen, trimmed = 0;
5201 5202
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5203
	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5204 5205 5206
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
5207
	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5208 5209
	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
			      range->minlen >> sb->s_blocksize_bits);
5210

5211 5212 5213
	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
	    start >= max_blks ||
	    range->len < sb->s_blocksize)
5214
		return -EINVAL;
5215 5216 5217
	if (end >= max_blks)
		end = max_blks - 1;
	if (end <= first_data_blk)
5218
		goto out;
5219
	if (start < first_data_blk)
5220
		start = first_data_blk;
5221

5222
	/* Determine first and last group to examine based on start and end */
5223
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5224
				     &first_group, &first_cluster);
5225
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5226
				     &last_group, &last_cluster);
5227

5228 5229
	/* end now represents the last cluster to discard in this group */
	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5230 5231

	for (group = first_group; group <= last_group; group++) {
5232 5233 5234
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5235
			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5236 5237
			if (ret)
				break;
5238 5239
		}

5240
		/*
5241 5242 5243 5244
		 * For all the groups except the last one, last cluster will
		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
		 * change it for the last group, note that last_cluster is
		 * already computed earlier by ext4_get_group_no_and_offset()
5245
		 */
5246 5247
		if (group == last_group)
			end = last_cluster;
5248

5249
		if (grp->bb_free >= minlen) {
5250
			cnt = ext4_trim_all_free(sb, group, first_cluster,
5251
						end, minlen);
5252 5253 5254 5255
			if (cnt < 0) {
				ret = cnt;
				break;
			}
5256
			trimmed += cnt;
5257
		}
5258 5259 5260 5261 5262

		/*
		 * For every group except the first one, we are sure
		 * that the first cluster to discard will be cluster #0.
		 */
5263
		first_cluster = 0;
5264 5265
	}

5266 5267 5268
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5269
out:
5270
	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5271 5272
	return ret;
}