mballoc.c 132.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

24
#include "mballoc.h"
25
#include <linux/debugfs.h>
26
#include <linux/slab.h>
27 28
#include <trace/events/ext4.h>

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
53 54 55 56 57 58 59 60 61
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
62 63
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
64
 * ensure that we have small files closer together on the disk.
65
 *
T
Theodore Ts'o 已提交
66 67 68 69
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
70 71 72
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
73
 * pa_len    -> length for this prealloc space
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 * pa_free   ->  free space available in this prealloc space
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
 * space we will consume the particular prealloc space. This make sure that
 * that the we have contiguous physical blocks representing the file blocks
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
 * prealloc space. These are per CPU prealloc list repreasented as
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
 * enough free space (pa_free) withing the prealloc space.
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
108
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
T
Theodore Ts'o 已提交
129
 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130
 * 512 blocks. This can be tuned via
T
Theodore Ts'o 已提交
131
 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 133 134 135
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
 * stripe value (sbi->s_stripe)
 *
T
Theodore Ts'o 已提交
136
 * The regular allocator(using the buddy cache) supports few tunables.
137
 *
T
Theodore Ts'o 已提交
138 139 140
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
141
 *
T
Theodore Ts'o 已提交
142
 * The regular allocator uses buddy scan only if the request len is power of
143 144
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
145
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
147 148 149
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
150
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
151
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
 * can used for allocation. ext4_mb_good_group explains how the groups are
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
338 339 340
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
static struct kmem_cache *ext4_free_ext_cachep;
341 342 343 344

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
345
#define NR_GRPINFO_CACHES 8
346 347
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

348 349 350 351 352 353
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

354 355
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
356 357
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
358 359
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);

360 361
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
362
#if BITS_PER_LONG == 64
363 364
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
365
#elif BITS_PER_LONG == 32
366 367
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
368 369 370
#else
#error "how many bits you are?!"
#endif
371 372
	return addr;
}
373 374 375 376 377 378 379

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
380
	addr = mb_correct_addr_and_bit(&bit, addr);
381 382 383 384 385
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
386
	addr = mb_correct_addr_and_bit(&bit, addr);
387 388 389 390 391
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
392
	addr = mb_correct_addr_and_bit(&bit, addr);
393 394 395
	ext4_clear_bit(bit, addr);
}

396 397
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
398
	int fix = 0, ret, tmpmax;
399
	addr = mb_correct_addr_and_bit(&fix, addr);
400
	tmpmax = max + fix;
401 402
	start += fix;

403 404 405 406
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
407 408 409 410
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
411
	int fix = 0, ret, tmpmax;
412
	addr = mb_correct_addr_and_bit(&fix, addr);
413
	tmpmax = max + fix;
414 415
	start += fix;

416 417 418 419
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
435 436
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
437
		return EXT4_MB_BITMAP(e4b);
C
Coly Li 已提交
438
	}
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
455
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
456 457 458
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
459 460

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
461
			blocknr += first + i;
462
			ext4_grp_locked_error(sb, e4b->bd_group,
463 464 465 466 467
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
468 469 470 471 472 473 474 475 476 477 478
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
479
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
495
				printk(KERN_ERR "corruption in group %u "
496 497 498
				       "at byte %u(%u): %x in copy != %x "
				       "on disk/prealloc\n",
				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

			/* both bits in buddy2 must be 0 */
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
623 624
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
625
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
626
		for (i = 0; i < pa->pa_len; i++)
627 628 629 630 631 632
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
633
					__FILE__, __func__, __LINE__)
634 635 636 637
#else
#define mb_check_buddy(e4b)
#endif

638 639 640 641 642 643
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
644
static void ext4_mb_mark_free_simple(struct super_block *sb,
645
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
646 647 648
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
649 650 651
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
652 653
	unsigned short border;

654
	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

701 702
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
703 704 705
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
706 707 708 709
	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
710 711 712 713 714 715
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
716
	i = mb_find_next_zero_bit(bitmap, max, 0);
717 718 719 720
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
721
		i = mb_find_next_bit(bitmap, max, i);
722 723 724 725 726 727 728
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
729
			i = mb_find_next_zero_bit(bitmap, max, i);
730 731 732 733
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
734 735 736
		ext4_grp_locked_error(sb, group, 0, 0,
				      "%u blocks in bitmap, %u in gd",
				      free, grp->bb_free);
737 738 739 740
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
741 742
		grp->bb_free = free;
	}
743
	mb_set_largest_free_order(sb, grp);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
761
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
762 763 764 765 766 767 768
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
769 770 771
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
772 773 774 775
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
776
	ext4_group_t ngroups;
777 778 779 780 781 782 783 784 785 786 787 788 789 790
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
	ext4_group_t first_group;
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
	struct buffer_head **bh;
	struct inode *inode;
	char *data;
	char *bitmap;

791
	mb_debug(1, "init page %lu\n", page->index);
792 793 794

	inode = page->mapping->host;
	sb = inode->i_sb;
795
	ngroups = ext4_get_groups_count(sb);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		err = -ENOMEM;
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
		if (bh == NULL)
			goto out;
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {
		struct ext4_group_desc *desc;

819
		if (first_group + i >= ngroups)
820 821 822 823 824 825 826 827 828 829 830 831
			break;

		err = -EIO;
		desc = ext4_get_group_desc(sb, first_group + i, NULL);
		if (desc == NULL)
			goto out;

		err = -ENOMEM;
		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
		if (bh[i] == NULL)
			goto out;

832
		if (bitmap_uptodate(bh[i]))
833 834
			continue;

835
		lock_buffer(bh[i]);
836 837 838 839
		if (bitmap_uptodate(bh[i])) {
			unlock_buffer(bh[i]);
			continue;
		}
840
		ext4_lock_group(sb, first_group + i);
841 842 843
		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
			ext4_init_block_bitmap(sb, bh[i],
						first_group + i, desc);
844
			set_bitmap_uptodate(bh[i]);
845
			set_buffer_uptodate(bh[i]);
846
			ext4_unlock_group(sb, first_group + i);
A
Aneesh Kumar K.V 已提交
847
			unlock_buffer(bh[i]);
848 849
			continue;
		}
850
		ext4_unlock_group(sb, first_group + i);
851 852 853 854 855 856 857 858 859
		if (buffer_uptodate(bh[i])) {
			/*
			 * if not uninit if bh is uptodate,
			 * bitmap is also uptodate
			 */
			set_bitmap_uptodate(bh[i]);
			unlock_buffer(bh[i]);
			continue;
		}
860
		get_bh(bh[i]);
861 862 863 864 865 866 867
		/*
		 * submit the buffer_head for read. We can
		 * safely mark the bitmap as uptodate now.
		 * We do it here so the bitmap uptodate bit
		 * get set with buffer lock held.
		 */
		set_bitmap_uptodate(bh[i]);
868 869
		bh[i]->b_end_io = end_buffer_read_sync;
		submit_bh(READ, bh[i]);
870
		mb_debug(1, "read bitmap for group %u\n", first_group + i);
871 872 873 874 875 876 877 878 879 880 881
	}

	/* wait for I/O completion */
	for (i = 0; i < groups_per_page && bh[i]; i++)
		wait_on_buffer(bh[i]);

	err = -EIO;
	for (i = 0; i < groups_per_page && bh[i]; i++)
		if (!buffer_uptodate(bh[i]))
			goto out;

882
	err = 0;
883
	first_block = page->index * blocks_per_page;
884 885
	/* init the page  */
	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
886 887 888 889 890
	for (i = 0; i < blocks_per_page; i++) {
		int group;
		struct ext4_group_info *grinfo;

		group = (first_block + i) >> 1;
891
		if (group >= ngroups)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
			break;

		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
910
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
911
				group, page->index, i * blocksize);
912
			trace_ext4_mb_buddy_bitmap_load(sb, group);
913 914 915
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
916 917
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
918 919 920
			/*
			 * incore got set to the group block bitmap below
			 */
921
			ext4_lock_group(sb, group);
922
			ext4_mb_generate_buddy(sb, data, incore, group);
923
			ext4_unlock_group(sb, group);
924 925 926 927
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
928
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
929
				group, page->index, i * blocksize);
930
			trace_ext4_mb_bitmap_load(sb, group);
931 932 933 934 935 936 937

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
938
			ext4_mb_generate_from_freelist(sb, data, group);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
		for (i = 0; i < groups_per_page && bh[i]; i++)
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * lock the group_info alloc_sem of all the groups
 * belonging to the same buddy cache page. This
 * make sure other parallel operation on the buddy
 * cache doesn't happen  whild holding the buddy cache
 * lock
 */
static int ext4_mb_get_buddy_cache_lock(struct super_block *sb,
					ext4_group_t group)
{
	int i;
	int block, pnum;
	int blocks_per_page;
	int groups_per_page;
	ext4_group_t ngroups = ext4_get_groups_count(sb);
	ext4_group_t first_group;
	struct ext4_group_info *grp;

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	first_group = pnum * blocks_per_page / 2;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;
	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {

		if ((first_group + i) >= ngroups)
			break;
		grp = ext4_get_group_info(sb, first_group + i);
		/* take all groups write allocation
		 * semaphore. This make sure there is
		 * no block allocation going on in any
		 * of that groups
		 */
		down_write_nested(&grp->alloc_sem, i);
	}
	return i;
}

static void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
					 ext4_group_t group, int locked_group)
{
	int i;
	int block, pnum;
	int blocks_per_page;
	ext4_group_t first_group;
	struct ext4_group_info *grp;

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	first_group = pnum * blocks_per_page / 2;
	/* release locks on all the groups */
	for (i = 0; i < locked_group; i++) {

		grp = ext4_get_group_info(sb, first_group + i);
		/* take all groups write allocation
		 * semaphore. This make sure there is
		 * no block allocation going on in any
		 * of that groups
		 */
		up_write(&grp->alloc_sem);
	}

}

1038 1039 1040 1041 1042
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	int ret = 0;
	void *bitmap;
	int blocks_per_page;
	int block, pnum, poff;
	int num_grp_locked = 0;
	struct ext4_group_info *this_grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
	struct page *page = NULL, *bitmap_page = NULL;

	mb_debug(1, "init group %u\n", group);
	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	this_grp = ext4_get_group_info(sb, group);
	/*
1061 1062 1063 1064 1065
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
	 * would have taken the alloc_sem lock.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	 */
	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		ret = 0;
		goto err;
	}
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (page) {
		BUG_ON(page->mapping != inode->i_mapping);
		ret = ext4_mb_init_cache(page, NULL);
		if (ret) {
			unlock_page(page);
			goto err;
		}
		unlock_page(page);
	}
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
	bitmap_page = page;
	bitmap = page_address(page) + (poff * sb->s_blocksize);

	/* init buddy cache */
	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (page == bitmap_page) {
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
		unlock_page(page);
	} else if (page) {
		BUG_ON(page->mapping != inode->i_mapping);
		ret = ext4_mb_init_cache(page, bitmap);
		if (ret) {
			unlock_page(page);
			goto err;
		}
		unlock_page(page);
	}
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
	if (bitmap_page)
		page_cache_release(bitmap_page);
	if (page)
		page_cache_release(page);
	return ret;
}

1137 1138 1139 1140 1141
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1142 1143 1144
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1145 1146 1147 1148 1149 1150
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1151
	int ret;
1152 1153 1154
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1155

1156
	mb_debug(1, "load group %u\n", group);
1157 1158

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1159
	grp = ext4_get_group_info(sb, group);
1160 1161 1162 1163 1164 1165 1166

	e4b->bd_blkbits = sb->s_blocksize_bits;
	e4b->bd_info = ext4_get_group_info(sb, group);
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
1167 1168 1169 1170 1171 1172 1173 1174
	e4b->alloc_semp = &grp->alloc_sem;

	/* Take the read lock on the group alloc
	 * sem. This would make sure a parallel
	 * ext4_mb_init_group happening on other
	 * groups mapped by the page is blocked
	 * till we are done with allocation
	 */
1175
repeat_load_buddy:
1176
	down_read(e4b->alloc_semp);
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/* we need to check for group need init flag
		 * with alloc_semp held so that we can be sure
		 * that new blocks didn't get added to the group
		 * when we are loading the buddy cache
		 */
		up_read(e4b->alloc_semp);
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
		goto repeat_load_buddy;
	}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1209 1210 1211 1212 1213 1214 1215 1216
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1217 1218 1219 1220 1221
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1222 1223 1224 1225 1226
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1227 1228 1229 1230 1231 1232
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1233 1234
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1235
		goto err;
1236
	}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1252 1253 1254 1255 1256 1257 1258
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1259 1260 1261
			unlock_page(page);
		}
	}
1262 1263
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1264
		goto err;
1265
	}
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1282 1283 1284

	/* Done with the buddy cache */
	up_read(e4b->alloc_semp);
1285
	return ret;
1286 1287
}

1288
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1289 1290 1291 1292 1293
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
1294
	/* Done with the buddy cache */
1295 1296
	if (e4b->alloc_semp)
		up_read(e4b->alloc_semp);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

	bb = EXT4_MB_BUDDY(e4b);
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1321
static void mb_clear_bits(void *bm, int cur, int len)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1334
		mb_clear_bit(cur, bm);
1335 1336 1337 1338
		cur++;
	}
}

1339
static void mb_set_bits(void *bm, int cur, int len)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1352
		mb_set_bit(cur, bm);
1353 1354 1355 1356
		cur++;
	}
}

1357
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1368
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
			ext4_fsblk_t blocknr;
1393 1394

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1395
			blocknr += block;
1396
			ext4_grp_locked_error(sb, e4b->bd_group,
1397 1398 1399 1400
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		}
		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1437
	mb_set_largest_free_order(sb, e4b->bd_info);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	mb_check_buddy(e4b);
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	int ord;
	void *buddy;

1449
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
			break;

		ord = mb_find_order_for_block(e4b, next);

		order = ord;
		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1513
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1566
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1567

1568
	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1598 1599 1600 1601 1602 1603 1604
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1605 1606 1607 1608
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
1609 1610 1611
	/* on allocation we use ac to track the held semaphore */
	ac->alloc_semp =  e4b->alloc_semp;
	e4b->alloc_semp = NULL;
1612
	/* store last allocated for subsequent stream allocation */
1613
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1635 1636
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1683
	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1734 1735
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1757
	ext4_mb_unload_buddy(e4b);
1758 1759 1760 1761

	return 0;
}

1762 1763
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1786 1787
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1812
	ext4_mb_unload_buddy(e4b);
1813 1814 1815 1816 1817 1818 1819 1820

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1821 1822
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1840
		k = mb_find_next_zero_bit(buddy, max, 0);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1865 1866
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1881
		i = mb_find_next_zero_bit(bitmap,
1882 1883
						EXT4_BLOCKS_PER_GROUP(sb), i);
		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1884
			/*
1885
			 * IF we have corrupt bitmap, we won't find any
1886 1887 1888
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1889 1890
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
					"%d free blocks as per "
1891
					"group info. But bitmap says 0",
1892
					free);
1893 1894 1895 1896 1897
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
1898
		if (free < ex.fe_len) {
1899 1900
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
					"%d free blocks as per "
1901
					"group info. But got %d blocks",
1902
					free, ex.fe_len);
1903 1904 1905 1906 1907 1908
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1909
		}
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1922
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1923
 */
1924 1925
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1940 1941
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1960
/* This is now called BEFORE we load the buddy bitmap. */
1961 1962 1963 1964
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1965
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1966 1967 1968
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1969 1970 1971 1972 1973 1974 1975

	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1988 1989 1990
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1991 1992 1993 1994 1995 1996
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1997
		return 1;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

2015 2016
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2017
{
2018
	ext4_group_t ngroups, group, i;
2019 2020 2021 2022 2023 2024 2025 2026
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
2027
	ngroups = ext4_get_groups_count(sb);
2028
	/* non-extent files are limited to low blocks/groups */
2029
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2030 2031
		ngroups = sbi->s_blockfile_groups;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
2052
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2053 2054 2055 2056 2057 2058 2059 2060 2061
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

2062 2063
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2064 2065 2066 2067 2068 2069
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
2080 2081 2082 2083 2084 2085
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

2086 2087
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
2088 2089
				group = 0;

2090 2091
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
2092 2093 2094 2095 2096 2097 2098
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
2099 2100 2101 2102 2103

			/*
			 * We need to check again after locking the
			 * block group
			 */
2104 2105
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2106
				ext4_mb_unload_buddy(&e4b);
2107 2108 2109 2110
				continue;
			}

			ac->ac_groups_scanned++;
2111
			if (cr == 0)
2112
				ext4_mb_simple_scan_group(ac, &e4b);
2113 2114
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2115 2116 2117 2118 2119
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2120
			ext4_mb_unload_buddy(&e4b);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2161
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2162 2163
		return NULL;
	group = *pos + 1;
2164
	return (void *) ((unsigned long) group);
2165 2166 2167 2168 2169 2170 2171 2172
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2173
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2174 2175
		return NULL;
	group = *pos + 1;
2176
	return (void *) ((unsigned long) group);
2177 2178 2179 2180 2181
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2182
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2183 2184 2185 2186 2187
	int i;
	int err;
	struct ext4_buddy e4b;
	struct sg {
		struct ext4_group_info info;
2188
		ext4_grpblk_t counters[16];
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
	err = ext4_mb_load_buddy(sb, group, &e4b);
	if (err) {
2204
		seq_printf(seq, "#%-5u: I/O error\n", group);
2205 2206 2207 2208 2209
		return 0;
	}
	ext4_lock_group(sb, group);
	memcpy(&sg, ext4_get_group_info(sb, group), i);
	ext4_unlock_group(sb, group);
2210
	ext4_mb_unload_buddy(&e4b);
2211

2212
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2226
static const struct seq_operations ext4_mb_seq_groups_ops = {
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2240
		struct seq_file *m = file->private_data;
2241 2242 2243 2244 2245 2246
		m->private = sb;
	}
	return rc;

}

2247
static const struct file_operations ext4_mb_seq_groups_fops = {
2248 2249 2250 2251 2252 2253 2254
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2255 2256 2257 2258 2259 2260 2261 2262
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2263 2264

/* Create and initialize ext4_group_info data for the given group. */
2265
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2266 2267
			  struct ext4_group_desc *desc)
{
2268
	int i;
2269 2270 2271
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2272
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
			       "buddy group\n");
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2296
	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2297 2298 2299 2300
	if (meta_group_info[i] == NULL) {
		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
		goto exit_group_info;
	}
2301
	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
			ext4_free_blocks_after_init(sb, group, desc);
	} else {
		meta_group_info[i]->bb_free =
2314
			ext4_free_blks_count(sb, desc);
2315 2316 2317
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2318
	init_rwsem(&meta_group_info[i]->alloc_sem);
2319
	meta_group_info[i]->bb_free_root = RB_ROOT;
2320
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2346 2347
static int ext4_mb_init_backend(struct super_block *sb)
{
2348
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2349 2350
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2351 2352 2353 2354 2355
	struct ext4_super_block *es = sbi->s_es;
	int num_meta_group_infos;
	int num_meta_group_infos_max;
	int array_size;
	struct ext4_group_desc *desc;
2356
	struct kmem_cache *cachep;
2357 2358

	/* This is the number of blocks used by GDT */
2359
	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);

	/*
	 * This is the total number of blocks used by GDT including
	 * the number of reserved blocks for GDT.
	 * The s_group_info array is allocated with this value
	 * to allow a clean online resize without a complex
	 * manipulation of pointer.
	 * The drawback is the unused memory when no resize
	 * occurs but it's very low in terms of pages
	 * (see comments below)
	 * Need to handle this properly when META_BG resizing is allowed
	 */
	num_meta_group_infos_max = num_meta_group_infos +
				le16_to_cpu(es->s_reserved_gdt_blocks);
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * array_size is the size of s_group_info array. We round it
	 * to the next power of two because this approximation is done
	 * internally by kmalloc so we can have some more memory
	 * for free here (e.g. may be used for META_BG resize).
	 */
	array_size = 1;
	while (array_size < sizeof(*sbi->s_group_info) *
	       num_meta_group_infos_max)
		array_size = array_size << 1;
2386 2387 2388
	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
2389
	sbi->s_group_info = kzalloc(array_size, GFP_KERNEL);
2390 2391 2392 2393 2394 2395 2396 2397 2398
	if (sbi->s_group_info == NULL) {
		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
		goto err_freesgi;
	}
2399
	sbi->s_buddy_cache->i_ino = get_next_ino();
2400
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2401
	for (i = 0; i < ngroups; i++) {
2402 2403 2404
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
			printk(KERN_ERR
2405
				"EXT4-fs: can't read descriptor %u\n", i);
2406 2407
			goto err_freebuddy;
		}
2408 2409
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2410 2411 2412 2413 2414
	}

	return 0;

err_freebuddy:
2415
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2416
	while (i-- > 0)
2417
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2418
	i = num_meta_group_infos;
2419
	while (i-- > 0)
2420 2421 2422 2423 2424 2425 2426
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
	kfree(sbi->s_group_info);
	return -ENOMEM;
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
		printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n");
		return -ENOMEM;
	}

	ext4_groupinfo_caches[cache_index] = cachep;

	return 0;
}

2476 2477 2478
int ext4_mb_init(struct super_block *sb, int needs_recovery)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2479
	unsigned i, j;
2480 2481
	unsigned offset;
	unsigned max;
2482
	int ret;
2483

2484
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2485 2486 2487

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2488 2489
		ret = -ENOMEM;
		goto out;
2490
	}
2491

2492
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2493 2494
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2495 2496 2497 2498
		ret = -ENOMEM;
		goto out;
	}

2499 2500 2501
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	/* init file for buddy data */
2519 2520
	ret = ext4_mb_init_backend(sb);
	if (ret != 0) {
2521
		goto out;
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	}

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;

2534
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2535
	if (sbi->s_locality_groups == NULL) {
2536 2537
		ret = -ENOMEM;
		goto out;
2538
	}
2539
	for_each_possible_cpu(i) {
2540
		struct ext4_locality_group *lg;
2541
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2542
		mutex_init(&lg->lg_mutex);
2543 2544
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2545 2546 2547
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2548 2549 2550
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2551

2552 2553
	if (sbi->s_journal)
		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2554 2555 2556 2557 2558 2559
out:
	if (ret) {
		kfree(sbi->s_mb_offsets);
		kfree(sbi->s_mb_maxs);
	}
	return ret;
2560 2561
}

2562
/* need to called with the ext4 group lock held */
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2573
		kmem_cache_free(ext4_pspace_cachep, pa);
2574 2575
	}
	if (count)
2576
		mb_debug(1, "mballoc: %u PAs left\n", count);
2577 2578 2579 2580 2581

}

int ext4_mb_release(struct super_block *sb)
{
2582
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2583 2584 2585 2586
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2588 2589

	if (sbi->s_group_info) {
2590
		for (i = 0; i < ngroups; i++) {
2591 2592 2593 2594 2595 2596 2597
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2598
			kmem_cache_free(cachep, grinfo);
2599
		}
2600
		num_meta_group_infos = (ngroups +
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
		kfree(sbi->s_group_info);
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
		printk(KERN_INFO
		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost\n",
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
				sbi->s_mb_buddies_generated++,
				sbi->s_mb_generation_time);
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2635
	free_percpu(sbi->s_locality_groups);
2636 2637
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);
2638 2639 2640 2641

	return 0;
}

2642
static inline int ext4_issue_discard(struct super_block *sb,
2643 2644 2645 2646 2647 2648 2649
		ext4_group_t block_group, ext4_grpblk_t block, int count)
{
	ext4_fsblk_t discard_block;

	discard_block = block + ext4_group_first_block_no(sb, block_group);
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2650
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2651 2652
}

2653 2654 2655 2656 2657
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2658
{
2659
	struct super_block *sb = journal->j_private;
2660
	struct ext4_buddy e4b;
2661
	struct ext4_group_info *db;
2662
	int err, ret, count = 0, count2 = 0;
2663
	struct ext4_free_data *entry;
2664
	struct list_head *l, *ltmp;
2665

2666 2667
	list_for_each_safe(l, ltmp, &txn->t_private_list) {
		entry = list_entry(l, struct ext4_free_data, list);
2668

2669
		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2670
			 entry->count, entry->group, entry);
2671

2672 2673
		if (test_opt(sb, DISCARD)) {
			ret = ext4_issue_discard(sb, entry->group,
2674
					entry->start_blk, entry->count);
2675 2676 2677 2678 2679 2680
			if (unlikely(ret == -EOPNOTSUPP)) {
				ext4_warning(sb, "discard not supported, "
						 "disabling");
				clear_opt(sb, DISCARD);
			}
		}
2681

2682
		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2683 2684 2685
		/* we expect to find existing buddy because it's pinned */
		BUG_ON(err != 0);

2686
		db = e4b.bd_info;
2687
		/* there are blocks to put in buddy to make them really free */
2688
		count += entry->count;
2689
		count2++;
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		ext4_lock_group(sb, entry->group);
		/* Take it out of per group rb tree */
		rb_erase(&entry->node, &(db->bb_free_root));
		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);

		if (!db->bb_free_root.rb_node) {
			/* No more items in the per group rb tree
			 * balance refcounts from ext4_mb_free_metadata()
			 */
			page_cache_release(e4b.bd_buddy_page);
			page_cache_release(e4b.bd_bitmap_page);
2701
		}
2702 2703
		ext4_unlock_group(sb, entry->group);
		kmem_cache_free(ext4_free_ext_cachep, entry);
2704
		ext4_mb_unload_buddy(&e4b);
2705
	}
2706

2707
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2708 2709
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2744
int __init ext4_init_mballoc(void)
2745
{
2746 2747
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2748 2749 2750
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2751 2752
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2753 2754 2755 2756
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2757

2758 2759
	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
					  SLAB_RECLAIM_ACCOUNT);
2760 2761 2762 2763 2764
	if (ext4_free_ext_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2765
	ext4_create_debugfs_entry();
2766 2767 2768
	return 0;
}

2769
void ext4_exit_mballoc(void)
2770
{
2771
	/*
2772 2773 2774 2775
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2776
	kmem_cache_destroy(ext4_pspace_cachep);
2777
	kmem_cache_destroy(ext4_ac_cachep);
2778
	kmem_cache_destroy(ext4_free_ext_cachep);
2779
	ext4_groupinfo_destroy_slabs();
2780
	ext4_remove_debugfs_entry();
2781 2782 2783 2784
}


/*
2785
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2786 2787
 * Returns 0 if success or error code
 */
2788 2789
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2790
				handle_t *handle, unsigned int reserv_blks)
2791 2792 2793 2794 2795 2796 2797
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2798
	int err, len;
2799 2800 2801 2802 2803 2804 2805 2806

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2807
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2820
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2821
			ext4_free_blks_count(sb, gdp));
2822

2823 2824 2825 2826
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2827
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2828

2829
	len = ac->ac_b_ex.fe_len;
2830
	if (!ext4_data_block_valid(sbi, block, len)) {
2831
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2832
			   "fs metadata\n", block, block+len);
2833 2834 2835 2836
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2837 2838 2839 2840
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			    ac->ac_b_ex.fe_len);
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2841
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2842 2843 2844
		if (!err)
			err = -EAGAIN;
		goto out_err;
2845
	}
2846 2847

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2848 2849 2850 2851 2852 2853 2854 2855 2856
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2857
	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2858 2859
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2860 2861 2862
		ext4_free_blks_set(sb, gdp,
					ext4_free_blocks_after_init(sb,
					ac->ac_b_ex.fe_group, gdp));
2863
	}
2864 2865
	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_blks_set(sb, gdp, len);
2866
	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2867 2868

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2869
	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2870
	/*
2871
	 * Now reduce the dirty block count also. Should not go negative
2872
	 */
2873 2874 2875
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2876

2877 2878 2879
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2880 2881
		atomic_sub(ac->ac_b_ex.fe_len,
			   &sbi->s_flex_groups[flex_group].free_blocks);
2882 2883
	}

2884
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2885 2886
	if (err)
		goto out_err;
2887
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2888 2889

out_err:
T
Theodore Ts'o 已提交
2890
	ext4_mark_super_dirty(sb);
2891
	brelse(bitmap_bh);
2892 2893 2894 2895 2896 2897 2898
	return err;
}

/*
 * here we normalize request for locality group
 * Group request are normalized to s_strip size if we set the same via mount
 * option. If not we set it to s_mb_group_prealloc which can be configured via
T
Theodore Ts'o 已提交
2899
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
	if (EXT4_SB(sb)->s_stripe)
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
	else
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2913
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2914 2915 2916 2917 2918 2919 2920
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2921 2922
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2923 2924 2925 2926 2927
				struct ext4_allocation_request *ar)
{
	int bsbits, max;
	ext4_lblk_t end;
	loff_t size, orig_size, start_off;
2928
	ext4_lblk_t start;
2929
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2930
	struct ext4_prealloc_space *pa;
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2959
	orig_size = size;
2960

2961 2962
	/* max size of free chunks */
	max = 2 << bsbits;
2963

2964 2965
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2984
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2985
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2986 2987 2988
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2989 2990 2991 2992
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2993
					(8<<20)>>bsbits, max, 8 * 1024)) {
2994 2995 2996 2997 2998 2999 3000
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
3001 3002
	size = size >> bsbits;
	start = start_off >> bsbits;
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
3016
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3017
		ext4_lblk_t pa_end;
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		pa_end = pa->pa_lstart + pa->pa_len;

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

3033 3034
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
3035 3036 3037 3038 3039
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

3040
		/* adjust start or end to be adjacent to this pa */
3041 3042 3043
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
3044
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
3055
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3056
		ext4_lblk_t pa_end;
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
			pa_end = pa->pa_lstart + pa->pa_len;
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
			(unsigned long) start, (unsigned long) size,
			(unsigned long) ac->ac_o_ex.fe_logical);
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3074
	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
	ac->ac_g_ex.fe_len = size;

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3099
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3110
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3111 3112 3113 3114 3115 3116 3117 3118 3119
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3120 3121 3122 3123
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;
	int len;

	if (pa && pa->pa_type == MB_INODE_PA) {
		len = ac->ac_b_ex.fe_len;
		pa->pa_free += len;
	}

}

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
	len = end - start;
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3169
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3170 3171 3172 3173 3174 3175 3176 3177
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3178
	unsigned int len = ac->ac_o_ex.fe_len;
3179

3180 3181 3182 3183 3184 3185 3186 3187
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3188
	 * possible race when the group is being loaded concurrently
3189
	 * instead we correct pa later, after blocks are marked
3190 3191
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3192
	 */
3193
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3194 3195
}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3216
	if (cur_distance <= new_distance)
3217 3218 3219 3220 3221 3222 3223 3224
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3225 3226 3227
/*
 * search goal blocks in preallocated space
 */
3228 3229
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3230
{
3231
	int order, i;
3232 3233
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3234 3235
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3236 3237 3238 3239 3240 3241 3242

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3243
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3244 3245 3246 3247 3248 3249 3250

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
			continue;

3251
		/* non-extent files can't have physical blocks past 2^32 */
3252
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3253 3254 3255
			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
			continue;

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3278 3279 3280 3281 3282
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3283
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3284 3285 3286 3287
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3288 3289 3290 3291 3292 3293 3294
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3295 3296 3297

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3298
			}
3299 3300
			spin_unlock(&pa->pa_lock);
		}
3301
		rcu_read_unlock();
3302
	}
3303 3304 3305 3306 3307
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3308 3309 3310
	return 0;
}

3311 3312 3313 3314
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3315
 * Need to be called with the ext4 group lock held
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
		entry = rb_entry(n, struct ext4_free_data, node);
3329
		mb_set_bits(bitmap, entry->start_blk, entry->count);
3330 3331 3332 3333 3334
		n = rb_next(n);
	}
	return;
}

3335 3336 3337
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3338
 * Need to be called with ext4 group lock held
3339
 */
3340 3341
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int count = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3371
		mb_set_bits(bitmap, start, len);
3372 3373 3374
		preallocated += len;
		count++;
	}
3375
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3392
	ext4_group_t grp;
3393
	ext4_fsblk_t grp_blk;
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3408
	grp_blk = pa->pa_pstart;
3409
	/*
3410 3411 3412 3413
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3414 3415 3416
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3446 3447
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;

		/* the smallest one defines real window */
		win = min(winl, wins);

		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
		if (offs && offs < win)
			win = offs;

		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3505 3506
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3507
	pa->pa_deleted = 0;
3508
	pa->pa_type = MB_INODE_PA;
3509

3510
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3511
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3512
	trace_ext4_mb_new_inode_pa(ac, pa);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	ext4_mb_use_inode_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3537 3538
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3565
	INIT_LIST_HEAD(&pa->pa_inode_list);
3566
	INIT_LIST_HEAD(&pa->pa_group_list);
3567
	pa->pa_deleted = 0;
3568
	pa->pa_type = MB_GROUP_PA;
3569

3570
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3571 3572
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3588 3589 3590 3591
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3614 3615
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3616
			struct ext4_prealloc_space *pa)
3617 3618 3619
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3620 3621
	unsigned int end;
	unsigned int next;
3622 3623
	ext4_group_t group;
	ext4_grpblk_t bit;
3624
	unsigned long long grp_blk_start;
3625 3626 3627 3628 3629
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3630
	grp_blk_start = pa->pa_pstart - bit;
3631 3632 3633 3634
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3635
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3636 3637
		if (bit >= end)
			break;
3638
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3639
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3640 3641
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3642 3643
		free += next - bit;

3644 3645 3646
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
		trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa,
					       grp_blk_start + bit, next - bit);
3647 3648 3649 3650
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3651
		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3652 3653 3654
			pa, (unsigned long) pa->pa_lstart,
			(unsigned long) pa->pa_pstart,
			(unsigned long) pa->pa_len);
3655
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3656
					free, pa->pa_free);
3657 3658 3659 3660
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3661 3662 3663 3664 3665 3666
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3667 3668
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3669
				struct ext4_prealloc_space *pa)
3670 3671 3672 3673 3674
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3675
	trace_ext4_mb_release_group_pa(sb, pa);
3676 3677 3678 3679 3680
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3681
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3695 3696
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3708
	mb_debug(1, "discard preallocation for group %u\n", group);
3709 3710 3711 3712

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3713
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3714
	if (bitmap_bh == NULL) {
3715
		ext4_error(sb, "Error reading block bitmap for %u", group);
3716
		return 0;
3717 3718 3719
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3720
	if (err) {
3721
		ext4_error(sb, "Error loading buddy information for %u", group);
3722 3723 3724
		put_bh(bitmap_bh);
		return 0;
	}
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782

	if (needed == 0)
		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3783
		if (pa->pa_type == MB_GROUP_PA)
3784
			ext4_mb_release_group_pa(&e4b, pa);
3785
		else
3786
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3787 3788 3789 3790 3791 3792 3793

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3794
	ext4_mb_unload_buddy(&e4b);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3808
void ext4_discard_preallocations(struct inode *inode)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3819
	if (!S_ISREG(inode->i_mode)) {
3820 3821 3822 3823
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3824
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3825
	trace_ext4_discard_preallocations(inode);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
			printk(KERN_ERR "uh-oh! used pa while discarding\n");
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3878
		BUG_ON(pa->pa_type != MB_INODE_PA);
3879 3880 3881
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3882
		if (err) {
3883 3884
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3885 3886
			continue;
		}
3887

3888
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3889
		if (bitmap_bh == NULL) {
3890 3891
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3892
			ext4_mb_unload_buddy(&e4b);
3893
			continue;
3894 3895 3896 3897
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3898
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3899 3900
		ext4_unlock_group(sb, group);

3901
		ext4_mb_unload_buddy(&e4b);
3902 3903 3904 3905 3906 3907 3908
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3909
#ifdef CONFIG_EXT4_DEBUG
3910 3911 3912
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3913
	ext4_group_t ngroups, i;
3914

3915 3916
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3917 3918
		return;

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	printk(KERN_ERR "EXT4-fs: Can't allocate:"
			" Allocation context details:\n");
	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
			ac->ac_status, ac->ac_flags);
	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d\n",
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
		ac->ac_found);
	printk(KERN_ERR "EXT4-fs: groups: \n");
3941 3942
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3955 3956
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3957
		}
3958
		ext4_unlock_group(sb, i);
3959 3960 3961

		if (grp->bb_free == 0)
			continue;
3962
		printk(KERN_ERR "%u: %d/%d \n",
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3979
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3990 3991 3992
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3993
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3994 3995
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3996

3997 3998 3999 4000 4001 4002 4003
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

4004
	/* don't use group allocation for large files */
4005
	size = max(size, isize);
4006
	if (size > sbi->s_mb_stream_request) {
4007
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4008
		return;
4009
	}
4010 4011 4012 4013 4014 4015 4016

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
4017
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4018 4019 4020 4021 4022 4023 4024 4025

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

4026 4027
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4028 4029 4030 4031 4032 4033
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
4034 4035
	unsigned int len;
	ext4_fsblk_t goal;
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4053
	memset(ac, 0, sizeof(struct ext4_allocation_context));
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	ac->ac_b_ex.fe_logical = ar->logical;
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
	ac->ac_o_ex.fe_logical = ar->logical;
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
	ac->ac_g_ex.fe_logical = ar->logical;
	ac->ac_g_ex.fe_group = group;
	ac->ac_g_ex.fe_start = block;
	ac->ac_g_ex.fe_len = len;
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4072
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4093
	mb_debug(1, "discard locality group preallocation\n");
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4115
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4141 4142
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4143 4144 4145 4146
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4147
		ext4_mb_release_group_pa(&e4b, pa);
4148 4149
		ext4_unlock_group(sb, group);

4150
		ext4_mb_unload_buddy(&e4b);
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4182
			spin_unlock(&tmp_pa->pa_lock);
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4212 4213 4214 4215 4216
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4217 4218
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4219
		if (pa->pa_type == MB_GROUP_PA) {
4220
			/* see comment in ext4_mb_use_group_pa() */
4221 4222 4223 4224 4225 4226
			spin_lock(&pa->pa_lock);
			pa->pa_pstart += ac->ac_b_ex.fe_len;
			pa->pa_lstart += ac->ac_b_ex.fe_len;
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4227 4228
		}
	}
4229 4230
	if (ac->alloc_semp)
		up_read(ac->alloc_semp);
A
Aneesh Kumar K.V 已提交
4231 4232 4233 4234 4235 4236 4237 4238
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
		 * doesn't grow big.  We need to release
		 * alloc_semp before calling ext4_mb_add_n_trim()
		 */
4239
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4240 4241 4242 4243 4244 4245 4246
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4259
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4260 4261 4262
	int ret;
	int freed = 0;

4263
	trace_ext4_mb_discard_preallocations(sb, needed);
4264
	for (i = 0; i < ngroups && needed > 0; i++) {
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4279
				struct ext4_allocation_request *ar, int *errp)
4280
{
4281
	int freed;
4282
	struct ext4_allocation_context *ac = NULL;
4283 4284 4285
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4286
	unsigned int inquota = 0;
4287
	unsigned int reserv_blks = 0;
4288 4289 4290 4291

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4292
	trace_ext4_request_blocks(ar);
4293

4294 4295 4296 4297 4298
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4299
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4300 4301 4302 4303 4304
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4305
		 */
A
Aneesh Kumar K.V 已提交
4306 4307 4308 4309 4310 4311
		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4312 4313 4314
			*errp = -ENOSPC;
			return 0;
		}
4315
		reserv_blks = ar->len;
4316
		while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4317 4318 4319 4320 4321 4322
			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
			ar->len--;
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4323
			goto out;
4324
		}
4325
	}
4326

4327
	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4328
	if (!ac) {
4329
		ar->len = 0;
4330
		*errp = -ENOMEM;
4331
		goto out;
4332 4333 4334
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4335 4336
	if (*errp) {
		ar->len = 0;
4337
		goto out;
4338 4339
	}

4340 4341 4342 4343
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4344 4345
repeat:
		/* allocate space in core */
4346 4347 4348
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4349 4350 4351 4352

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4353 4354 4355
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4356
	}
4357
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4358
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4359
		if (*errp == -EAGAIN) {
4360 4361 4362 4363 4364
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4365 4366 4367 4368 4369
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4370 4371
		} else if (*errp)
		errout:
4372
			ext4_discard_allocated_blocks(ac);
4373
		else {
4374 4375 4376
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4377
	} else {
4378
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4379 4380 4381
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4382 4383 4384
	}

	if (*errp) {
4385
		ac->ac_b_ex.fe_len = 0;
4386
		ar->len = 0;
4387
		ext4_mb_show_ac(ac);
4388
	}
4389
	ext4_mb_release_context(ac);
4390 4391 4392
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4393
	if (inquota && ar->len < inquota)
4394
		dquot_free_block(ar->inode, inquota - ar->len);
4395
	if (!ar->len) {
4396 4397
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4398 4399 4400 4401
			/* release all the reserved blocks if non delalloc */
			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
						reserv_blks);
	}
4402

4403
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4404

4405 4406 4407
	return block;
}

4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
	if ((entry1->t_tid == entry2->t_tid) &&
	    (entry1->group == entry2->group) &&
	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
		return 1;
	return 0;
}

4423 4424
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4425
		      struct ext4_free_data *new_entry)
4426
{
4427
	ext4_group_t group = e4b->bd_group;
4428 4429
	ext4_grpblk_t block;
	struct ext4_free_data *entry;
4430 4431 4432
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4433 4434 4435
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4436
	BUG_ON(!ext4_handle_valid(handle));
4437 4438 4439
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

4440
	new_node = &new_entry->node;
4441
	block = new_entry->start_blk;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
		entry = rb_entry(parent, struct ext4_free_data, node);
		if (block < entry->start_blk)
			n = &(*n)->rb_left;
		else if (block >= (entry->start_blk + entry->count))
			n = &(*n)->rb_right;
		else {
4460 4461 4462
			ext4_grp_locked_error(sb, group, 0,
				ext4_group_first_block_no(sb, group) + block,
				"Block already on to-be-freed list");
4463
			return 0;
4464
		}
4465
	}
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(entry, new_entry)) {
			new_entry->start_blk = entry->start_blk;
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4482
		}
4483
	}
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	node = rb_next(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(new_entry, entry)) {
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4495 4496
		}
	}
4497
	/* Add the extent to transaction's private list */
4498
	spin_lock(&sbi->s_md_lock);
4499
	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4500
	spin_unlock(&sbi->s_md_lock);
4501 4502 4503
	return 0;
}

4504 4505 4506 4507 4508 4509 4510
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
 * @metadata: 		Are these metadata blocks
4511
 */
4512
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4513 4514
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4515
{
4516
	struct buffer_head *bitmap_bh = NULL;
4517 4518
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4519
	unsigned long freed = 0;
4520
	unsigned int overflow;
4521 4522 4523 4524 4525 4526 4527 4528
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
	int err = 0;
	int ret;

4529 4530 4531 4532 4533 4534
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4535 4536

	sbi = EXT4_SB(sb);
4537 4538
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4539
		ext4_error(sb, "Freeing blocks not in datazone - "
4540
			   "block = %llu, count = %lu", block, count);
4541 4542 4543
		goto error_return;
	}

4544
	ext4_debug("freeing block %llu\n", block);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4557 4558
			if (unlikely(!tbh))
				continue;
4559
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4560 4561 4562 4563
				    inode, tbh, block + i);
		}
	}

4564
	/*
4565 4566 4567 4568 4569 4570 4571 4572
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
		count -= overflow;
	}
4586
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4587 4588
	if (!bitmap_bh) {
		err = -EIO;
4589
		goto error_return;
4590
	}
4591
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4592 4593
	if (!gdp) {
		err = -EIO;
4594
		goto error_return;
4595
	}
4596 4597 4598 4599 4600 4601 4602 4603

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group)) {

4604
		ext4_error(sb, "Freeing blocks in system zone - "
4605
			   "Block = %llu, count = %lu", block, count);
4606 4607
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < count; i++)
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4631
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4632

4633 4634 4635
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4636 4637

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4638 4639 4640 4641 4642
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
4643 4644 4645 4646 4647
		new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
		if (!new_entry) {
			err = -ENOMEM;
			goto error_return;
		}
4648 4649 4650 4651
		new_entry->start_blk = bit;
		new_entry->group  = block_group;
		new_entry->count = count;
		new_entry->t_tid = handle->h_transaction->t_tid;
4652

4653
		ext4_lock_group(sb, block_group);
4654
		mb_clear_bits(bitmap_bh->b_data, bit, count);
4655
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4656
	} else {
4657 4658 4659 4660
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4661 4662
		ext4_lock_group(sb, block_group);
		mb_clear_bits(bitmap_bh->b_data, bit, count);
4663
		mb_free_blocks(inode, &e4b, bit, count);
4664 4665
	}

4666 4667
	ret = ext4_free_blks_count(sb, gdp) + count;
	ext4_free_blks_set(sb, gdp, ret);
4668
	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4669
	ext4_unlock_group(sb, block_group);
4670 4671
	percpu_counter_add(&sbi->s_freeblocks_counter, count);

4672 4673
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4674
		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4675 4676
	}

4677
	ext4_mb_unload_buddy(&e4b);
4678

4679
	freed += count;
4680

4681 4682 4683 4684
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4685 4686
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4687
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4688 4689 4690 4691 4692 4693 4694 4695 4696
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
T
Theodore Ts'o 已提交
4697
	ext4_mark_super_dirty(sb);
4698
error_return:
4699
	if (freed)
4700
		dquot_free_block(inode, freed);
4701 4702 4703 4704
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761

/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
static int ext4_trim_extent(struct super_block *sb, int start, int count,
		ext4_group_t group, struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex;
	int ret = 0;

	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);

	ret = ext4_issue_discard(sb, group, start, count);

	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
	return ret;
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
 * @e4b:		ext4 buddy
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4762 4763
static ext4_grpblk_t
ext4_trim_all_free(struct super_block *sb, struct ext4_buddy *e4b,
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
		ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)
{
	void *bitmap;
	ext4_grpblk_t next, count = 0;
	ext4_group_t group;
	int ret = 0;

	BUG_ON(e4b == NULL);

	bitmap = e4b->bd_bitmap;
	group = e4b->bd_group;
	start = (e4b->bd_info->bb_first_free > start) ?
		e4b->bd_info->bb_first_free : start;
	ext4_lock_group(sb, group);

	while (start < max) {
		start = mb_find_next_zero_bit(bitmap, max, start);
		if (start >= max)
			break;
		next = mb_find_next_bit(bitmap, max, start);

		if ((next - start) >= minblocks) {
			ret = ext4_trim_extent(sb, start,
				next - start, group, e4b);
			if (ret < 0)
				break;
			count += next - start;
		}
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

		if ((e4b->bd_info->bb_free - count) < minblocks)
			break;
	}
	ext4_unlock_group(sb, group);

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	if (ret < 0)
		count = ret;

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
	struct ext4_buddy e4b;
	ext4_group_t first_group, last_group;
	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
	ext4_grpblk_t cnt = 0, first_block, last_block;
	uint64_t start, len, minlen, trimmed;
4838 4839
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4840 4841 4842 4843 4844 4845 4846 4847 4848
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
	len = range->len >> sb->s_blocksize_bits;
	minlen = range->minlen >> sb->s_blocksize_bits;
	trimmed = 0;

	if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
		return -EINVAL;
4849 4850 4851 4852
	if (start < first_data_blk) {
		len -= first_data_blk - start;
		start = first_data_blk;
	}
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872

	/* Determine first and last group to examine based on start and len */
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
				     &first_group, &first_block);
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
				     &last_group, &last_block);
	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
	last_block = EXT4_BLOCKS_PER_GROUP(sb);

	if (first_group > last_group)
		return -EINVAL;

	for (group = first_group; group <= last_group; group++) {
		ret = ext4_mb_load_buddy(sb, group, &e4b);
		if (ret) {
			ext4_error(sb, "Error in loading buddy "
					"information for %u", group);
			break;
		}

4873 4874 4875 4876 4877 4878 4879
		/*
		 * For all the groups except the last one, last block will
		 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
		 * change it for the last group in which case start +
		 * len < EXT4_BLOCKS_PER_GROUP(sb).
		 */
		if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
J
Jan Kara 已提交
4880
			last_block = first_block + len;
4881
		len -= last_block - first_block;
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

		if (e4b.bd_info->bb_free >= minlen) {
			cnt = ext4_trim_all_free(sb, &e4b, first_block,
						last_block, minlen);
			if (cnt < 0) {
				ret = cnt;
				ext4_mb_unload_buddy(&e4b);
				break;
			}
		}
		ext4_mb_unload_buddy(&e4b);
		trimmed += cnt;
		first_block = 0;
	}
	range->len = trimmed * sb->s_blocksize;

	return ret;
}