mballoc.c 138.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

B
Bobi Jam 已提交
24
#include "ext4_jbd2.h"
25
#include "mballoc.h"
26
#include <linux/debugfs.h>
27
#include <linux/slab.h>
28 29
#include <trace/events/ext4.h>

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
54 55 56 57 58 59 60 61 62
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
63 64
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
65
 * ensure that we have small files closer together on the disk.
66
 *
T
Theodore Ts'o 已提交
67 68 69 70
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
71 72 73
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
74 75
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
76 77 78
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
79 80
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
81 82 83 84 85 86 87
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
88
 * prealloc space. These are per CPU prealloc list represented as
89 90 91 92 93 94 95
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
96
 * enough free space (pa_free) within the prealloc space.
97 98 99 100 101 102 103 104 105 106 107 108
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
109
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
130 131
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
132
 * 512 blocks. This can be tuned via
133
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 135
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
136 137
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
138
 *
139
 * The regular allocator (using the buddy cache) supports a few tunables.
140
 *
T
Theodore Ts'o 已提交
141 142 143
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
144
 *
T
Theodore Ts'o 已提交
145
 * The regular allocator uses buddy scan only if the request len is power of
146 147
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
148
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
149
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
150 151 152
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
153
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
154
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 156 157
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
158
 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
341 342
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
B
Bobi Jam 已提交
343
static struct kmem_cache *ext4_free_data_cachep;
344 345 346 347

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
348
#define NR_GRPINFO_CACHES 8
349 350
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

351 352 353 354 355 356
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

357 358
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
359 360
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
B
Bobi Jam 已提交
361 362
static void ext4_free_data_callback(struct super_block *sb,
				struct ext4_journal_cb_entry *jce, int rc);
363

364 365
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
366
#if BITS_PER_LONG == 64
367 368
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
369
#elif BITS_PER_LONG == 32
370 371
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
372 373 374
#else
#error "how many bits you are?!"
#endif
375 376
	return addr;
}
377 378 379 380 381 382 383

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
384
	addr = mb_correct_addr_and_bit(&bit, addr);
385 386 387 388 389
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
390
	addr = mb_correct_addr_and_bit(&bit, addr);
391 392 393 394 395
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
396
	addr = mb_correct_addr_and_bit(&bit, addr);
397 398 399
	ext4_clear_bit(bit, addr);
}

400 401
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
402
	int fix = 0, ret, tmpmax;
403
	addr = mb_correct_addr_and_bit(&fix, addr);
404
	tmpmax = max + fix;
405 406
	start += fix;

407 408 409 410
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
411 412 413 414
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
415
	int fix = 0, ret, tmpmax;
416
	addr = mb_correct_addr_and_bit(&fix, addr);
417
	tmpmax = max + fix;
418 419
	start += fix;

420 421 422 423
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
424 425
}

426 427 428 429
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

430
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 432 433 434 435 436 437 438
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
439 440
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
441
		return e4b->bd_bitmap;
C
Coly Li 已提交
442
	}
443

444
	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 446 447 448 449 450 451 452 453 454 455 456 457 458
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
459
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 461 462
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
463 464

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466
			ext4_grp_locked_error(sb, e4b->bd_group,
467 468 469 470 471
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
472 473 474 475 476 477 478 479 480 481 482
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
483
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
499 500 501 502 503
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

586
			/* both bits in buddy2 must be 1 */
587 588 589 590 591 592
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
593
					!mb_test_bit(k, e4b->bd_bitmap));
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
628 629
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631
		for (i = 0; i < pa->pa_len; i++)
632 633 634 635 636 637
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
638
					__FILE__, __func__, __LINE__)
639 640 641 642
#else
#define mb_check_buddy(e4b)
#endif

643 644 645 646 647 648
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
649
static void ext4_mb_mark_free_simple(struct super_block *sb,
650
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 652 653
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
654 655 656
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
657 658
	unsigned short border;

659
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

706 707
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
708 709 710
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 713 714
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
715 716 717 718 719 720
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
721
	i = mb_find_next_zero_bit(bitmap, max, 0);
722 723 724 725
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
726
		i = mb_find_next_bit(bitmap, max, i);
727 728 729 730 731 732 733
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
734
			i = mb_find_next_zero_bit(bitmap, max, i);
735 736 737 738
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
739
		ext4_grp_locked_error(sb, group, 0, 0,
740
				      "%u clusters in bitmap, %u in gd",
741
				      free, grp->bb_free);
742 743 744 745
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
746 747
		grp->bb_free = free;
	}
748
	mb_set_largest_free_order(sb, grp);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
766
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 768 769 770 771 772 773
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
774 775 776
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
777 778 779 780
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
781
	ext4_group_t ngroups;
782 783 784 785 786
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
787
	ext4_group_t first_group, group;
788 789 790
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
791
	struct buffer_head **bh = NULL;
792 793 794
	struct inode *inode;
	char *data;
	char *bitmap;
795
	struct ext4_group_info *grinfo;
796

797
	mb_debug(1, "init page %lu\n", page->index);
798 799 800

	inode = page->mapping->host;
	sb = inode->i_sb;
801
	ngroups = ext4_get_groups_count(sb);
802 803 804 805 806 807 808 809 810 811 812
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
813 814
		if (bh == NULL) {
			err = -ENOMEM;
815
			goto out;
816
		}
817 818 819 820 821 822
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
823 824
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (group >= ngroups)
825 826
			break;

827
		grinfo = ext4_get_group_info(sb, group);
828 829 830 831 832 833 834 835 836 837
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}
838 839
		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
			err = -ENOMEM;
840
			goto out;
841
		}
842
		mb_debug(1, "read bitmap for group %u\n", group);
843 844 845
	}

	/* wait for I/O completion */
846 847 848
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
			err = -EIO;
849
			goto out;
850 851
		}
	}
852 853 854 855 856 857

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;

		group = (first_block + i) >> 1;
858
		if (group >= ngroups)
859 860
			break;

861 862 863 864
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
881
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882
				group, page->index, i * blocksize);
883
			trace_ext4_mb_buddy_bitmap_load(sb, group);
884 885 886
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
887 888
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
889 890 891
			/*
			 * incore got set to the group block bitmap below
			 */
892
			ext4_lock_group(sb, group);
893 894
			/* init the buddy */
			memset(data, 0xff, blocksize);
895
			ext4_mb_generate_buddy(sb, data, incore, group);
896
			ext4_unlock_group(sb, group);
897 898 899 900
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
901
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902
				group, page->index, i * blocksize);
903
			trace_ext4_mb_bitmap_load(sb, group);
904 905 906 907 908 909 910

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
911
			ext4_mb_generate_from_freelist(sb, data, group);
912 913 914 915 916 917 918 919 920 921 922 923
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
924
		for (i = 0; i < groups_per_page; i++)
925 926 927 928 929 930 931
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

932
/*
933 934 935 936
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937
 */
938 939
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
		ext4_group_t group, struct ext4_buddy *e4b)
940
{
941 942
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
943
	int blocks_per_page;
944 945 946 947
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
948 949 950 951 952 953 954 955 956

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
957 958 959 960 961 962 963 964 965 966 967
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
968
	}
969 970 971 972 973 974 975 976 977

	block++;
	pnum = block / blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
978 979
}

980
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
981
{
982 983 984 985 986 987 988
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
		page_cache_release(e4b->bd_bitmap_page);
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
		page_cache_release(e4b->bd_buddy_page);
989 990 991
	}
}

992 993 994 995 996
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
997 998 999 1000 1001
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	struct ext4_group_info *this_grp;
1002 1003 1004
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1005 1006 1007 1008

	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1009 1010 1011 1012
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1013
	 * would have pinned buddy page to page cache.
1014
	 */
1015 1016
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1017 1018 1019 1020 1021 1022
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1023 1024 1025 1026 1027 1028

	page = e4b.bd_bitmap_page;
	ret = ext4_mb_init_cache(page, NULL);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1029 1030 1031 1032 1033
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);

1034
	if (e4b.bd_buddy_page == NULL) {
1035 1036 1037 1038 1039
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1040 1041
		ret = 0;
		goto err;
1042
	}
1043 1044 1045 1046 1047 1048
	/* init buddy cache */
	page = e4b.bd_buddy_page;
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1049 1050 1051 1052 1053
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
1054
	ext4_mb_put_buddy_page_lock(&e4b);
1055 1056 1057
	return ret;
}

1058 1059 1060 1061 1062
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1063 1064 1065
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1066 1067 1068 1069 1070 1071
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1072
	int ret;
1073 1074 1075
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1076

1077
	mb_debug(1, "load group %u\n", group);
1078 1079

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1080
	grp = ext4_get_group_info(sb, group);
1081 1082

	e4b->bd_blkbits = sb->s_blocksize_bits;
1083
	e4b->bd_info = grp;
1084 1085 1086 1087 1088
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
	}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1113 1114 1115 1116 1117 1118 1119 1120
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1121 1122 1123 1124 1125
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1126 1127 1128 1129 1130
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1131 1132 1133 1134 1135 1136
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1137 1138
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1139
		goto err;
1140
	}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1156 1157 1158 1159 1160 1161 1162
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1163 1164 1165
			unlock_page(page);
		}
	}
1166 1167
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1168
		goto err;
1169
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1180 1181
	if (page)
		page_cache_release(page);
1182 1183 1184 1185 1186 1187
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1188
	return ret;
1189 1190
}

1191
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

1205
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1206 1207
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

1208
	bb = e4b->bd_buddy;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1221
static void mb_clear_bits(void *bm, int cur, int len)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1234
		mb_clear_bit(cur, bm);
1235 1236 1237 1238
		cur++;
	}
}

1239
void ext4_set_bits(void *bm, int cur, int len)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1252
		mb_set_bit(cur, bm);
1253 1254 1255 1256
		cur++;
	}
}

1257
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1268
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1269 1270 1271 1272 1273 1274 1275 1276 1277
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
1278
		block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1279
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1280
		max = !mb_test_bit(first + count, e4b->bd_bitmap);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

1291
		if (!mb_test_bit(block, e4b->bd_bitmap)) {
1292
			ext4_fsblk_t blocknr;
1293 1294

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1295
			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1296
			ext4_grp_locked_error(sb, e4b->bd_group,
1297 1298 1299 1300
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1301
		}
1302
		mb_clear_bit(block, e4b->bd_bitmap);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1337
	mb_set_largest_free_order(sb, e4b->bd_info);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	mb_check_buddy(e4b);
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	void *buddy;

1348
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
1384
		if (mb_test_bit(next, e4b->bd_bitmap))
1385 1386
			break;

1387
		order = mb_find_order_for_block(e4b, next);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1411
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1412 1413 1414 1415 1416 1417 1418 1419 1420
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
1421
		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1422
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1423
		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1464
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1465

1466
	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1496 1497 1498 1499 1500 1501 1502
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1503 1504 1505 1506 1507
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1508
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1530 1531
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1578 1579
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1629 1630
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1652
	ext4_mb_unload_buddy(e4b);
1653 1654 1655 1656

	return 0;
}

1657 1658
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1681 1682
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1707
	ext4_mb_unload_buddy(e4b);
1708 1709 1710 1711 1712 1713 1714 1715

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1716 1717
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1735
		k = mb_find_next_zero_bit(buddy, max, 0);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1760 1761
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1762 1763 1764
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
1765
	void *bitmap = e4b->bd_bitmap;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1776
		i = mb_find_next_zero_bit(bitmap,
1777 1778
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1779
			/*
1780
			 * IF we have corrupt bitmap, we won't find any
1781 1782 1783
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1784
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1785
					"%d free clusters as per "
1786
					"group info. But bitmap says 0",
1787
					free);
1788 1789 1790 1791 1792
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
1793
		if (free < ex.fe_len) {
1794
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1795
					"%d free clusters as per "
1796
					"group info. But got %d blocks",
1797
					free, ex.fe_len);
1798 1799 1800 1801 1802 1803
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1804
		}
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1817
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1818
 */
1819 1820
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1821 1822 1823 1824
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
1825
	void *bitmap = e4b->bd_bitmap;
1826 1827 1828 1829 1830 1831 1832 1833 1834
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1835 1836
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1837 1838 1839 1840
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

1841
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1855
/* This is now called BEFORE we load the buddy bitmap. */
1856 1857 1858 1859
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1860
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1861 1862 1863
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1864 1865 1866 1867 1868 1869 1870

	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1883 1884 1885
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1886 1887 1888 1889 1890 1891
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1892
		return 1;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

1910 1911
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1912
{
1913
	ext4_group_t ngroups, group, i;
1914 1915 1916 1917 1918 1919 1920 1921
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
1922
	ngroups = ext4_get_groups_count(sb);
1923
	/* non-extent files are limited to low blocks/groups */
1924
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1925 1926
		ngroups = sbi->s_blockfile_groups;

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
1947
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1948 1949 1950 1951 1952 1953 1954 1955 1956
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

1957 1958
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1959 1960 1961 1962 1963 1964
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
1975 1976 1977 1978 1979 1980
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

1981 1982
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
1983 1984
				group = 0;

1985 1986
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
1987 1988 1989 1990 1991 1992 1993
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
1994 1995 1996 1997 1998

			/*
			 * We need to check again after locking the
			 * block group
			 */
1999 2000
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2001
				ext4_mb_unload_buddy(&e4b);
2002 2003 2004 2005
				continue;
			}

			ac->ac_groups_scanned++;
2006
			if (cr == 0)
2007
				ext4_mb_simple_scan_group(ac, &e4b);
2008 2009
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2010 2011 2012 2013 2014
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2015
			ext4_mb_unload_buddy(&e4b);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2056
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2057 2058
		return NULL;
	group = *pos + 1;
2059
	return (void *) ((unsigned long) group);
2060 2061 2062 2063 2064 2065 2066 2067
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2068
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2069 2070
		return NULL;
	group = *pos + 1;
2071
	return (void *) ((unsigned long) group);
2072 2073 2074 2075 2076
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2077
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2078
	int i;
2079
	int err, buddy_loaded = 0;
2080
	struct ext4_buddy e4b;
2081
	struct ext4_group_info *grinfo;
2082 2083
	struct sg {
		struct ext4_group_info info;
2084
		ext4_grpblk_t counters[16];
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
2098 2099 2100 2101 2102 2103 2104 2105 2106
	grinfo = ext4_get_group_info(sb, group);
	/* Load the group info in memory only if not already loaded. */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
		err = ext4_mb_load_buddy(sb, group, &e4b);
		if (err) {
			seq_printf(seq, "#%-5u: I/O error\n", group);
			return 0;
		}
		buddy_loaded = 1;
2107
	}
2108

2109
	memcpy(&sg, ext4_get_group_info(sb, group), i);
2110 2111 2112

	if (buddy_loaded)
		ext4_mb_unload_buddy(&e4b);
2113

2114
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2128
static const struct seq_operations ext4_mb_seq_groups_ops = {
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2142
		struct seq_file *m = file->private_data;
2143 2144 2145 2146 2147 2148
		m->private = sb;
	}
	return rc;

}

2149
static const struct file_operations ext4_mb_seq_groups_fops = {
2150 2151 2152 2153 2154 2155 2156
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2157 2158 2159 2160 2161 2162 2163 2164
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2165 2166

/* Create and initialize ext4_group_info data for the given group. */
2167
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2168 2169
			  struct ext4_group_desc *desc)
{
2170
	int i;
2171 2172 2173
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2174
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
2186
			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2187
				 "for a buddy group");
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2198
	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2199
	if (meta_group_info[i] == NULL) {
2200
		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2201 2202
		goto exit_group_info;
	}
2203
	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2204 2205 2206 2207 2208 2209 2210 2211 2212
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2213
			ext4_free_clusters_after_init(sb, group, desc);
2214 2215
	} else {
		meta_group_info[i]->bb_free =
2216
			ext4_free_group_clusters(sb, desc);
2217 2218 2219
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2220
	init_rwsem(&meta_group_info[i]->alloc_sem);
2221
	meta_group_info[i]->bb_free_root = RB_ROOT;
2222
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2242
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2243
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2244 2245
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2246 2247 2248 2249
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2250 2251
static int ext4_mb_init_backend(struct super_block *sb)
{
2252
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2253 2254
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2255 2256 2257 2258 2259
	struct ext4_super_block *es = sbi->s_es;
	int num_meta_group_infos;
	int num_meta_group_infos_max;
	int array_size;
	struct ext4_group_desc *desc;
2260
	struct kmem_cache *cachep;
2261 2262

	/* This is the number of blocks used by GDT */
2263
	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);

	/*
	 * This is the total number of blocks used by GDT including
	 * the number of reserved blocks for GDT.
	 * The s_group_info array is allocated with this value
	 * to allow a clean online resize without a complex
	 * manipulation of pointer.
	 * The drawback is the unused memory when no resize
	 * occurs but it's very low in terms of pages
	 * (see comments below)
	 * Need to handle this properly when META_BG resizing is allowed
	 */
	num_meta_group_infos_max = num_meta_group_infos +
				le16_to_cpu(es->s_reserved_gdt_blocks);
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * array_size is the size of s_group_info array. We round it
	 * to the next power of two because this approximation is done
	 * internally by kmalloc so we can have some more memory
	 * for free here (e.g. may be used for META_BG resize).
	 */
	array_size = 1;
	while (array_size < sizeof(*sbi->s_group_info) *
	       num_meta_group_infos_max)
		array_size = array_size << 1;
2290 2291 2292
	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
2293
	sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2294
	if (sbi->s_group_info == NULL) {
2295
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2296 2297 2298 2299
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2300
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2301 2302
		goto err_freesgi;
	}
2303 2304 2305 2306 2307
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2308
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2309
	for (i = 0; i < ngroups; i++) {
2310 2311
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2312
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2313 2314
			goto err_freebuddy;
		}
2315 2316
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2317 2318 2319 2320 2321
	}

	return 0;

err_freebuddy:
2322
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2323
	while (i-- > 0)
2324
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2325
	i = num_meta_group_infos;
2326
	while (i-- > 0)
2327 2328 2329
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
2330
	ext4_kvfree(sbi->s_group_info);
2331 2332 2333
	return -ENOMEM;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2372 2373
	ext4_groupinfo_caches[cache_index] = cachep;

2374 2375
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2376 2377
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2378 2379 2380 2381 2382 2383
		return -ENOMEM;
	}

	return 0;
}

2384
int ext4_mb_init(struct super_block *sb)
2385 2386
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2387
	unsigned i, j;
2388 2389
	unsigned offset;
	unsigned max;
2390
	int ret;
2391

2392
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2393 2394 2395

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2396 2397
		ret = -ENOMEM;
		goto out;
2398
	}
2399

2400
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2401 2402
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2403 2404 2405 2406
		ret = -ENOMEM;
		goto out;
	}

2407 2408 2409
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2460

2461
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2462
	if (sbi->s_locality_groups == NULL) {
2463
		ret = -ENOMEM;
2464
		goto out_free_groupinfo_slab;
2465
	}
2466
	for_each_possible_cpu(i) {
2467
		struct ext4_locality_group *lg;
2468
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2469
		mutex_init(&lg->lg_mutex);
2470 2471
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2472 2473 2474
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2475 2476
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2477 2478
	if (ret != 0)
		goto out_free_locality_groups;
2479

2480 2481 2482
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2483

2484 2485 2486 2487 2488 2489 2490
	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
out_free_groupinfo_slab:
	ext4_groupinfo_destroy_slabs();
2491
out:
2492 2493 2494 2495
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2496
	return ret;
2497 2498
}

2499
/* need to called with the ext4 group lock held */
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2510
		kmem_cache_free(ext4_pspace_cachep, pa);
2511 2512
	}
	if (count)
2513
		mb_debug(1, "mballoc: %u PAs left\n", count);
2514 2515 2516 2517 2518

}

int ext4_mb_release(struct super_block *sb)
{
2519
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2520 2521 2522 2523
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2524
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2525

2526 2527 2528
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);

2529
	if (sbi->s_group_info) {
2530
		for (i = 0; i < ngroups; i++) {
2531 2532 2533 2534 2535 2536 2537
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2538
			kmem_cache_free(cachep, grinfo);
2539
		}
2540
		num_meta_group_infos = (ngroups +
2541 2542 2543 2544
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
2545
		ext4_kvfree(sbi->s_group_info);
2546 2547 2548 2549 2550 2551
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
2552 2553
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2554 2555 2556
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2557 2558 2559
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2560 2561 2562 2563 2564
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2565 2566
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2567
				sbi->s_mb_buddies_generated,
2568
				sbi->s_mb_generation_time);
2569 2570
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2571 2572 2573 2574
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2575
	free_percpu(sbi->s_locality_groups);
2576 2577 2578 2579

	return 0;
}

2580
static inline int ext4_issue_discard(struct super_block *sb,
2581
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2582 2583 2584
{
	ext4_fsblk_t discard_block;

2585 2586 2587
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2588 2589
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2590
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2591 2592
}

2593 2594 2595 2596
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
B
Bobi Jam 已提交
2597 2598 2599
static void ext4_free_data_callback(struct super_block *sb,
				    struct ext4_journal_cb_entry *jce,
				    int rc)
2600
{
B
Bobi Jam 已提交
2601
	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2602
	struct ext4_buddy e4b;
2603
	struct ext4_group_info *db;
2604
	int err, count = 0, count2 = 0;
2605

B
Bobi Jam 已提交
2606 2607
	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
		 entry->efd_count, entry->efd_group, entry);
2608

B
Bobi Jam 已提交
2609 2610 2611
	if (test_opt(sb, DISCARD))
		ext4_issue_discard(sb, entry->efd_group,
				   entry->efd_start_cluster, entry->efd_count);
2612

B
Bobi Jam 已提交
2613 2614 2615
	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
	/* we expect to find existing buddy because it's pinned */
	BUG_ON(err != 0);
2616

2617

B
Bobi Jam 已提交
2618 2619 2620 2621 2622 2623 2624 2625
	db = e4b.bd_info;
	/* there are blocks to put in buddy to make them really free */
	count += entry->efd_count;
	count2++;
	ext4_lock_group(sb, entry->efd_group);
	/* Take it out of per group rb tree */
	rb_erase(&entry->efd_node, &(db->bb_free_root));
	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2626

B
Bobi Jam 已提交
2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * Clear the trimmed flag for the group so that the next
	 * ext4_trim_fs can trim it.
	 * If the volume is mounted with -o discard, online discard
	 * is supported and the free blocks will be trimmed online.
	 */
	if (!test_opt(sb, DISCARD))
		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2635

B
Bobi Jam 已提交
2636 2637 2638 2639 2640 2641
	if (!db->bb_free_root.rb_node) {
		/* No more items in the per group rb tree
		 * balance refcounts from ext4_mb_free_metadata()
		 */
		page_cache_release(e4b.bd_buddy_page);
		page_cache_release(e4b.bd_bitmap_page);
2642
	}
B
Bobi Jam 已提交
2643 2644 2645
	ext4_unlock_group(sb, entry->efd_group);
	kmem_cache_free(ext4_free_data_cachep, entry);
	ext4_mb_unload_buddy(&e4b);
2646

2647
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2648 2649
}

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2684
int __init ext4_init_mballoc(void)
2685
{
2686 2687
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2688 2689 2690
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2691 2692
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2693 2694 2695 2696
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2697

B
Bobi Jam 已提交
2698 2699 2700
	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
					   SLAB_RECLAIM_ACCOUNT);
	if (ext4_free_data_cachep == NULL) {
2701 2702 2703 2704
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2705
	ext4_create_debugfs_entry();
2706 2707 2708
	return 0;
}

2709
void ext4_exit_mballoc(void)
2710
{
2711
	/*
2712 2713 2714 2715
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2716
	kmem_cache_destroy(ext4_pspace_cachep);
2717
	kmem_cache_destroy(ext4_ac_cachep);
B
Bobi Jam 已提交
2718
	kmem_cache_destroy(ext4_free_data_cachep);
2719
	ext4_groupinfo_destroy_slabs();
2720
	ext4_remove_debugfs_entry();
2721 2722 2723 2724
}


/*
2725
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2726 2727
 * Returns 0 if success or error code
 */
2728 2729
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2730
				handle_t *handle, unsigned int reserv_clstrs)
2731 2732 2733 2734 2735 2736 2737
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2738
	int err, len;
2739 2740 2741 2742 2743 2744 2745 2746

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2747
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2760
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2761
			ext4_free_group_clusters(sb, gdp));
2762

2763 2764 2765 2766
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2767
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2768

2769
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2770
	if (!ext4_data_block_valid(sbi, block, len)) {
2771
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2772
			   "fs metadata", block, block+len);
2773 2774 2775 2776
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2777
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2778 2779
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2780
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2781
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2782 2783 2784
		if (!err)
			err = -EAGAIN;
		goto out_err;
2785
	}
2786 2787

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2788 2789 2790 2791 2792 2793 2794 2795 2796
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2797 2798
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2799 2800
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2801
		ext4_free_group_clusters_set(sb, gdp,
2802
					     ext4_free_clusters_after_init(sb,
2803
						ac->ac_b_ex.fe_group, gdp));
2804
	}
2805 2806
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2807 2808
	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh,
				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
2809
	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2810 2811

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2812
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2813
	/*
2814
	 * Now reduce the dirty block count also. Should not go negative
2815
	 */
2816 2817
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2818 2819
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2820

2821 2822 2823
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2824
		atomic_sub(ac->ac_b_ex.fe_len,
2825
			   &sbi->s_flex_groups[flex_group].free_clusters);
2826 2827
	}

2828
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2829 2830
	if (err)
		goto out_err;
2831
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2832 2833

out_err:
2834
	brelse(bitmap_bh);
2835 2836 2837 2838 2839
	return err;
}

/*
 * here we normalize request for locality group
2840 2841 2842
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
2843
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2844 2845 2846 2847 2848 2849 2850 2851 2852
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
2853
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2854
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2855 2856 2857 2858 2859 2860 2861
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2862 2863
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2864 2865
				struct ext4_allocation_request *ar)
{
2866
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2867 2868
	int bsbits, max;
	ext4_lblk_t end;
2869 2870
	loff_t size, start_off;
	loff_t orig_size __maybe_unused;
2871
	ext4_lblk_t start;
2872
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2873
	struct ext4_prealloc_space *pa;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
2898
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2899 2900 2901
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2902
	orig_size = size;
2903

2904 2905
	/* max size of free chunks */
	max = 2 << bsbits;
2906

2907 2908
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2927
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2928
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2929 2930 2931
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2932 2933 2934 2935
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2936
					(8<<20)>>bsbits, max, 8 * 1024)) {
2937 2938 2939 2940 2941 2942 2943
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2944 2945
	size = size >> bsbits;
	start = start_off >> bsbits;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
2959
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2960
		ext4_lblk_t pa_end;
2961 2962 2963 2964 2965 2966 2967 2968 2969

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

2970 2971
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
2972 2973 2974 2975 2976

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

2977 2978
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
2979 2980 2981 2982 2983
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

2984
		/* adjust start or end to be adjacent to this pa */
2985 2986 2987
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
2988
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
2999
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3000
		ext4_lblk_t pa_end;
3001

3002 3003
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
3004 3005
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3006 3007 3008 3009 3010 3011 3012 3013
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3014 3015 3016 3017
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3018 3019 3020
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3021
	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3022 3023 3024 3025 3026 3027

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3028
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3046
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3057
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3058 3059 3060 3061 3062 3063 3064 3065 3066
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3067 3068 3069 3070
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;

3083 3084
	if (pa && pa->pa_type == MB_INODE_PA)
		pa->pa_free += ac->ac_b_ex.fe_len;
3085 3086
}

3087 3088 3089 3090 3091 3092
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3093
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3094 3095 3096 3097 3098 3099
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3100 3101 3102
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3103 3104 3105 3106 3107 3108 3109
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3110
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3111 3112 3113
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3114
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3115 3116 3117 3118 3119 3120 3121 3122
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3123
	unsigned int len = ac->ac_o_ex.fe_len;
3124

3125 3126 3127 3128 3129 3130 3131 3132
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3133
	 * possible race when the group is being loaded concurrently
3134
	 * instead we correct pa later, after blocks are marked
3135 3136
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3137
	 */
3138
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3139 3140
}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3161
	if (cur_distance <= new_distance)
3162 3163 3164 3165 3166 3167 3168 3169
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3170 3171 3172
/*
 * search goal blocks in preallocated space
 */
3173 3174
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3175
{
3176
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3177
	int order, i;
3178 3179
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3180 3181
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3182 3183 3184 3185 3186 3187 3188

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3189
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3190 3191 3192 3193

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3194 3195
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3196 3197
			continue;

3198
		/* non-extent files can't have physical blocks past 2^32 */
3199
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3200 3201
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3202 3203
			continue;

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3226 3227 3228 3229 3230
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3231
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3232 3233 3234 3235
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3236 3237 3238 3239 3240 3241 3242
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3243 3244 3245

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3246
			}
3247 3248
			spin_unlock(&pa->pa_lock);
		}
3249
		rcu_read_unlock();
3250
	}
3251 3252 3253 3254 3255
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3256 3257 3258
	return 0;
}

3259 3260 3261 3262
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3263
 * Need to be called with the ext4 group lock held
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
B
Bobi Jam 已提交
3276 3277
		entry = rb_entry(n, struct ext4_free_data, efd_node);
		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3278 3279 3280 3281 3282
		n = rb_next(n);
	}
	return;
}

3283 3284 3285
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3286
 * Need to be called with ext4 group lock held
3287
 */
3288 3289
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3318
		ext4_set_bits(bitmap, start, len);
3319 3320
		preallocated += len;
	}
3321
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3338
	ext4_group_t grp;
3339
	ext4_fsblk_t grp_blk;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3354
	grp_blk = pa->pa_pstart;
3355
	/*
3356 3357 3358 3359
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3360 3361 3362
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3392 3393
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3394 3395
{
	struct super_block *sb = ac->ac_sb;
3396
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3428
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3429 3430 3431 3432

		/* the smallest one defines real window */
		win = min(winl, wins);

3433 3434
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3435 3436 3437
		if (offs && offs < win)
			win = offs;

3438 3439
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
			EXT4_B2C(sbi, win);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3454 3455
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3456
	pa->pa_deleted = 0;
3457
	pa->pa_type = MB_INODE_PA;
3458

3459
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3460
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3461
	trace_ext4_mb_new_inode_pa(ac, pa);
3462 3463

	ext4_mb_use_inode_pa(ac, pa);
3464
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3486 3487
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3514
	INIT_LIST_HEAD(&pa->pa_inode_list);
3515
	INIT_LIST_HEAD(&pa->pa_group_list);
3516
	pa->pa_deleted = 0;
3517
	pa->pa_type = MB_GROUP_PA;
3518

3519
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3520 3521
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3537 3538 3539 3540
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3563 3564
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3565
			struct ext4_prealloc_space *pa)
3566 3567 3568
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3569 3570
	unsigned int end;
	unsigned int next;
3571 3572
	ext4_group_t group;
	ext4_grpblk_t bit;
3573
	unsigned long long grp_blk_start;
3574 3575 3576 3577 3578
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3579
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3580 3581 3582 3583
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3584
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3585 3586
		if (bit >= end)
			break;
3587
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3588
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3589 3590
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3591 3592
		free += next - bit;

3593
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3594 3595
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3596
					       next - bit);
3597 3598 3599 3600
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3601 3602 3603 3604 3605
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3606
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3607
					free, pa->pa_free);
3608 3609 3610 3611
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3612 3613 3614 3615 3616 3617
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3618 3619
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3620
				struct ext4_prealloc_space *pa)
3621 3622 3623 3624 3625
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3626
	trace_ext4_mb_release_group_pa(sb, pa);
3627 3628 3629 3630 3631
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3632
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3646 3647
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3659
	mb_debug(1, "discard preallocation for group %u\n", group);
3660 3661 3662 3663

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3664
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3665
	if (bitmap_bh == NULL) {
3666
		ext4_error(sb, "Error reading block bitmap for %u", group);
3667
		return 0;
3668 3669 3670
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3671
	if (err) {
3672
		ext4_error(sb, "Error loading buddy information for %u", group);
3673 3674 3675
		put_bh(bitmap_bh);
		return 0;
	}
3676 3677

	if (needed == 0)
3678
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3734
		if (pa->pa_type == MB_GROUP_PA)
3735
			ext4_mb_release_group_pa(&e4b, pa);
3736
		else
3737
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3738 3739 3740 3741 3742 3743 3744

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3745
	ext4_mb_unload_buddy(&e4b);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3759
void ext4_discard_preallocations(struct inode *inode)
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3770
	if (!S_ISREG(inode->i_mode)) {
3771 3772 3773 3774
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3775
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3776
	trace_ext4_discard_preallocations(inode);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3793 3794
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3830
		BUG_ON(pa->pa_type != MB_INODE_PA);
3831 3832 3833
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3834
		if (err) {
3835 3836
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3837 3838
			continue;
		}
3839

3840
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3841
		if (bitmap_bh == NULL) {
3842 3843
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3844
			ext4_mb_unload_buddy(&e4b);
3845
			continue;
3846 3847 3848 3849
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3850
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3851 3852
		ext4_unlock_group(sb, group);

3853
		ext4_mb_unload_buddy(&e4b);
3854 3855 3856 3857 3858 3859 3860
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3861
#ifdef CONFIG_EXT4_DEBUG
3862 3863 3864
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3865
	ext4_group_t ngroups, i;
3866

3867 3868
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3869 3870
		return;

3871
	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3872
			" Allocation context details:");
3873
	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3874
			ac->ac_status, ac->ac_flags);
3875
	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3876 3877
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
3891
	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3892
		 ac->ac_ex_scanned, ac->ac_found);
3893
	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3894 3895
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3908 3909
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3910
		}
3911
		ext4_unlock_group(sb, i);
3912 3913 3914

		if (grp->bb_free == 0)
			continue;
3915
		printk(KERN_ERR "%u: %d/%d \n",
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3932
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3943 3944 3945
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3946
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3947 3948
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3949

3950 3951 3952 3953 3954 3955 3956
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

3957 3958 3959 3960 3961
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

3962
	/* don't use group allocation for large files */
3963
	size = max(size, isize);
3964
	if (size > sbi->s_mb_stream_request) {
3965
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3966
		return;
3967
	}
3968 3969 3970 3971 3972 3973 3974

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
3975
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3976 3977 3978 3979 3980 3981 3982 3983

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

3984 3985
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3986 3987 3988 3989 3990 3991
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
3992 3993
	unsigned int len;
	ext4_fsblk_t goal;
3994 3995 3996 3997 3998 3999
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
4000 4001
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4002 4003 4004 4005 4006 4007 4008 4009 4010

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4011
	memset(ac, 0, sizeof(struct ext4_allocation_context));
4012
	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4013 4014 4015
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4016
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4017 4018 4019
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4020
	ac->ac_g_ex = ac->ac_o_ex;
4021 4022 4023 4024 4025 4026
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4027
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4048
	mb_debug(1, "discard locality group preallocation\n");
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4070
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4096 4097
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4098 4099 4100 4101
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4102
		ext4_mb_release_group_pa(&e4b, pa);
4103 4104
		ext4_unlock_group(sb, group);

4105
		ext4_mb_unload_buddy(&e4b);
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4137
			spin_unlock(&tmp_pa->pa_lock);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4167 4168 4169 4170 4171
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4172
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4173 4174
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4175
		if (pa->pa_type == MB_GROUP_PA) {
4176
			/* see comment in ext4_mb_use_group_pa() */
4177
			spin_lock(&pa->pa_lock);
4178 4179
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4180 4181 4182
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4183 4184
		}
	}
A
Aneesh Kumar K.V 已提交
4185 4186 4187 4188 4189
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4190
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4191
		 */
4192
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4193 4194 4195 4196 4197 4198 4199
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4212
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4213 4214 4215
	int ret;
	int freed = 0;

4216
	trace_ext4_mb_discard_preallocations(sb, needed);
4217
	for (i = 0; i < ngroups && needed > 0; i++) {
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4232
				struct ext4_allocation_request *ar, int *errp)
4233
{
4234
	int freed;
4235
	struct ext4_allocation_context *ac = NULL;
4236 4237 4238
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4239
	unsigned int inquota = 0;
4240
	unsigned int reserv_clstrs = 0;
4241 4242 4243 4244

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4245
	trace_ext4_request_blocks(ar);
4246

4247 4248 4249 4250
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4251 4252 4253 4254 4255
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4256
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4257 4258 4259 4260 4261
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4262
		 */
4263
		while (ar->len &&
4264
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4265

A
Aneesh Kumar K.V 已提交
4266 4267 4268 4269 4270
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4271 4272 4273
			*errp = -ENOSPC;
			return 0;
		}
4274
		reserv_clstrs = ar->len;
4275
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4276 4277
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4278 4279
		} else {
			while (ar->len &&
4280 4281
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4282 4283 4284 4285

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4286 4287 4288 4289
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4290
			goto out;
4291
		}
4292
	}
4293

4294
	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4295
	if (!ac) {
4296
		ar->len = 0;
4297
		*errp = -ENOMEM;
4298
		goto out;
4299 4300 4301
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4302 4303
	if (*errp) {
		ar->len = 0;
4304
		goto out;
4305 4306
	}

4307 4308 4309 4310
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4311 4312
repeat:
		/* allocate space in core */
4313 4314 4315
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4316 4317 4318 4319

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4320 4321 4322
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4323
	}
4324
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4325
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4326
		if (*errp == -EAGAIN) {
4327 4328 4329 4330 4331
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4332 4333 4334 4335 4336
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4337 4338
		} else if (*errp)
		errout:
4339
			ext4_discard_allocated_blocks(ac);
4340
		else {
4341 4342 4343
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4344
	} else {
4345
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4346 4347 4348
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4349 4350 4351
	}

	if (*errp) {
4352
		ac->ac_b_ex.fe_len = 0;
4353
		ar->len = 0;
4354
		ext4_mb_show_ac(ac);
4355
	}
4356
	ext4_mb_release_context(ac);
4357 4358 4359
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4360
	if (inquota && ar->len < inquota)
4361
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4362
	if (!ar->len) {
4363 4364
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4365
			/* release all the reserved blocks if non delalloc */
4366
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4367
						reserv_clstrs);
4368
	}
4369

4370
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4371

4372 4373 4374
	return block;
}

4375 4376 4377 4378 4379 4380 4381 4382
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
B
Bobi Jam 已提交
4383 4384 4385
	if ((entry1->efd_tid == entry2->efd_tid) &&
	    (entry1->efd_group == entry2->efd_group) &&
	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4386 4387 4388 4389
		return 1;
	return 0;
}

4390 4391
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4392
		      struct ext4_free_data *new_entry)
4393
{
4394
	ext4_group_t group = e4b->bd_group;
4395
	ext4_grpblk_t cluster;
4396
	struct ext4_free_data *entry;
4397 4398 4399
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4400 4401 4402
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4403
	BUG_ON(!ext4_handle_valid(handle));
4404 4405 4406
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

B
Bobi Jam 已提交
4407 4408
	new_node = &new_entry->efd_node;
	cluster = new_entry->efd_start_cluster;
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
B
Bobi Jam 已提交
4421 4422
		entry = rb_entry(parent, struct ext4_free_data, efd_node);
		if (cluster < entry->efd_start_cluster)
4423
			n = &(*n)->rb_left;
B
Bobi Jam 已提交
4424
		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4425 4426
			n = &(*n)->rb_right;
		else {
4427
			ext4_grp_locked_error(sb, group, 0,
4428 4429
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4430
				"Block already on to-be-freed list");
4431
			return 0;
4432
		}
4433
	}
4434

4435 4436 4437 4438 4439 4440
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
B
Bobi Jam 已提交
4441
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4442
		if (can_merge(entry, new_entry)) {
B
Bobi Jam 已提交
4443 4444
			new_entry->efd_start_cluster = entry->efd_start_cluster;
			new_entry->efd_count += entry->efd_count;
4445
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4446 4447
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4448
		}
4449
	}
4450

4451 4452
	node = rb_next(new_node);
	if (node) {
B
Bobi Jam 已提交
4453
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4454
		if (can_merge(new_entry, entry)) {
B
Bobi Jam 已提交
4455
			new_entry->efd_count += entry->efd_count;
4456
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4457 4458
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4459 4460
		}
	}
4461
	/* Add the extent to transaction's private list */
B
Bobi Jam 已提交
4462 4463
	ext4_journal_callback_add(handle, ext4_free_data_callback,
				  &new_entry->efd_jce);
4464 4465 4466
	return 0;
}

4467 4468 4469 4470 4471 4472
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4473
 * @flags:		flags used by ext4_free_blocks
4474
 */
4475
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4476 4477
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4478
{
4479
	struct buffer_head *bitmap_bh = NULL;
4480 4481
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4482
	unsigned long freed = 0;
4483
	unsigned int overflow;
4484 4485 4486 4487 4488
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4489
	unsigned int count_clusters;
4490 4491 4492
	int err = 0;
	int ret;

4493 4494 4495 4496 4497 4498
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4499 4500

	sbi = EXT4_SB(sb);
4501 4502
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4503
		ext4_error(sb, "Freeing blocks not in datazone - "
4504
			   "block = %llu, count = %lu", block, count);
4505 4506 4507
		goto error_return;
	}

4508
	ext4_debug("freeing block %llu\n", block);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4521 4522
			if (unlikely(!tbh))
				continue;
4523
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4524 4525 4526 4527
				    inode, tbh, block + i);
		}
	}

4528
	/*
4529 4530 4531 4532 4533 4534 4535 4536
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
	overflow = block & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
	overflow = count & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4570 4571 4572 4573 4574 4575 4576 4577
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4578 4579 4580
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4581 4582
		count -= overflow;
	}
4583
	count_clusters = EXT4_B2C(sbi, count);
4584
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4585 4586
	if (!bitmap_bh) {
		err = -EIO;
4587
		goto error_return;
4588
	}
4589
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4590 4591
	if (!gdp) {
		err = -EIO;
4592
		goto error_return;
4593
	}
4594 4595 4596 4597

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4598
		     EXT4_SB(sb)->s_itb_per_group) ||
4599
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4600
		     EXT4_SB(sb)->s_itb_per_group)) {
4601

4602
		ext4_error(sb, "Freeing blocks in system zone - "
4603
			   "Block = %llu, count = %lu", block, count);
4604 4605
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4625
		for (i = 0; i < count_clusters; i++)
4626 4627 4628
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4629
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4630

4631 4632 4633
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4634 4635

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4636 4637 4638 4639 4640
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
B
Bobi Jam 已提交
4641
		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4642
		if (!new_entry) {
4643
			ext4_mb_unload_buddy(&e4b);
4644 4645 4646
			err = -ENOMEM;
			goto error_return;
		}
B
Bobi Jam 已提交
4647 4648 4649 4650
		new_entry->efd_start_cluster = bit;
		new_entry->efd_group = block_group;
		new_entry->efd_count = count_clusters;
		new_entry->efd_tid = handle->h_transaction->t_tid;
4651

4652
		ext4_lock_group(sb, block_group);
4653
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4654
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4655
	} else {
4656 4657 4658 4659
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4660
		ext4_lock_group(sb, block_group);
4661 4662
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4663 4664
	}

4665 4666
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4667 4668
	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
4669
	ext4_group_desc_csum_set(sb, block_group, gdp);
4670
	ext4_unlock_group(sb, block_group);
4671
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4672

4673 4674
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4675 4676
		atomic_add(count_clusters,
			   &sbi->s_flex_groups[flex_group].free_clusters);
4677 4678
	}

4679
	ext4_mb_unload_buddy(&e4b);
4680

4681
	freed += count;
4682

4683 4684 4685
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));

4686 4687 4688 4689
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4690 4691
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4692
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4707

4708
/**
4709
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4710 4711 4712 4713 4714
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to add to the block group
 * @count:			number of blocks to free
 *
4715
 * This marks the blocks as free in the bitmap and buddy.
4716
 */
4717
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4718 4719 4720 4721 4722 4723 4724 4725 4726
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4727
	struct ext4_buddy e4b;
4728 4729 4730 4731 4732
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4733 4734 4735
	if (count == 0)
		return 0;

4736 4737 4738 4739 4740
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4741 4742 4743 4744
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		ext4_warning(sb, "too much blocks added to group %u\n",
			     block_group);
		err = -EINVAL;
4745
		goto error_return;
4746
	}
4747

4748
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4749 4750
	if (!bitmap_bh) {
		err = -EIO;
4751
		goto error_return;
4752 4753
	}

4754
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4755 4756
	if (!desc) {
		err = -EIO;
4757
		goto error_return;
4758
	}
4759 4760 4761 4762 4763 4764 4765 4766 4767

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4768
		err = -EINVAL;
4769 4770 4771
		goto error_return;
	}

4772 4773
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4786

4787 4788
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4789
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4790 4791 4792 4793 4794 4795 4796
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
4807
	ext4_lock_group(sb, block_group);
4808 4809
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
4810 4811
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4812 4813
	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh,
				   EXT4_BLOCKS_PER_GROUP(sb) / 8);
4814
	ext4_group_desc_csum_set(sb, block_group, desc);
4815
	ext4_unlock_group(sb, block_group);
4816 4817
	percpu_counter_add(&sbi->s_freeclusters_counter,
			   EXT4_B2C(sbi, blocks_freed));
4818 4819 4820

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4821 4822
		atomic_add(EXT4_B2C(sbi, blocks_freed),
			   &sbi->s_flex_groups[flex_group].free_clusters);
4823
	}
4824 4825

	ext4_mb_unload_buddy(&e4b);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
4840
	return err;
4841 4842
}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
4855 4856
static void ext4_trim_extent(struct super_block *sb, int start, int count,
			     ext4_group_t group, struct ext4_buddy *e4b)
4857 4858 4859
{
	struct ext4_free_extent ex;

T
Tao Ma 已提交
4860 4861
	trace_ext4_trim_extent(sb, group, start, count);

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
4874
	ext4_issue_discard(sb, group, start, count);
4875 4876 4877 4878 4879 4880 4881
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
4882
 * @group:		group to be trimmed
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4897
static ext4_grpblk_t
4898 4899 4900
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
4901 4902
{
	void *bitmap;
4903
	ext4_grpblk_t next, count = 0, free_count = 0;
4904 4905
	struct ext4_buddy e4b;
	int ret;
4906

T
Tao Ma 已提交
4907 4908
	trace_ext4_trim_all_free(sb, group, start, max);

4909 4910 4911 4912 4913 4914 4915
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
4916 4917

	ext4_lock_group(sb, group);
4918 4919 4920 4921
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

4922 4923
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
4924

4925 4926 4927
	while (start <= max) {
		start = mb_find_next_zero_bit(bitmap, max + 1, start);
		if (start > max)
4928
			break;
4929
		next = mb_find_next_bit(bitmap, max + 1, start);
4930 4931

		if ((next - start) >= minblocks) {
4932
			ext4_trim_extent(sb, start,
4933
					 next - start, group, &e4b);
4934 4935
			count += next - start;
		}
4936
		free_count += next - start;
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

4950
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4951 4952
			break;
	}
4953 4954 4955 4956

	if (!ret)
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
out:
4957
	ext4_unlock_group(sb, group);
4958
	ext4_mb_unload_buddy(&e4b);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
4980
	struct ext4_group_info *grp;
4981
	ext4_group_t group, first_group, last_group;
4982
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4983
	uint64_t start, end, minlen, trimmed = 0;
4984 4985
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4986
	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4987 4988 4989
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
4990
	end = start + (range->len >> sb->s_blocksize_bits) - 1;
4991 4992
	minlen = range->minlen >> sb->s_blocksize_bits;

4993 4994
	if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
	    unlikely(start >= max_blks))
4995
		return -EINVAL;
4996 4997 4998
	if (end >= max_blks)
		end = max_blks - 1;
	if (end <= first_data_blk)
4999
		goto out;
5000
	if (start < first_data_blk)
5001
		start = first_data_blk;
5002

5003
	/* Determine first and last group to examine based on start and end */
5004
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5005
				     &first_group, &first_cluster);
5006
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5007
				     &last_group, &last_cluster);
5008

5009 5010
	/* end now represents the last cluster to discard in this group */
	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5011 5012

	for (group = first_group; group <= last_group; group++) {
5013 5014 5015 5016 5017 5018
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
			ret = ext4_mb_init_group(sb, group);
			if (ret)
				break;
5019 5020
		}

5021
		/*
5022 5023 5024 5025
		 * For all the groups except the last one, last cluster will
		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
		 * change it for the last group, note that last_cluster is
		 * already computed earlier by ext4_get_group_no_and_offset()
5026
		 */
5027 5028
		if (group == last_group)
			end = last_cluster;
5029

5030
		if (grp->bb_free >= minlen) {
5031
			cnt = ext4_trim_all_free(sb, group, first_cluster,
5032
						end, minlen);
5033 5034 5035 5036
			if (cnt < 0) {
				ret = cnt;
				break;
			}
5037
			trimmed += cnt;
5038
		}
5039 5040 5041 5042 5043

		/*
		 * For every group except the first one, we are sure
		 * that the first cluster to discard will be cluster #0.
		 */
5044
		first_cluster = 0;
5045 5046
	}

5047 5048 5049
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5050
out:
5051
	range->len = trimmed * sb->s_blocksize;
5052 5053
	return ret;
}