mballoc.c 139.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

24
#include "mballoc.h"
25
#include <linux/debugfs.h>
26
#include <linux/slab.h>
27 28
#include <trace/events/ext4.h>

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
53 54 55 56 57 58 59 60 61
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
62 63
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
64
 * ensure that we have small files closer together on the disk.
65
 *
T
Theodore Ts'o 已提交
66 67 68 69
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
70 71 72
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
73 74
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
75 76 77
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
78 79
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
80 81 82 83 84 85 86
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
87
 * prealloc space. These are per CPU prealloc list represented as
88 89 90 91 92 93 94
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
95
 * enough free space (pa_free) within the prealloc space.
96 97 98 99 100 101 102 103 104 105 106 107
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
108
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
129 130
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
131
 * 512 blocks. This can be tuned via
132
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133 134
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
135 136
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
137
 *
138
 * The regular allocator (using the buddy cache) supports a few tunables.
139
 *
T
Theodore Ts'o 已提交
140 141 142
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
143
 *
T
Theodore Ts'o 已提交
144
 * The regular allocator uses buddy scan only if the request len is power of
145 146
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
147
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
148
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
149 150 151
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
152
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
153
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
154 155 156
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
157
 * can be used for allocation. ext4_mb_good_group explains how the groups are
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
340 341 342
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
static struct kmem_cache *ext4_free_ext_cachep;
343 344 345 346

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
347
#define NR_GRPINFO_CACHES 8
348 349
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

350 351 352 353 354 355
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

356 357
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
358 359
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
360 361
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);

362 363
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
364
#if BITS_PER_LONG == 64
365 366
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
367
#elif BITS_PER_LONG == 32
368 369
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
370 371 372
#else
#error "how many bits you are?!"
#endif
373 374
	return addr;
}
375 376 377 378 379 380 381

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
382
	addr = mb_correct_addr_and_bit(&bit, addr);
383 384 385 386 387
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
388
	addr = mb_correct_addr_and_bit(&bit, addr);
389 390 391 392 393
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
394
	addr = mb_correct_addr_and_bit(&bit, addr);
395 396 397
	ext4_clear_bit(bit, addr);
}

398 399
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
400
	int fix = 0, ret, tmpmax;
401
	addr = mb_correct_addr_and_bit(&fix, addr);
402
	tmpmax = max + fix;
403 404
	start += fix;

405 406 407 408
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
409 410 411 412
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
413
	int fix = 0, ret, tmpmax;
414
	addr = mb_correct_addr_and_bit(&fix, addr);
415
	tmpmax = max + fix;
416 417
	start += fix;

418 419 420 421
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
437 438
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
439
		return EXT4_MB_BITMAP(e4b);
C
Coly Li 已提交
440
	}
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
457
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
458 459 460
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
461 462

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
463
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
464
			ext4_grp_locked_error(sb, e4b->bd_group,
465 466 467 468 469
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
470 471 472 473 474 475 476 477 478 479 480
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
481
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
497 498 499 500 501
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

584
			/* both bits in buddy2 must be 1 */
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
626 627
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
628
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
629
		for (i = 0; i < pa->pa_len; i++)
630 631 632 633 634 635
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
636
					__FILE__, __func__, __LINE__)
637 638 639 640
#else
#define mb_check_buddy(e4b)
#endif

641 642 643 644 645 646
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
647
static void ext4_mb_mark_free_simple(struct super_block *sb,
648
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
649 650 651
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
652 653 654
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
655 656
	unsigned short border;

657
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

704 705
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
706 707 708
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
709
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
710 711 712
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
713 714 715 716 717 718
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
719
	i = mb_find_next_zero_bit(bitmap, max, 0);
720 721 722 723
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
724
		i = mb_find_next_bit(bitmap, max, i);
725 726 727 728 729 730 731
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
732
			i = mb_find_next_zero_bit(bitmap, max, i);
733 734 735 736
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
737
		ext4_grp_locked_error(sb, group, 0, 0,
738
				      "%u clusters in bitmap, %u in gd",
739
				      free, grp->bb_free);
740 741 742 743
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
744 745
		grp->bb_free = free;
	}
746
	mb_set_largest_free_order(sb, grp);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
764
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
765 766 767 768 769 770 771
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
772 773 774
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
775 776 777 778
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
779
	ext4_group_t ngroups;
780 781 782 783 784 785 786 787 788 789 790 791 792
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
	ext4_group_t first_group;
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
	struct buffer_head **bh;
	struct inode *inode;
	char *data;
	char *bitmap;
793
	struct ext4_group_info *grinfo;
794

795
	mb_debug(1, "init page %lu\n", page->index);
796 797 798

	inode = page->mapping->host;
	sb = inode->i_sb;
799
	ngroups = ext4_get_groups_count(sb);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		err = -ENOMEM;
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
		if (bh == NULL)
			goto out;
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {
		struct ext4_group_desc *desc;

823
		if (first_group + i >= ngroups)
824 825
			break;

826 827 828 829 830 831 832 833 834 835 836 837
		grinfo = ext4_get_group_info(sb, first_group + i);
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}

838 839 840 841 842 843 844 845 846 847
		err = -EIO;
		desc = ext4_get_group_desc(sb, first_group + i, NULL);
		if (desc == NULL)
			goto out;

		err = -ENOMEM;
		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
		if (bh[i] == NULL)
			goto out;

848
		if (bitmap_uptodate(bh[i]))
849 850
			continue;

851
		lock_buffer(bh[i]);
852 853 854 855
		if (bitmap_uptodate(bh[i])) {
			unlock_buffer(bh[i]);
			continue;
		}
856
		ext4_lock_group(sb, first_group + i);
857 858 859
		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
			ext4_init_block_bitmap(sb, bh[i],
						first_group + i, desc);
860
			set_bitmap_uptodate(bh[i]);
861
			set_buffer_uptodate(bh[i]);
862
			ext4_unlock_group(sb, first_group + i);
A
Aneesh Kumar K.V 已提交
863
			unlock_buffer(bh[i]);
864 865
			continue;
		}
866
		ext4_unlock_group(sb, first_group + i);
867 868 869 870 871 872 873 874 875
		if (buffer_uptodate(bh[i])) {
			/*
			 * if not uninit if bh is uptodate,
			 * bitmap is also uptodate
			 */
			set_bitmap_uptodate(bh[i]);
			unlock_buffer(bh[i]);
			continue;
		}
876
		get_bh(bh[i]);
877 878 879 880 881 882 883
		/*
		 * submit the buffer_head for read. We can
		 * safely mark the bitmap as uptodate now.
		 * We do it here so the bitmap uptodate bit
		 * get set with buffer lock held.
		 */
		set_bitmap_uptodate(bh[i]);
884 885
		bh[i]->b_end_io = end_buffer_read_sync;
		submit_bh(READ, bh[i]);
886
		mb_debug(1, "read bitmap for group %u\n", first_group + i);
887 888 889
	}

	/* wait for I/O completion */
890 891 892
	for (i = 0; i < groups_per_page; i++)
		if (bh[i])
			wait_on_buffer(bh[i]);
893 894

	err = -EIO;
895 896
	for (i = 0; i < groups_per_page; i++)
		if (bh[i] && !buffer_uptodate(bh[i]))
897 898
			goto out;

899
	err = 0;
900 901 902 903 904
	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;

		group = (first_block + i) >> 1;
905
		if (group >= ngroups)
906 907
			break;

908 909 910 911
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
928
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929
				group, page->index, i * blocksize);
930
			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 932 933
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
934 935
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
936 937 938
			/*
			 * incore got set to the group block bitmap below
			 */
939
			ext4_lock_group(sb, group);
940 941
			/* init the buddy */
			memset(data, 0xff, blocksize);
942
			ext4_mb_generate_buddy(sb, data, incore, group);
943
			ext4_unlock_group(sb, group);
944 945 946 947
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
948
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949
				group, page->index, i * blocksize);
950
			trace_ext4_mb_bitmap_load(sb, group);
951 952 953 954 955 956 957

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
958
			ext4_mb_generate_from_freelist(sb, data, group);
959 960 961 962 963 964 965 966 967 968 969 970
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
971
		for (i = 0; i < groups_per_page; i++)
972 973 974 975 976 977 978
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

979
/*
980 981 982 983
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984
 */
985 986
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
		ext4_group_t group, struct ext4_buddy *e4b)
987
{
988 989
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
990
	int blocks_per_page;
991 992 993 994
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
995 996 997 998 999 1000 1001 1002 1003

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
1015
	}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
1026 1027
}

1028
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1029
{
1030 1031 1032 1033 1034 1035 1036
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
		page_cache_release(e4b->bd_bitmap_page);
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
		page_cache_release(e4b->bd_buddy_page);
1037 1038 1039
	}
}

1040 1041 1042 1043 1044
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1045 1046 1047 1048 1049
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	struct ext4_group_info *this_grp;
1050 1051 1052
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1053 1054 1055 1056

	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1057 1058 1059 1060
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1061
	 * would have pinned buddy page to page cache.
1062
	 */
1063 1064
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 1066 1067 1068 1069 1070
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1071 1072 1073 1074 1075 1076

	page = e4b.bd_bitmap_page;
	ret = ext4_mb_init_cache(page, NULL);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1077 1078 1079 1080 1081
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);

1082
	if (e4b.bd_buddy_page == NULL) {
1083 1084 1085 1086 1087
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1088 1089
		ret = 0;
		goto err;
1090
	}
1091 1092 1093 1094 1095 1096
	/* init buddy cache */
	page = e4b.bd_buddy_page;
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1097 1098 1099 1100 1101
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
1102
	ext4_mb_put_buddy_page_lock(&e4b);
1103 1104 1105
	return ret;
}

1106 1107 1108 1109 1110
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1111 1112 1113
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1114 1115 1116 1117 1118 1119
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1120
	int ret;
1121 1122 1123
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1124

1125
	mb_debug(1, "load group %u\n", group);
1126 1127

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1128
	grp = ext4_get_group_info(sb, group);
1129 1130

	e4b->bd_blkbits = sb->s_blocksize_bits;
1131
	e4b->bd_info = grp;
1132 1133 1134 1135 1136
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
	}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1161 1162 1163 1164 1165 1166 1167 1168
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1169 1170 1171 1172 1173
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1174 1175 1176 1177 1178
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1179 1180 1181 1182 1183 1184
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1185 1186
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1187
		goto err;
1188
	}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1204 1205 1206 1207 1208 1209 1210
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1211 1212 1213
			unlock_page(page);
		}
	}
1214 1215
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1216
		goto err;
1217
	}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1228 1229
	if (page)
		page_cache_release(page);
1230 1231 1232 1233 1234 1235
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1236
	return ret;
1237 1238
}

1239
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

	bb = EXT4_MB_BUDDY(e4b);
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1269
static void mb_clear_bits(void *bm, int cur, int len)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1282
		mb_clear_bit(cur, bm);
1283 1284 1285 1286
		cur++;
	}
}

1287
void ext4_set_bits(void *bm, int cur, int len)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1300
		mb_set_bit(cur, bm);
1301 1302 1303 1304
		cur++;
	}
}

1305
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1316
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
			ext4_fsblk_t blocknr;
1341 1342

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1343
			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1344
			ext4_grp_locked_error(sb, e4b->bd_group,
1345 1346 1347 1348
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		}
		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1385
	mb_set_largest_free_order(sb, e4b->bd_info);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	mb_check_buddy(e4b);
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	void *buddy;

1396
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
			break;

1435
		order = mb_find_order_for_block(e4b, next);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1459
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1512
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1513

1514
	ext4_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1544 1545 1546 1547 1548 1549 1550
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1551 1552 1553 1554 1555
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1556
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1578 1579
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1626 1627
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1677 1678
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1700
	ext4_mb_unload_buddy(e4b);
1701 1702 1703 1704

	return 0;
}

1705 1706
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1729 1730
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1755
	ext4_mb_unload_buddy(e4b);
1756 1757 1758 1759 1760 1761 1762 1763

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1764 1765
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1783
		k = mb_find_next_zero_bit(buddy, max, 0);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1808 1809
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1824
		i = mb_find_next_zero_bit(bitmap,
1825 1826
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1827
			/*
1828
			 * IF we have corrupt bitmap, we won't find any
1829 1830 1831
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1832
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1833
					"%d free clusters as per "
1834
					"group info. But bitmap says 0",
1835
					free);
1836 1837 1838 1839 1840
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
1841
		if (free < ex.fe_len) {
1842
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1843
					"%d free clusters as per "
1844
					"group info. But got %d blocks",
1845
					free, ex.fe_len);
1846 1847 1848 1849 1850 1851
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1852
		}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1865
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1866
 */
1867 1868
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1883 1884
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1885 1886 1887 1888
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

1889
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1903
/* This is now called BEFORE we load the buddy bitmap. */
1904 1905 1906 1907
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1908
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1909 1910 1911
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1912 1913 1914 1915 1916 1917 1918

	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1931 1932 1933
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1934 1935 1936 1937 1938 1939
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1940
		return 1;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

1958 1959
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1960
{
1961
	ext4_group_t ngroups, group, i;
1962 1963 1964 1965 1966 1967 1968 1969
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
1970
	ngroups = ext4_get_groups_count(sb);
1971
	/* non-extent files are limited to low blocks/groups */
1972
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1973 1974
		ngroups = sbi->s_blockfile_groups;

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
1995
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1996 1997 1998 1999 2000 2001 2002 2003 2004
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

2005 2006
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2007 2008 2009 2010 2011 2012
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
2023 2024 2025 2026 2027 2028
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

2029 2030
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
2031 2032
				group = 0;

2033 2034
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
2035 2036 2037 2038 2039 2040 2041
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
2042 2043 2044 2045 2046

			/*
			 * We need to check again after locking the
			 * block group
			 */
2047 2048
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2049
				ext4_mb_unload_buddy(&e4b);
2050 2051 2052 2053
				continue;
			}

			ac->ac_groups_scanned++;
2054
			if (cr == 0)
2055
				ext4_mb_simple_scan_group(ac, &e4b);
2056 2057
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2058 2059 2060 2061 2062
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2063
			ext4_mb_unload_buddy(&e4b);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2104
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2105 2106
		return NULL;
	group = *pos + 1;
2107
	return (void *) ((unsigned long) group);
2108 2109 2110 2111 2112 2113 2114 2115
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2116
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2117 2118
		return NULL;
	group = *pos + 1;
2119
	return (void *) ((unsigned long) group);
2120 2121 2122 2123 2124
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2125
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2126 2127 2128 2129 2130
	int i;
	int err;
	struct ext4_buddy e4b;
	struct sg {
		struct ext4_group_info info;
2131
		ext4_grpblk_t counters[16];
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
	err = ext4_mb_load_buddy(sb, group, &e4b);
	if (err) {
2147
		seq_printf(seq, "#%-5u: I/O error\n", group);
2148 2149 2150 2151 2152
		return 0;
	}
	ext4_lock_group(sb, group);
	memcpy(&sg, ext4_get_group_info(sb, group), i);
	ext4_unlock_group(sb, group);
2153
	ext4_mb_unload_buddy(&e4b);
2154

2155
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2169
static const struct seq_operations ext4_mb_seq_groups_ops = {
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2183
		struct seq_file *m = file->private_data;
2184 2185 2186 2187 2188 2189
		m->private = sb;
	}
	return rc;

}

2190
static const struct file_operations ext4_mb_seq_groups_fops = {
2191 2192 2193 2194 2195 2196 2197
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2198 2199 2200 2201 2202 2203 2204 2205
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2206 2207

/* Create and initialize ext4_group_info data for the given group. */
2208
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2209 2210
			  struct ext4_group_desc *desc)
{
2211
	int i;
2212 2213 2214
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2215
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
2227 2228
			ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate mem "
				 "for a buddy group");
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2239
	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2240
	if (meta_group_info[i] == NULL) {
2241
		ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate buddy mem");
2242 2243
		goto exit_group_info;
	}
2244
	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2245 2246 2247 2248 2249 2250 2251 2252 2253
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2254
			ext4_free_clusters_after_init(sb, group, desc);
2255 2256
	} else {
		meta_group_info[i]->bb_free =
2257
			ext4_free_group_clusters(sb, desc);
2258 2259 2260
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2261
	init_rwsem(&meta_group_info[i]->alloc_sem);
2262
	meta_group_info[i]->bb_free_root = RB_ROOT;
2263
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2283
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2284
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2285 2286
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2287 2288 2289 2290
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2291 2292
static int ext4_mb_init_backend(struct super_block *sb)
{
2293
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2294 2295
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2296 2297 2298 2299 2300
	struct ext4_super_block *es = sbi->s_es;
	int num_meta_group_infos;
	int num_meta_group_infos_max;
	int array_size;
	struct ext4_group_desc *desc;
2301
	struct kmem_cache *cachep;
2302 2303

	/* This is the number of blocks used by GDT */
2304
	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);

	/*
	 * This is the total number of blocks used by GDT including
	 * the number of reserved blocks for GDT.
	 * The s_group_info array is allocated with this value
	 * to allow a clean online resize without a complex
	 * manipulation of pointer.
	 * The drawback is the unused memory when no resize
	 * occurs but it's very low in terms of pages
	 * (see comments below)
	 * Need to handle this properly when META_BG resizing is allowed
	 */
	num_meta_group_infos_max = num_meta_group_infos +
				le16_to_cpu(es->s_reserved_gdt_blocks);
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * array_size is the size of s_group_info array. We round it
	 * to the next power of two because this approximation is done
	 * internally by kmalloc so we can have some more memory
	 * for free here (e.g. may be used for META_BG resize).
	 */
	array_size = 1;
	while (array_size < sizeof(*sbi->s_group_info) *
	       num_meta_group_infos_max)
		array_size = array_size << 1;
2331 2332 2333
	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
2334
	sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2335
	if (sbi->s_group_info == NULL) {
2336
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2337 2338 2339 2340
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2341
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2342 2343
		goto err_freesgi;
	}
2344 2345 2346 2347 2348
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2349
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2350
	for (i = 0; i < ngroups; i++) {
2351 2352
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2353
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2354 2355
			goto err_freebuddy;
		}
2356 2357
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2358 2359 2360 2361 2362
	}

	return 0;

err_freebuddy:
2363
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2364
	while (i-- > 0)
2365
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2366
	i = num_meta_group_infos;
2367
	while (i-- > 0)
2368 2369 2370
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
2371
	ext4_kvfree(sbi->s_group_info);
2372 2373 2374
	return -ENOMEM;
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2413 2414
	ext4_groupinfo_caches[cache_index] = cachep;

2415 2416
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2417 2418
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2419 2420 2421 2422 2423 2424
		return -ENOMEM;
	}

	return 0;
}

2425 2426 2427
int ext4_mb_init(struct super_block *sb, int needs_recovery)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2428
	unsigned i, j;
2429 2430
	unsigned offset;
	unsigned max;
2431
	int ret;
2432

2433
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2434 2435 2436

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2437 2438
		ret = -ENOMEM;
		goto out;
2439
	}
2440

2441
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2442 2443
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2444 2445 2446 2447
		ret = -ENOMEM;
		goto out;
	}

2448 2449 2450
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2501

2502
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2503
	if (sbi->s_locality_groups == NULL) {
2504
		ret = -ENOMEM;
2505
		goto out_free_groupinfo_slab;
2506
	}
2507
	for_each_possible_cpu(i) {
2508
		struct ext4_locality_group *lg;
2509
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2510
		mutex_init(&lg->lg_mutex);
2511 2512
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2513 2514 2515
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2516 2517
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2518 2519
	if (ret != 0)
		goto out_free_locality_groups;
2520

2521 2522 2523
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2524

2525 2526
	if (sbi->s_journal)
		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2527 2528 2529 2530 2531 2532 2533 2534

	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
out_free_groupinfo_slab:
	ext4_groupinfo_destroy_slabs();
2535
out:
2536 2537 2538 2539
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2540
	return ret;
2541 2542
}

2543
/* need to called with the ext4 group lock held */
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2554
		kmem_cache_free(ext4_pspace_cachep, pa);
2555 2556
	}
	if (count)
2557
		mb_debug(1, "mballoc: %u PAs left\n", count);
2558 2559 2560 2561 2562

}

int ext4_mb_release(struct super_block *sb)
{
2563
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2564 2565 2566 2567
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2569 2570

	if (sbi->s_group_info) {
2571
		for (i = 0; i < ngroups; i++) {
2572 2573 2574 2575 2576 2577 2578
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2579
			kmem_cache_free(cachep, grinfo);
2580
		}
2581
		num_meta_group_infos = (ngroups +
2582 2583 2584 2585
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
2586
		ext4_kvfree(sbi->s_group_info);
2587 2588 2589 2590 2591 2592
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
2593 2594
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2595 2596 2597
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2598 2599 2600
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2601 2602 2603 2604 2605
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2606 2607
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2608
				sbi->s_mb_buddies_generated,
2609
				sbi->s_mb_generation_time);
2610 2611
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2612 2613 2614 2615
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2616
	free_percpu(sbi->s_locality_groups);
2617 2618
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);
2619 2620 2621 2622

	return 0;
}

2623
static inline int ext4_issue_discard(struct super_block *sb,
2624
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2625 2626 2627
{
	ext4_fsblk_t discard_block;

2628 2629 2630
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2631 2632
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2633
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2634 2635
}

2636 2637 2638 2639 2640
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2641
{
2642
	struct super_block *sb = journal->j_private;
2643
	struct ext4_buddy e4b;
2644
	struct ext4_group_info *db;
2645
	int err, count = 0, count2 = 0;
2646
	struct ext4_free_data *entry;
2647
	struct list_head *l, *ltmp;
2648

2649 2650
	list_for_each_safe(l, ltmp, &txn->t_private_list) {
		entry = list_entry(l, struct ext4_free_data, list);
2651

2652
		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2653
			 entry->count, entry->group, entry);
2654

2655 2656
		if (test_opt(sb, DISCARD))
			ext4_issue_discard(sb, entry->group,
2657
					   entry->start_cluster, entry->count);
2658

2659
		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2660 2661 2662
		/* we expect to find existing buddy because it's pinned */
		BUG_ON(err != 0);

2663
		db = e4b.bd_info;
2664
		/* there are blocks to put in buddy to make them really free */
2665
		count += entry->count;
2666
		count2++;
2667 2668 2669
		ext4_lock_group(sb, entry->group);
		/* Take it out of per group rb tree */
		rb_erase(&entry->node, &(db->bb_free_root));
2670
		mb_free_blocks(NULL, &e4b, entry->start_cluster, entry->count);
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680
		/*
		 * Clear the trimmed flag for the group so that the next
		 * ext4_trim_fs can trim it.
		 * If the volume is mounted with -o discard, online discard
		 * is supported and the free blocks will be trimmed online.
		 */
		if (!test_opt(sb, DISCARD))
			EXT4_MB_GRP_CLEAR_TRIMMED(db);

2681 2682 2683 2684 2685 2686
		if (!db->bb_free_root.rb_node) {
			/* No more items in the per group rb tree
			 * balance refcounts from ext4_mb_free_metadata()
			 */
			page_cache_release(e4b.bd_buddy_page);
			page_cache_release(e4b.bd_bitmap_page);
2687
		}
2688 2689
		ext4_unlock_group(sb, entry->group);
		kmem_cache_free(ext4_free_ext_cachep, entry);
2690
		ext4_mb_unload_buddy(&e4b);
2691
	}
2692

2693
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2694 2695
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2730
int __init ext4_init_mballoc(void)
2731
{
2732 2733
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2734 2735 2736
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2737 2738
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2739 2740 2741 2742
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2743

2744 2745
	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
					  SLAB_RECLAIM_ACCOUNT);
2746 2747 2748 2749 2750
	if (ext4_free_ext_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2751
	ext4_create_debugfs_entry();
2752 2753 2754
	return 0;
}

2755
void ext4_exit_mballoc(void)
2756
{
2757
	/*
2758 2759 2760 2761
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2762
	kmem_cache_destroy(ext4_pspace_cachep);
2763
	kmem_cache_destroy(ext4_ac_cachep);
2764
	kmem_cache_destroy(ext4_free_ext_cachep);
2765
	ext4_groupinfo_destroy_slabs();
2766
	ext4_remove_debugfs_entry();
2767 2768 2769 2770
}


/*
2771
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2772 2773
 * Returns 0 if success or error code
 */
2774 2775
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2776
				handle_t *handle, unsigned int reserv_clstrs)
2777 2778 2779 2780 2781 2782 2783
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2784
	int err, len;
2785 2786 2787 2788 2789 2790 2791 2792

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2793
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2806
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2807
			ext4_free_group_clusters(sb, gdp));
2808

2809 2810 2811 2812
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2813
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2814

2815
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2816
	if (!ext4_data_block_valid(sbi, block, len)) {
2817
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2818
			   "fs metadata\n", block, block+len);
2819 2820 2821 2822
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2823
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2824 2825
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2826
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2827
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2828 2829 2830
		if (!err)
			err = -EAGAIN;
		goto out_err;
2831
	}
2832 2833

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2834 2835 2836 2837 2838 2839 2840 2841 2842
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2843 2844
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2845 2846
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2847
		ext4_free_group_clusters_set(sb, gdp,
2848
					     ext4_free_clusters_after_init(sb,
2849
						ac->ac_b_ex.fe_group, gdp));
2850
	}
2851 2852
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2853
	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2854 2855

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2856
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2857
	/*
2858
	 * Now reduce the dirty block count also. Should not go negative
2859
	 */
2860 2861
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2862 2863
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2864

2865 2866 2867
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2868
		atomic_sub(ac->ac_b_ex.fe_len,
2869
			   &sbi->s_flex_groups[flex_group].free_clusters);
2870 2871
	}

2872
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2873 2874
	if (err)
		goto out_err;
2875
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2876 2877

out_err:
T
Theodore Ts'o 已提交
2878
	ext4_mark_super_dirty(sb);
2879
	brelse(bitmap_bh);
2880 2881 2882 2883 2884
	return err;
}

/*
 * here we normalize request for locality group
2885 2886 2887
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
2888
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2889 2890 2891 2892 2893 2894 2895 2896 2897
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
2898
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2899
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2900 2901 2902 2903 2904 2905 2906
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2907 2908
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2909 2910
				struct ext4_allocation_request *ar)
{
2911
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2912 2913 2914
	int bsbits, max;
	ext4_lblk_t end;
	loff_t size, orig_size, start_off;
2915
	ext4_lblk_t start;
2916
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2917
	struct ext4_prealloc_space *pa;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
2942
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2943 2944 2945
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2946
	orig_size = size;
2947

2948 2949
	/* max size of free chunks */
	max = 2 << bsbits;
2950

2951 2952
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2971
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2972
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2973 2974 2975
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2976 2977 2978 2979
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2980
					(8<<20)>>bsbits, max, 8 * 1024)) {
2981 2982 2983 2984 2985 2986 2987
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2988 2989
	size = size >> bsbits;
	start = start_off >> bsbits;
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
3003
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3004
		ext4_lblk_t pa_end;
3005 3006 3007 3008 3009 3010 3011 3012 3013

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

3014 3015
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
3016 3017 3018 3019 3020

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

3021 3022
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
3023 3024 3025 3026 3027
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

3028
		/* adjust start or end to be adjacent to this pa */
3029 3030 3031
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
3032
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
3043
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3044
		ext4_lblk_t pa_end;
3045

3046 3047
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
3048 3049
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3050 3051 3052 3053 3054 3055 3056 3057
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3058 3059 3060 3061
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3062 3063 3064
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3065
	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3066 3067 3068 3069 3070 3071

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3072
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3090
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3101
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3102 3103 3104 3105 3106 3107 3108 3109 3110
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3111 3112 3113 3114
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3115 3116
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;
	int len;

	if (pa && pa->pa_type == MB_INODE_PA) {
		len = ac->ac_b_ex.fe_len;
		pa->pa_free += len;
	}

}

3135 3136 3137 3138 3139 3140
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3141
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3142 3143 3144 3145 3146 3147
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3148 3149 3150
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3151 3152 3153 3154 3155 3156 3157
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3158
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3159 3160 3161
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3162
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3163 3164 3165 3166 3167 3168 3169 3170
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3171
	unsigned int len = ac->ac_o_ex.fe_len;
3172

3173 3174 3175 3176 3177 3178 3179 3180
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3181
	 * possible race when the group is being loaded concurrently
3182
	 * instead we correct pa later, after blocks are marked
3183 3184
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3185
	 */
3186
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3187 3188
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3209
	if (cur_distance <= new_distance)
3210 3211 3212 3213 3214 3215 3216 3217
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3218 3219 3220
/*
 * search goal blocks in preallocated space
 */
3221 3222
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3223
{
3224
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3225
	int order, i;
3226 3227
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3228 3229
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3230 3231 3232 3233 3234 3235 3236

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3237
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3238 3239 3240 3241

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3242 3243
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3244 3245
			continue;

3246
		/* non-extent files can't have physical blocks past 2^32 */
3247
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3248 3249
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3250 3251
			continue;

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3274 3275 3276 3277 3278
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3279
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3280 3281 3282 3283
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3284 3285 3286 3287 3288 3289 3290
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3291 3292 3293

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3294
			}
3295 3296
			spin_unlock(&pa->pa_lock);
		}
3297
		rcu_read_unlock();
3298
	}
3299 3300 3301 3302 3303
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3304 3305 3306
	return 0;
}

3307 3308 3309 3310
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3311
 * Need to be called with the ext4 group lock held
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
		entry = rb_entry(n, struct ext4_free_data, node);
3325
		ext4_set_bits(bitmap, entry->start_cluster, entry->count);
3326 3327 3328 3329 3330
		n = rb_next(n);
	}
	return;
}

3331 3332 3333
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3334
 * Need to be called with ext4 group lock held
3335
 */
3336 3337
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3366
		ext4_set_bits(bitmap, start, len);
3367 3368
		preallocated += len;
	}
3369
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3386
	ext4_group_t grp;
3387
	ext4_fsblk_t grp_blk;
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3402
	grp_blk = pa->pa_pstart;
3403
	/*
3404 3405 3406 3407
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3408 3409 3410
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3440 3441
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3442 3443
{
	struct super_block *sb = ac->ac_sb;
3444
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3476
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3477 3478 3479 3480

		/* the smallest one defines real window */
		win = min(winl, wins);

3481 3482
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3483 3484 3485
		if (offs && offs < win)
			win = offs;

3486 3487
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
			EXT4_B2C(sbi, win);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3502 3503
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3504
	pa->pa_deleted = 0;
3505
	pa->pa_type = MB_INODE_PA;
3506

3507
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3508
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3509
	trace_ext4_mb_new_inode_pa(ac, pa);
3510 3511

	ext4_mb_use_inode_pa(ac, pa);
3512
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3534 3535
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3562
	INIT_LIST_HEAD(&pa->pa_inode_list);
3563
	INIT_LIST_HEAD(&pa->pa_group_list);
3564
	pa->pa_deleted = 0;
3565
	pa->pa_type = MB_GROUP_PA;
3566

3567
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3568 3569
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3585 3586 3587 3588
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3611 3612
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3613
			struct ext4_prealloc_space *pa)
3614 3615 3616
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3617 3618
	unsigned int end;
	unsigned int next;
3619 3620
	ext4_group_t group;
	ext4_grpblk_t bit;
3621
	unsigned long long grp_blk_start;
3622 3623 3624 3625 3626
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3627
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3628 3629 3630 3631
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3632
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3633 3634
		if (bit >= end)
			break;
3635
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3636
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3637 3638
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3639 3640
		free += next - bit;

3641
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3642 3643
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3644
					       next - bit);
3645 3646 3647 3648
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3649 3650 3651 3652 3653
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3654
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3655
					free, pa->pa_free);
3656 3657 3658 3659
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3660 3661 3662 3663 3664 3665
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3666 3667
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3668
				struct ext4_prealloc_space *pa)
3669 3670 3671 3672 3673
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3674
	trace_ext4_mb_release_group_pa(sb, pa);
3675 3676 3677 3678 3679
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3680
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3694 3695
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3707
	mb_debug(1, "discard preallocation for group %u\n", group);
3708 3709 3710 3711

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3712
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3713
	if (bitmap_bh == NULL) {
3714
		ext4_error(sb, "Error reading block bitmap for %u", group);
3715
		return 0;
3716 3717 3718
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3719
	if (err) {
3720
		ext4_error(sb, "Error loading buddy information for %u", group);
3721 3722 3723
		put_bh(bitmap_bh);
		return 0;
	}
3724 3725

	if (needed == 0)
3726
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3782
		if (pa->pa_type == MB_GROUP_PA)
3783
			ext4_mb_release_group_pa(&e4b, pa);
3784
		else
3785
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3786 3787 3788 3789 3790 3791 3792

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3793
	ext4_mb_unload_buddy(&e4b);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3807
void ext4_discard_preallocations(struct inode *inode)
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3818
	if (!S_ISREG(inode->i_mode)) {
3819 3820 3821 3822
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3823
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3824
	trace_ext4_discard_preallocations(inode);
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3841 3842
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3878
		BUG_ON(pa->pa_type != MB_INODE_PA);
3879 3880 3881
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3882
		if (err) {
3883 3884
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3885 3886
			continue;
		}
3887

3888
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3889
		if (bitmap_bh == NULL) {
3890 3891
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3892
			ext4_mb_unload_buddy(&e4b);
3893
			continue;
3894 3895 3896 3897
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3898
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3899 3900
		ext4_unlock_group(sb, group);

3901
		ext4_mb_unload_buddy(&e4b);
3902 3903 3904 3905 3906 3907 3908
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3909
#ifdef CONFIG_EXT4_DEBUG
3910 3911 3912
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3913
	ext4_group_t ngroups, i;
3914

3915 3916
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3917 3918
		return;

3919 3920 3921
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: Can't allocate:"
			" Allocation context details:");
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: status %d flags %d",
3922
			ac->ac_status, ac->ac_flags);
3923 3924 3925
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
3939 3940 3941
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: %lu scanned, %d found",
		 ac->ac_ex_scanned, ac->ac_found);
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: groups: ");
3942 3943
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3956 3957
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3958
		}
3959
		ext4_unlock_group(sb, i);
3960 3961 3962

		if (grp->bb_free == 0)
			continue;
3963
		printk(KERN_ERR "%u: %d/%d \n",
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3980
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3991 3992 3993
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3994
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3995 3996
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3997

3998 3999 4000 4001 4002 4003 4004
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

4005 4006 4007 4008 4009
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

4010
	/* don't use group allocation for large files */
4011
	size = max(size, isize);
4012
	if (size > sbi->s_mb_stream_request) {
4013
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4014
		return;
4015
	}
4016 4017 4018 4019 4020 4021 4022

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
4023
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4024 4025 4026 4027 4028 4029 4030 4031

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

4032 4033
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4034 4035 4036 4037 4038 4039
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
4040 4041
	unsigned int len;
	ext4_fsblk_t goal;
4042 4043 4044 4045 4046 4047
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
4048 4049
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4050 4051 4052 4053 4054 4055 4056 4057 4058

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4059
	memset(ac, 0, sizeof(struct ext4_allocation_context));
4060
	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4061 4062 4063
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4064
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4065 4066 4067
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4068
	ac->ac_g_ex = ac->ac_o_ex;
4069 4070 4071 4072 4073 4074
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4075
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4096
	mb_debug(1, "discard locality group preallocation\n");
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4118
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4144 4145
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4146 4147 4148 4149
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4150
		ext4_mb_release_group_pa(&e4b, pa);
4151 4152
		ext4_unlock_group(sb, group);

4153
		ext4_mb_unload_buddy(&e4b);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4185
			spin_unlock(&tmp_pa->pa_lock);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4215 4216 4217 4218 4219
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4220
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4221 4222
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4223
		if (pa->pa_type == MB_GROUP_PA) {
4224
			/* see comment in ext4_mb_use_group_pa() */
4225
			spin_lock(&pa->pa_lock);
4226 4227
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4228 4229 4230
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4231 4232
		}
	}
A
Aneesh Kumar K.V 已提交
4233 4234 4235 4236 4237
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4238
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4239
		 */
4240
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4241 4242 4243 4244 4245 4246 4247
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4260
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4261 4262 4263
	int ret;
	int freed = 0;

4264
	trace_ext4_mb_discard_preallocations(sb, needed);
4265
	for (i = 0; i < ngroups && needed > 0; i++) {
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4280
				struct ext4_allocation_request *ar, int *errp)
4281
{
4282
	int freed;
4283
	struct ext4_allocation_context *ac = NULL;
4284 4285 4286
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4287
	unsigned int inquota = 0;
4288
	unsigned int reserv_clstrs = 0;
4289 4290 4291 4292

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4293
	trace_ext4_request_blocks(ar);
4294

4295 4296 4297 4298
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4299 4300 4301 4302 4303
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4304
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4305 4306 4307 4308 4309
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4310
		 */
4311
		while (ar->len &&
4312
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4313

A
Aneesh Kumar K.V 已提交
4314 4315 4316 4317 4318
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4319 4320 4321
			*errp = -ENOSPC;
			return 0;
		}
4322
		reserv_clstrs = ar->len;
4323
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4324 4325
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4326 4327
		} else {
			while (ar->len &&
4328 4329
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4330 4331 4332 4333

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4334 4335 4336 4337
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4338
			goto out;
4339
		}
4340
	}
4341

4342
	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4343
	if (!ac) {
4344
		ar->len = 0;
4345
		*errp = -ENOMEM;
4346
		goto out;
4347 4348 4349
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4350 4351
	if (*errp) {
		ar->len = 0;
4352
		goto out;
4353 4354
	}

4355 4356 4357 4358
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4359 4360
repeat:
		/* allocate space in core */
4361 4362 4363
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4364 4365 4366 4367

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4368 4369 4370
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4371
	}
4372
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4373
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4374
		if (*errp == -EAGAIN) {
4375 4376 4377 4378 4379
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4380 4381 4382 4383 4384
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4385 4386
		} else if (*errp)
		errout:
4387
			ext4_discard_allocated_blocks(ac);
4388
		else {
4389 4390 4391
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4392
	} else {
4393
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4394 4395 4396
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4397 4398 4399
	}

	if (*errp) {
4400
		ac->ac_b_ex.fe_len = 0;
4401
		ar->len = 0;
4402
		ext4_mb_show_ac(ac);
4403
	}
4404
	ext4_mb_release_context(ac);
4405 4406 4407
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4408
	if (inquota && ar->len < inquota)
4409
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4410
	if (!ar->len) {
4411 4412
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4413
			/* release all the reserved blocks if non delalloc */
4414
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4415
						reserv_clstrs);
4416
	}
4417

4418
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4419

4420 4421 4422
	return block;
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
	if ((entry1->t_tid == entry2->t_tid) &&
	    (entry1->group == entry2->group) &&
4433
	    ((entry1->start_cluster + entry1->count) == entry2->start_cluster))
4434 4435 4436 4437
		return 1;
	return 0;
}

4438 4439
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4440
		      struct ext4_free_data *new_entry)
4441
{
4442
	ext4_group_t group = e4b->bd_group;
4443
	ext4_grpblk_t cluster;
4444
	struct ext4_free_data *entry;
4445 4446 4447
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4448 4449 4450
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4451
	BUG_ON(!ext4_handle_valid(handle));
4452 4453 4454
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

4455
	new_node = &new_entry->node;
4456
	cluster = new_entry->start_cluster;
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
		entry = rb_entry(parent, struct ext4_free_data, node);
4470
		if (cluster < entry->start_cluster)
4471
			n = &(*n)->rb_left;
4472
		else if (cluster >= (entry->start_cluster + entry->count))
4473 4474
			n = &(*n)->rb_right;
		else {
4475
			ext4_grp_locked_error(sb, group, 0,
4476 4477
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4478
				"Block already on to-be-freed list");
4479
			return 0;
4480
		}
4481
	}
4482

4483 4484 4485 4486 4487 4488 4489 4490
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(entry, new_entry)) {
4491
			new_entry->start_cluster = entry->start_cluster;
4492 4493 4494 4495 4496 4497
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4498
		}
4499
	}
4500

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	node = rb_next(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(new_entry, entry)) {
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4511 4512
		}
	}
4513
	/* Add the extent to transaction's private list */
4514
	spin_lock(&sbi->s_md_lock);
4515
	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4516
	spin_unlock(&sbi->s_md_lock);
4517 4518 4519
	return 0;
}

4520 4521 4522 4523 4524 4525
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4526
 * @flags:		flags used by ext4_free_blocks
4527
 */
4528
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4529 4530
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4531
{
4532
	struct buffer_head *bitmap_bh = NULL;
4533 4534
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4535
	unsigned long freed = 0;
4536
	unsigned int overflow;
4537 4538 4539 4540 4541
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4542
	unsigned int count_clusters;
4543 4544 4545
	int err = 0;
	int ret;

4546 4547 4548 4549 4550 4551
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4552 4553

	sbi = EXT4_SB(sb);
4554 4555
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4556
		ext4_error(sb, "Freeing blocks not in datazone - "
4557
			   "block = %llu, count = %lu", block, count);
4558 4559 4560
		goto error_return;
	}

4561
	ext4_debug("freeing block %llu\n", block);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4574 4575
			if (unlikely(!tbh))
				continue;
4576
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4577 4578 4579 4580
				    inode, tbh, block + i);
		}
	}

4581
	/*
4582 4583 4584 4585 4586 4587 4588 4589
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4590

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
	overflow = block & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
	overflow = count & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4623 4624 4625 4626 4627 4628 4629 4630
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4631 4632 4633
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4634 4635
		count -= overflow;
	}
4636
	count_clusters = EXT4_B2C(sbi, count);
4637
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4638 4639
	if (!bitmap_bh) {
		err = -EIO;
4640
		goto error_return;
4641
	}
4642
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4643 4644
	if (!gdp) {
		err = -EIO;
4645
		goto error_return;
4646
	}
4647 4648 4649 4650

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4651
		     EXT4_SB(sb)->s_itb_per_group) ||
4652
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4653
		     EXT4_SB(sb)->s_itb_per_group)) {
4654

4655
		ext4_error(sb, "Freeing blocks in system zone - "
4656
			   "Block = %llu, count = %lu", block, count);
4657 4658
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4678
		for (i = 0; i < count_clusters; i++)
4679 4680 4681
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4682
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4683

4684 4685 4686
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4687 4688

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4689 4690 4691 4692 4693
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
4694 4695 4696 4697 4698
		new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
		if (!new_entry) {
			err = -ENOMEM;
			goto error_return;
		}
4699
		new_entry->start_cluster = bit;
4700
		new_entry->group  = block_group;
4701
		new_entry->count = count_clusters;
4702
		new_entry->t_tid = handle->h_transaction->t_tid;
4703

4704
		ext4_lock_group(sb, block_group);
4705
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4706
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4707
	} else {
4708 4709 4710 4711
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4712
		ext4_lock_group(sb, block_group);
4713 4714
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4715 4716
	}

4717 4718
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4719
	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4720
	ext4_unlock_group(sb, block_group);
4721
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4722

4723 4724
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4725 4726
		atomic_add(count_clusters,
			   &sbi->s_flex_groups[flex_group].free_clusters);
4727 4728
	}

4729
	ext4_mb_unload_buddy(&e4b);
4730

4731
	freed += count;
4732

4733 4734 4735
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));

4736 4737 4738 4739
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4740 4741
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4742
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4743 4744 4745 4746 4747 4748 4749 4750 4751
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
T
Theodore Ts'o 已提交
4752
	ext4_mark_super_dirty(sb);
4753 4754 4755 4756 4757
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4758

4759
/**
4760
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4761 4762 4763 4764 4765
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to add to the block group
 * @count:			number of blocks to free
 *
4766
 * This marks the blocks as free in the bitmap and buddy.
4767
 */
4768
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4769 4770 4771 4772 4773 4774 4775 4776 4777
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4778
	struct ext4_buddy e4b;
4779 4780 4781 4782 4783
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4784 4785 4786
	if (count == 0)
		return 0;

4787 4788 4789 4790 4791
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4792 4793 4794 4795
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		ext4_warning(sb, "too much blocks added to group %u\n",
			     block_group);
		err = -EINVAL;
4796
		goto error_return;
4797
	}
4798

4799
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4800 4801
	if (!bitmap_bh) {
		err = -EIO;
4802
		goto error_return;
4803 4804
	}

4805
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4806 4807
	if (!desc) {
		err = -EIO;
4808
		goto error_return;
4809
	}
4810 4811 4812 4813 4814 4815 4816 4817 4818

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4819
		err = -EINVAL;
4820 4821 4822
		goto error_return;
	}

4823 4824
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4837

4838 4839
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4840
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4841 4842 4843 4844 4845 4846 4847
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
4858
	ext4_lock_group(sb, block_group);
4859 4860
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
4861 4862
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4863 4864
	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
	ext4_unlock_group(sb, block_group);
4865 4866
	percpu_counter_add(&sbi->s_freeclusters_counter,
			   EXT4_B2C(sbi, blocks_freed));
4867 4868 4869

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4870 4871
		atomic_add(EXT4_B2C(sbi, blocks_freed),
			   &sbi->s_flex_groups[flex_group].free_clusters);
4872
	}
4873 4874

	ext4_mb_unload_buddy(&e4b);
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
4889
	return err;
4890 4891
}

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
4904 4905
static void ext4_trim_extent(struct super_block *sb, int start, int count,
			     ext4_group_t group, struct ext4_buddy *e4b)
4906 4907 4908
{
	struct ext4_free_extent ex;

T
Tao Ma 已提交
4909 4910
	trace_ext4_trim_extent(sb, group, start, count);

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
4923
	ext4_issue_discard(sb, group, start, count);
4924 4925 4926 4927 4928 4929 4930
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
4931
 * @group:		group to be trimmed
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4946
static ext4_grpblk_t
4947 4948 4949
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
4950 4951
{
	void *bitmap;
4952
	ext4_grpblk_t next, count = 0, free_count = 0;
4953 4954
	struct ext4_buddy e4b;
	int ret;
4955

T
Tao Ma 已提交
4956 4957
	trace_ext4_trim_all_free(sb, group, start, max);

4958 4959 4960 4961 4962 4963 4964
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
4965 4966

	ext4_lock_group(sb, group);
4967 4968 4969 4970
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

4971 4972
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
4973 4974 4975 4976 4977 4978 4979 4980

	while (start < max) {
		start = mb_find_next_zero_bit(bitmap, max, start);
		if (start >= max)
			break;
		next = mb_find_next_bit(bitmap, max, start);

		if ((next - start) >= minblocks) {
4981
			ext4_trim_extent(sb, start,
4982
					 next - start, group, &e4b);
4983 4984
			count += next - start;
		}
4985
		free_count += next - start;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

4999
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5000 5001
			break;
	}
5002 5003 5004 5005

	if (!ret)
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
out:
5006
	ext4_unlock_group(sb, group);
5007
	ext4_mb_unload_buddy(&e4b);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
5029
	struct ext4_group_info *grp;
5030 5031
	ext4_group_t first_group, last_group;
	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
5032
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5033
	uint64_t start, len, minlen, trimmed = 0;
5034 5035
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5036 5037 5038 5039 5040 5041
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
	len = range->len >> sb->s_blocksize_bits;
	minlen = range->minlen >> sb->s_blocksize_bits;

5042
	if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)))
5043
		return -EINVAL;
5044 5045
	if (start + len <= first_data_blk)
		goto out;
5046 5047 5048 5049
	if (start < first_data_blk) {
		len -= first_data_blk - start;
		start = first_data_blk;
	}
5050 5051 5052

	/* Determine first and last group to examine based on start and len */
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5053
				     &first_group, &first_cluster);
5054
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
5055
				     &last_group, &last_cluster);
5056
	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
5057
	last_cluster = EXT4_CLUSTERS_PER_GROUP(sb);
5058 5059 5060 5061 5062

	if (first_group > last_group)
		return -EINVAL;

	for (group = first_group; group <= last_group; group++) {
5063 5064 5065 5066 5067 5068
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
			ret = ext4_mb_init_group(sb, group);
			if (ret)
				break;
5069 5070
		}

5071 5072 5073 5074 5075 5076
		/*
		 * For all the groups except the last one, last block will
		 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
		 * change it for the last group in which case start +
		 * len < EXT4_BLOCKS_PER_GROUP(sb).
		 */
5077 5078 5079
		if (first_cluster + len < EXT4_CLUSTERS_PER_GROUP(sb))
			last_cluster = first_cluster + len;
		len -= last_cluster - first_cluster;
5080

5081
		if (grp->bb_free >= minlen) {
5082 5083
			cnt = ext4_trim_all_free(sb, group, first_cluster,
						last_cluster, minlen);
5084 5085 5086 5087 5088 5089
			if (cnt < 0) {
				ret = cnt;
				break;
			}
		}
		trimmed += cnt;
5090
		first_cluster = 0;
5091 5092 5093
	}
	range->len = trimmed * sb->s_blocksize;

5094 5095 5096
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5097
out:
5098 5099
	return ret;
}