mballoc.c 138.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

24
#include "mballoc.h"
25
#include <linux/debugfs.h>
26
#include <linux/slab.h>
27 28
#include <trace/events/ext4.h>

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
53 54 55 56 57 58 59 60 61
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
62 63
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
64
 * ensure that we have small files closer together on the disk.
65
 *
T
Theodore Ts'o 已提交
66 67 68 69
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
70 71 72
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
73 74
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
75 76 77
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
78 79
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
80 81 82 83 84 85 86
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
87
 * prealloc space. These are per CPU prealloc list represented as
88 89 90 91 92 93 94
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
95
 * enough free space (pa_free) within the prealloc space.
96 97 98 99 100 101 102 103 104 105 106 107
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
108
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
129 130
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
131
 * 512 blocks. This can be tuned via
132
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133 134
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
135 136
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
137
 *
138
 * The regular allocator (using the buddy cache) supports a few tunables.
139
 *
T
Theodore Ts'o 已提交
140 141 142
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
143
 *
T
Theodore Ts'o 已提交
144
 * The regular allocator uses buddy scan only if the request len is power of
145 146
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
147
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
148
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
149 150 151
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
152
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
153
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
154 155 156
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
157
 * can be used for allocation. ext4_mb_good_group explains how the groups are
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
340 341 342
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
static struct kmem_cache *ext4_free_ext_cachep;
343 344 345 346

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
347
#define NR_GRPINFO_CACHES 8
348 349
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

350 351 352 353 354 355
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

356 357
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
358 359
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
360 361
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);

362 363
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
364
#if BITS_PER_LONG == 64
365 366
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
367
#elif BITS_PER_LONG == 32
368 369
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
370 371 372
#else
#error "how many bits you are?!"
#endif
373 374
	return addr;
}
375 376 377 378 379 380 381

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
382
	addr = mb_correct_addr_and_bit(&bit, addr);
383 384 385 386 387
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
388
	addr = mb_correct_addr_and_bit(&bit, addr);
389 390 391 392 393
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
394
	addr = mb_correct_addr_and_bit(&bit, addr);
395 396 397
	ext4_clear_bit(bit, addr);
}

398 399
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
400
	int fix = 0, ret, tmpmax;
401
	addr = mb_correct_addr_and_bit(&fix, addr);
402
	tmpmax = max + fix;
403 404
	start += fix;

405 406 407 408
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
409 410 411 412
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
413
	int fix = 0, ret, tmpmax;
414
	addr = mb_correct_addr_and_bit(&fix, addr);
415
	tmpmax = max + fix;
416 417
	start += fix;

418 419 420 421
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
437 438
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
439
		return EXT4_MB_BITMAP(e4b);
C
Coly Li 已提交
440
	}
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
457
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
458 459 460
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
461 462

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
463
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
464
			ext4_grp_locked_error(sb, e4b->bd_group,
465 466 467 468 469
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
470 471 472 473 474 475 476 477 478 479 480
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
481
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
497 498 499 500 501
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

584
			/* both bits in buddy2 must be 1 */
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
626 627
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
628
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
629
		for (i = 0; i < pa->pa_len; i++)
630 631 632 633 634 635
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
636
					__FILE__, __func__, __LINE__)
637 638 639 640
#else
#define mb_check_buddy(e4b)
#endif

641 642 643 644 645 646
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
647
static void ext4_mb_mark_free_simple(struct super_block *sb,
648
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
649 650 651
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
652 653 654
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
655 656
	unsigned short border;

657
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

704 705
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
706 707 708
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
709
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
710 711 712
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
713 714 715 716 717 718
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
719
	i = mb_find_next_zero_bit(bitmap, max, 0);
720 721 722 723
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
724
		i = mb_find_next_bit(bitmap, max, i);
725 726 727 728 729 730 731
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
732
			i = mb_find_next_zero_bit(bitmap, max, i);
733 734 735 736
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
737
		ext4_grp_locked_error(sb, group, 0, 0,
738
				      "%u clusters in bitmap, %u in gd",
739
				      free, grp->bb_free);
740 741 742 743
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
744 745
		grp->bb_free = free;
	}
746
	mb_set_largest_free_order(sb, grp);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
764
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
765 766 767 768 769 770 771
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
772 773 774
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
775 776 777 778
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
779
	ext4_group_t ngroups;
780 781 782 783 784
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
785
	ext4_group_t first_group, group;
786 787 788 789 790 791 792
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
	struct buffer_head **bh;
	struct inode *inode;
	char *data;
	char *bitmap;
793
	struct ext4_group_info *grinfo;
794

795
	mb_debug(1, "init page %lu\n", page->index);
796 797 798

	inode = page->mapping->host;
	sb = inode->i_sb;
799
	ngroups = ext4_get_groups_count(sb);
800 801 802 803 804 805 806 807 808 809 810
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
811 812
		if (bh == NULL) {
			err = -ENOMEM;
813
			goto out;
814
		}
815 816 817 818 819 820
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
821 822
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (group >= ngroups)
823 824
			break;

825
		grinfo = ext4_get_group_info(sb, group);
826 827 828 829 830 831 832 833 834 835
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}
836 837
		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
			err = -ENOMEM;
838
			goto out;
839
		}
840
		mb_debug(1, "read bitmap for group %u\n", group);
841 842 843
	}

	/* wait for I/O completion */
844 845 846
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
			err = -EIO;
847
			goto out;
848 849
		}
	}
850 851 852 853 854 855

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;

		group = (first_block + i) >> 1;
856
		if (group >= ngroups)
857 858
			break;

859 860 861 862
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
879
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
880
				group, page->index, i * blocksize);
881
			trace_ext4_mb_buddy_bitmap_load(sb, group);
882 883 884
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
885 886
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
887 888 889
			/*
			 * incore got set to the group block bitmap below
			 */
890
			ext4_lock_group(sb, group);
891 892
			/* init the buddy */
			memset(data, 0xff, blocksize);
893
			ext4_mb_generate_buddy(sb, data, incore, group);
894
			ext4_unlock_group(sb, group);
895 896 897 898
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
899
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
900
				group, page->index, i * blocksize);
901
			trace_ext4_mb_bitmap_load(sb, group);
902 903 904 905 906 907 908

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
909
			ext4_mb_generate_from_freelist(sb, data, group);
910 911 912 913 914 915 916 917 918 919 920 921
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
922
		for (i = 0; i < groups_per_page; i++)
923 924 925 926 927 928 929
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

930
/*
931 932 933 934
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
935
 */
936 937
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
		ext4_group_t group, struct ext4_buddy *e4b)
938
{
939 940
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
941
	int blocks_per_page;
942 943 944 945
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
946 947 948 949 950 951 952 953 954

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
955 956 957 958 959 960 961 962 963 964 965
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
966
	}
967 968 969 970 971 972 973 974 975 976

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
977 978
}

979
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
980
{
981 982 983 984 985 986 987
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
		page_cache_release(e4b->bd_bitmap_page);
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
		page_cache_release(e4b->bd_buddy_page);
988 989 990
	}
}

991 992 993 994 995
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
996 997 998 999 1000
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	struct ext4_group_info *this_grp;
1001 1002 1003
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1004 1005 1006 1007

	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1008 1009 1010 1011
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1012
	 * would have pinned buddy page to page cache.
1013
	 */
1014 1015
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1016 1017 1018 1019 1020 1021
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1022 1023 1024 1025 1026 1027

	page = e4b.bd_bitmap_page;
	ret = ext4_mb_init_cache(page, NULL);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1028 1029 1030 1031 1032
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);

1033
	if (e4b.bd_buddy_page == NULL) {
1034 1035 1036 1037 1038
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1039 1040
		ret = 0;
		goto err;
1041
	}
1042 1043 1044 1045 1046 1047
	/* init buddy cache */
	page = e4b.bd_buddy_page;
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1048 1049 1050 1051 1052
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
1053
	ext4_mb_put_buddy_page_lock(&e4b);
1054 1055 1056
	return ret;
}

1057 1058 1059 1060 1061
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1062 1063 1064
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1065 1066 1067 1068 1069 1070
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1071
	int ret;
1072 1073 1074
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1075

1076
	mb_debug(1, "load group %u\n", group);
1077 1078

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1079
	grp = ext4_get_group_info(sb, group);
1080 1081

	e4b->bd_blkbits = sb->s_blocksize_bits;
1082
	e4b->bd_info = grp;
1083 1084 1085 1086 1087
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
	}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1112 1113 1114 1115 1116 1117 1118 1119
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1120 1121 1122 1123 1124
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1125 1126 1127 1128 1129
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1130 1131 1132 1133 1134 1135
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1136 1137
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1138
		goto err;
1139
	}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1155 1156 1157 1158 1159 1160 1161
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1162 1163 1164
			unlock_page(page);
		}
	}
1165 1166
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1167
		goto err;
1168
	}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1179 1180
	if (page)
		page_cache_release(page);
1181 1182 1183 1184 1185 1186
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1187
	return ret;
1188 1189
}

1190
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

	bb = EXT4_MB_BUDDY(e4b);
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1220
static void mb_clear_bits(void *bm, int cur, int len)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1233
		mb_clear_bit(cur, bm);
1234 1235 1236 1237
		cur++;
	}
}

1238
void ext4_set_bits(void *bm, int cur, int len)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1251
		mb_set_bit(cur, bm);
1252 1253 1254 1255
		cur++;
	}
}

1256
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1267
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
			ext4_fsblk_t blocknr;
1292 1293

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1294
			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1295
			ext4_grp_locked_error(sb, e4b->bd_group,
1296 1297 1298 1299
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		}
		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1336
	mb_set_largest_free_order(sb, e4b->bd_info);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	mb_check_buddy(e4b);
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	void *buddy;

1347
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
			break;

1386
		order = mb_find_order_for_block(e4b, next);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1410
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1463
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1464

1465
	ext4_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1495 1496 1497 1498 1499 1500 1501
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1502 1503 1504 1505 1506
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1507
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1529 1530
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1577 1578
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1628 1629
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1651
	ext4_mb_unload_buddy(e4b);
1652 1653 1654 1655

	return 0;
}

1656 1657
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1680 1681
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1706
	ext4_mb_unload_buddy(e4b);
1707 1708 1709 1710 1711 1712 1713 1714

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1715 1716
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1734
		k = mb_find_next_zero_bit(buddy, max, 0);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1759 1760
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1775
		i = mb_find_next_zero_bit(bitmap,
1776 1777
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1778
			/*
1779
			 * IF we have corrupt bitmap, we won't find any
1780 1781 1782
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1783
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1784
					"%d free clusters as per "
1785
					"group info. But bitmap says 0",
1786
					free);
1787 1788 1789 1790 1791
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
1792
		if (free < ex.fe_len) {
1793
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1794
					"%d free clusters as per "
1795
					"group info. But got %d blocks",
1796
					free, ex.fe_len);
1797 1798 1799 1800 1801 1802
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1803
		}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1816
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1817
 */
1818 1819
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1834 1835
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1836 1837 1838 1839
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

1840
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1854
/* This is now called BEFORE we load the buddy bitmap. */
1855 1856 1857 1858
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1859
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1860 1861 1862
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1863 1864 1865 1866 1867 1868 1869

	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1882 1883 1884
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1885 1886 1887 1888 1889 1890
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1891
		return 1;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

1909 1910
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1911
{
1912
	ext4_group_t ngroups, group, i;
1913 1914 1915 1916 1917 1918 1919 1920
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
1921
	ngroups = ext4_get_groups_count(sb);
1922
	/* non-extent files are limited to low blocks/groups */
1923
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1924 1925
		ngroups = sbi->s_blockfile_groups;

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
1946
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1947 1948 1949 1950 1951 1952 1953 1954 1955
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

1956 1957
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1958 1959 1960 1961 1962 1963
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
1974 1975 1976 1977 1978 1979
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

1980 1981
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
1982 1983
				group = 0;

1984 1985
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
1986 1987 1988 1989 1990 1991 1992
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
1993 1994 1995 1996 1997

			/*
			 * We need to check again after locking the
			 * block group
			 */
1998 1999
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2000
				ext4_mb_unload_buddy(&e4b);
2001 2002 2003 2004
				continue;
			}

			ac->ac_groups_scanned++;
2005
			if (cr == 0)
2006
				ext4_mb_simple_scan_group(ac, &e4b);
2007 2008
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2009 2010 2011 2012 2013
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2014
			ext4_mb_unload_buddy(&e4b);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2055
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2056 2057
		return NULL;
	group = *pos + 1;
2058
	return (void *) ((unsigned long) group);
2059 2060 2061 2062 2063 2064 2065 2066
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2067
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2068 2069
		return NULL;
	group = *pos + 1;
2070
	return (void *) ((unsigned long) group);
2071 2072 2073 2074 2075
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2076
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2077 2078 2079 2080 2081
	int i;
	int err;
	struct ext4_buddy e4b;
	struct sg {
		struct ext4_group_info info;
2082
		ext4_grpblk_t counters[16];
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
	err = ext4_mb_load_buddy(sb, group, &e4b);
	if (err) {
2098
		seq_printf(seq, "#%-5u: I/O error\n", group);
2099 2100 2101 2102 2103
		return 0;
	}
	ext4_lock_group(sb, group);
	memcpy(&sg, ext4_get_group_info(sb, group), i);
	ext4_unlock_group(sb, group);
2104
	ext4_mb_unload_buddy(&e4b);
2105

2106
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2120
static const struct seq_operations ext4_mb_seq_groups_ops = {
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2134
		struct seq_file *m = file->private_data;
2135 2136 2137 2138 2139 2140
		m->private = sb;
	}
	return rc;

}

2141
static const struct file_operations ext4_mb_seq_groups_fops = {
2142 2143 2144 2145 2146 2147 2148
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2149 2150 2151 2152 2153 2154 2155 2156
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2157 2158

/* Create and initialize ext4_group_info data for the given group. */
2159
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2160 2161
			  struct ext4_group_desc *desc)
{
2162
	int i;
2163 2164 2165
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2166
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
2178 2179
			ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate mem "
				 "for a buddy group");
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2190
	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2191
	if (meta_group_info[i] == NULL) {
2192
		ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate buddy mem");
2193 2194
		goto exit_group_info;
	}
2195
	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2196 2197 2198 2199 2200 2201 2202 2203 2204
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2205
			ext4_free_clusters_after_init(sb, group, desc);
2206 2207
	} else {
		meta_group_info[i]->bb_free =
2208
			ext4_free_group_clusters(sb, desc);
2209 2210 2211
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2212
	init_rwsem(&meta_group_info[i]->alloc_sem);
2213
	meta_group_info[i]->bb_free_root = RB_ROOT;
2214
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2234
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2235
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2236 2237
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2238 2239 2240 2241
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2242 2243
static int ext4_mb_init_backend(struct super_block *sb)
{
2244
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2245 2246
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2247 2248 2249 2250 2251
	struct ext4_super_block *es = sbi->s_es;
	int num_meta_group_infos;
	int num_meta_group_infos_max;
	int array_size;
	struct ext4_group_desc *desc;
2252
	struct kmem_cache *cachep;
2253 2254

	/* This is the number of blocks used by GDT */
2255
	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);

	/*
	 * This is the total number of blocks used by GDT including
	 * the number of reserved blocks for GDT.
	 * The s_group_info array is allocated with this value
	 * to allow a clean online resize without a complex
	 * manipulation of pointer.
	 * The drawback is the unused memory when no resize
	 * occurs but it's very low in terms of pages
	 * (see comments below)
	 * Need to handle this properly when META_BG resizing is allowed
	 */
	num_meta_group_infos_max = num_meta_group_infos +
				le16_to_cpu(es->s_reserved_gdt_blocks);
2271

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	/*
	 * array_size is the size of s_group_info array. We round it
	 * to the next power of two because this approximation is done
	 * internally by kmalloc so we can have some more memory
	 * for free here (e.g. may be used for META_BG resize).
	 */
	array_size = 1;
	while (array_size < sizeof(*sbi->s_group_info) *
	       num_meta_group_infos_max)
		array_size = array_size << 1;
2282 2283 2284
	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
2285
	sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2286
	if (sbi->s_group_info == NULL) {
2287
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2288 2289 2290 2291
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2292
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2293 2294
		goto err_freesgi;
	}
2295 2296 2297 2298 2299
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2300
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2301
	for (i = 0; i < ngroups; i++) {
2302 2303
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2304
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2305 2306
			goto err_freebuddy;
		}
2307 2308
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2309 2310 2311 2312 2313
	}

	return 0;

err_freebuddy:
2314
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2315
	while (i-- > 0)
2316
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2317
	i = num_meta_group_infos;
2318
	while (i-- > 0)
2319 2320 2321
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
2322
	ext4_kvfree(sbi->s_group_info);
2323 2324 2325
	return -ENOMEM;
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2364 2365
	ext4_groupinfo_caches[cache_index] = cachep;

2366 2367
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2368 2369
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2370 2371 2372 2373 2374 2375
		return -ENOMEM;
	}

	return 0;
}

2376 2377 2378
int ext4_mb_init(struct super_block *sb, int needs_recovery)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2379
	unsigned i, j;
2380 2381
	unsigned offset;
	unsigned max;
2382
	int ret;
2383

2384
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2385 2386 2387

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2388 2389
		ret = -ENOMEM;
		goto out;
2390
	}
2391

2392
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2393 2394
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2395 2396 2397 2398
		ret = -ENOMEM;
		goto out;
	}

2399 2400 2401
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2452

2453
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2454
	if (sbi->s_locality_groups == NULL) {
2455
		ret = -ENOMEM;
2456
		goto out_free_groupinfo_slab;
2457
	}
2458
	for_each_possible_cpu(i) {
2459
		struct ext4_locality_group *lg;
2460
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2461
		mutex_init(&lg->lg_mutex);
2462 2463
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2464 2465 2466
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2467 2468
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2469 2470
	if (ret != 0)
		goto out_free_locality_groups;
2471

2472 2473 2474
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2475

2476 2477
	if (sbi->s_journal)
		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2478 2479 2480 2481 2482 2483 2484 2485

	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
out_free_groupinfo_slab:
	ext4_groupinfo_destroy_slabs();
2486
out:
2487 2488 2489 2490
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2491
	return ret;
2492 2493
}

2494
/* need to called with the ext4 group lock held */
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2505
		kmem_cache_free(ext4_pspace_cachep, pa);
2506 2507
	}
	if (count)
2508
		mb_debug(1, "mballoc: %u PAs left\n", count);
2509 2510 2511 2512 2513

}

int ext4_mb_release(struct super_block *sb)
{
2514
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2515 2516 2517 2518
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2519
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2520 2521

	if (sbi->s_group_info) {
2522
		for (i = 0; i < ngroups; i++) {
2523 2524 2525 2526 2527 2528 2529
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2530
			kmem_cache_free(cachep, grinfo);
2531
		}
2532
		num_meta_group_infos = (ngroups +
2533 2534 2535 2536
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
2537
		ext4_kvfree(sbi->s_group_info);
2538 2539 2540 2541 2542 2543
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
2544 2545
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2546 2547 2548
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2549 2550 2551
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2552 2553 2554 2555 2556
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2557 2558
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2559
				sbi->s_mb_buddies_generated,
2560
				sbi->s_mb_generation_time);
2561 2562
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2563 2564 2565 2566
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2567
	free_percpu(sbi->s_locality_groups);
2568 2569
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);
2570 2571 2572 2573

	return 0;
}

2574
static inline int ext4_issue_discard(struct super_block *sb,
2575
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2576 2577 2578
{
	ext4_fsblk_t discard_block;

2579 2580 2581
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2582 2583
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2584
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2585 2586
}

2587 2588 2589 2590 2591
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2592
{
2593
	struct super_block *sb = journal->j_private;
2594
	struct ext4_buddy e4b;
2595
	struct ext4_group_info *db;
2596
	int err, count = 0, count2 = 0;
2597
	struct ext4_free_data *entry;
2598
	struct list_head *l, *ltmp;
2599

2600 2601
	list_for_each_safe(l, ltmp, &txn->t_private_list) {
		entry = list_entry(l, struct ext4_free_data, list);
2602

2603
		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2604
			 entry->count, entry->group, entry);
2605

2606 2607
		if (test_opt(sb, DISCARD))
			ext4_issue_discard(sb, entry->group,
2608
					   entry->start_cluster, entry->count);
2609

2610
		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2611 2612 2613
		/* we expect to find existing buddy because it's pinned */
		BUG_ON(err != 0);

2614
		db = e4b.bd_info;
2615
		/* there are blocks to put in buddy to make them really free */
2616
		count += entry->count;
2617
		count2++;
2618 2619 2620
		ext4_lock_group(sb, entry->group);
		/* Take it out of per group rb tree */
		rb_erase(&entry->node, &(db->bb_free_root));
2621
		mb_free_blocks(NULL, &e4b, entry->start_cluster, entry->count);
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631
		/*
		 * Clear the trimmed flag for the group so that the next
		 * ext4_trim_fs can trim it.
		 * If the volume is mounted with -o discard, online discard
		 * is supported and the free blocks will be trimmed online.
		 */
		if (!test_opt(sb, DISCARD))
			EXT4_MB_GRP_CLEAR_TRIMMED(db);

2632 2633 2634 2635 2636 2637
		if (!db->bb_free_root.rb_node) {
			/* No more items in the per group rb tree
			 * balance refcounts from ext4_mb_free_metadata()
			 */
			page_cache_release(e4b.bd_buddy_page);
			page_cache_release(e4b.bd_bitmap_page);
2638
		}
2639 2640
		ext4_unlock_group(sb, entry->group);
		kmem_cache_free(ext4_free_ext_cachep, entry);
2641
		ext4_mb_unload_buddy(&e4b);
2642
	}
2643

2644
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2645 2646
}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2681
int __init ext4_init_mballoc(void)
2682
{
2683 2684
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2685 2686 2687
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2688 2689
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2690 2691 2692 2693
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2694

2695 2696
	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
					  SLAB_RECLAIM_ACCOUNT);
2697 2698 2699 2700 2701
	if (ext4_free_ext_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2702
	ext4_create_debugfs_entry();
2703 2704 2705
	return 0;
}

2706
void ext4_exit_mballoc(void)
2707
{
2708
	/*
2709 2710 2711 2712
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2713
	kmem_cache_destroy(ext4_pspace_cachep);
2714
	kmem_cache_destroy(ext4_ac_cachep);
2715
	kmem_cache_destroy(ext4_free_ext_cachep);
2716
	ext4_groupinfo_destroy_slabs();
2717
	ext4_remove_debugfs_entry();
2718 2719 2720 2721
}


/*
2722
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2723 2724
 * Returns 0 if success or error code
 */
2725 2726
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2727
				handle_t *handle, unsigned int reserv_clstrs)
2728 2729 2730 2731 2732 2733 2734
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2735
	int err, len;
2736 2737 2738 2739 2740 2741 2742 2743

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2744
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2757
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2758
			ext4_free_group_clusters(sb, gdp));
2759

2760 2761 2762 2763
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2764
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2765

2766
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2767
	if (!ext4_data_block_valid(sbi, block, len)) {
2768
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2769
			   "fs metadata\n", block, block+len);
2770 2771 2772 2773
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2774
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2775 2776
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2777
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2778
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2779 2780 2781
		if (!err)
			err = -EAGAIN;
		goto out_err;
2782
	}
2783 2784

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2785 2786 2787 2788 2789 2790 2791 2792 2793
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2794 2795
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2796 2797
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2798
		ext4_free_group_clusters_set(sb, gdp,
2799
					     ext4_free_clusters_after_init(sb,
2800
						ac->ac_b_ex.fe_group, gdp));
2801
	}
2802 2803
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2804
	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2805 2806

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2807
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2808
	/*
2809
	 * Now reduce the dirty block count also. Should not go negative
2810
	 */
2811 2812
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2813 2814
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2815

2816 2817 2818
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2819
		atomic_sub(ac->ac_b_ex.fe_len,
2820
			   &sbi->s_flex_groups[flex_group].free_clusters);
2821 2822
	}

2823
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2824 2825
	if (err)
		goto out_err;
2826
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2827 2828

out_err:
T
Theodore Ts'o 已提交
2829
	ext4_mark_super_dirty(sb);
2830
	brelse(bitmap_bh);
2831 2832 2833 2834 2835
	return err;
}

/*
 * here we normalize request for locality group
2836 2837 2838
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
2839
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2840 2841 2842 2843 2844 2845 2846 2847 2848
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
2849
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2850
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2851 2852 2853 2854 2855 2856 2857
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2858 2859
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2860 2861
				struct ext4_allocation_request *ar)
{
2862
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2863 2864 2865
	int bsbits, max;
	ext4_lblk_t end;
	loff_t size, orig_size, start_off;
2866
	ext4_lblk_t start;
2867
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2868
	struct ext4_prealloc_space *pa;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
2893
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2894 2895 2896
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2897
	orig_size = size;
2898

2899 2900
	/* max size of free chunks */
	max = 2 << bsbits;
2901

2902 2903
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2922
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2923
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2924 2925 2926
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2927 2928 2929 2930
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2931
					(8<<20)>>bsbits, max, 8 * 1024)) {
2932 2933 2934 2935 2936 2937 2938
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2939 2940
	size = size >> bsbits;
	start = start_off >> bsbits;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
2954
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2955
		ext4_lblk_t pa_end;
2956 2957 2958 2959 2960 2961 2962 2963 2964

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

2965 2966
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
2967 2968 2969 2970 2971

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

2972 2973
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
2974 2975 2976 2977 2978
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

2979
		/* adjust start or end to be adjacent to this pa */
2980 2981 2982
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
2983
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
2994
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2995
		ext4_lblk_t pa_end;
2996

2997 2998
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
2999 3000
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3001 3002 3003 3004 3005 3006 3007 3008
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3009 3010 3011 3012
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3013 3014 3015
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3016
	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3017 3018 3019 3020 3021 3022

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3023
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3041
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3052
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3053 3054 3055 3056 3057 3058 3059 3060 3061
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3062 3063 3064 3065
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3066 3067
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;
	int len;

	if (pa && pa->pa_type == MB_INODE_PA) {
		len = ac->ac_b_ex.fe_len;
		pa->pa_free += len;
	}

}

3086 3087 3088 3089 3090 3091
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3092
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3093 3094 3095 3096 3097 3098
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3099 3100 3101
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3102 3103 3104 3105 3106 3107 3108
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3109
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3110 3111 3112
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3113
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3114 3115 3116 3117 3118 3119 3120 3121
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3122
	unsigned int len = ac->ac_o_ex.fe_len;
3123

3124 3125 3126 3127 3128 3129 3130 3131
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3132
	 * possible race when the group is being loaded concurrently
3133
	 * instead we correct pa later, after blocks are marked
3134 3135
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3136
	 */
3137
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3138 3139
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3160
	if (cur_distance <= new_distance)
3161 3162 3163 3164 3165 3166 3167 3168
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3169 3170 3171
/*
 * search goal blocks in preallocated space
 */
3172 3173
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3174
{
3175
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3176
	int order, i;
3177 3178
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3179 3180
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3181 3182 3183 3184 3185 3186 3187

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3188
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3189 3190 3191 3192

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3193 3194
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3195 3196
			continue;

3197
		/* non-extent files can't have physical blocks past 2^32 */
3198
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3199 3200
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3201 3202
			continue;

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3225 3226 3227 3228 3229
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3230
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3231 3232 3233 3234
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3235 3236 3237 3238 3239 3240 3241
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3242 3243 3244

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3245
			}
3246 3247
			spin_unlock(&pa->pa_lock);
		}
3248
		rcu_read_unlock();
3249
	}
3250 3251 3252 3253 3254
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3255 3256 3257
	return 0;
}

3258 3259 3260 3261
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3262
 * Need to be called with the ext4 group lock held
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
		entry = rb_entry(n, struct ext4_free_data, node);
3276
		ext4_set_bits(bitmap, entry->start_cluster, entry->count);
3277 3278 3279 3280 3281
		n = rb_next(n);
	}
	return;
}

3282 3283 3284
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3285
 * Need to be called with ext4 group lock held
3286
 */
3287 3288
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3317
		ext4_set_bits(bitmap, start, len);
3318 3319
		preallocated += len;
	}
3320
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3337
	ext4_group_t grp;
3338
	ext4_fsblk_t grp_blk;
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3353
	grp_blk = pa->pa_pstart;
3354
	/*
3355 3356 3357 3358
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3359 3360 3361
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3391 3392
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3393 3394
{
	struct super_block *sb = ac->ac_sb;
3395
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3427
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3428 3429 3430 3431

		/* the smallest one defines real window */
		win = min(winl, wins);

3432 3433
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3434 3435 3436
		if (offs && offs < win)
			win = offs;

3437 3438
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
			EXT4_B2C(sbi, win);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3453 3454
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3455
	pa->pa_deleted = 0;
3456
	pa->pa_type = MB_INODE_PA;
3457

3458
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3459
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3460
	trace_ext4_mb_new_inode_pa(ac, pa);
3461 3462

	ext4_mb_use_inode_pa(ac, pa);
3463
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3485 3486
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3513
	INIT_LIST_HEAD(&pa->pa_inode_list);
3514
	INIT_LIST_HEAD(&pa->pa_group_list);
3515
	pa->pa_deleted = 0;
3516
	pa->pa_type = MB_GROUP_PA;
3517

3518
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3519 3520
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3536 3537 3538 3539
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3562 3563
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3564
			struct ext4_prealloc_space *pa)
3565 3566 3567
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3568 3569
	unsigned int end;
	unsigned int next;
3570 3571
	ext4_group_t group;
	ext4_grpblk_t bit;
3572
	unsigned long long grp_blk_start;
3573 3574 3575 3576 3577
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3578
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3579 3580 3581 3582
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3583
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3584 3585
		if (bit >= end)
			break;
3586
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3587
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3588 3589
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3590 3591
		free += next - bit;

3592
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3593 3594
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3595
					       next - bit);
3596 3597 3598 3599
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3600 3601 3602 3603 3604
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3605
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3606
					free, pa->pa_free);
3607 3608 3609 3610
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3611 3612 3613 3614 3615 3616
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3617 3618
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3619
				struct ext4_prealloc_space *pa)
3620 3621 3622 3623 3624
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3625
	trace_ext4_mb_release_group_pa(sb, pa);
3626 3627 3628 3629 3630
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3631
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3645 3646
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3658
	mb_debug(1, "discard preallocation for group %u\n", group);
3659 3660 3661 3662

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3663
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3664
	if (bitmap_bh == NULL) {
3665
		ext4_error(sb, "Error reading block bitmap for %u", group);
3666
		return 0;
3667 3668 3669
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3670
	if (err) {
3671
		ext4_error(sb, "Error loading buddy information for %u", group);
3672 3673 3674
		put_bh(bitmap_bh);
		return 0;
	}
3675 3676

	if (needed == 0)
3677
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3733
		if (pa->pa_type == MB_GROUP_PA)
3734
			ext4_mb_release_group_pa(&e4b, pa);
3735
		else
3736
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3737 3738 3739 3740 3741 3742 3743

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3744
	ext4_mb_unload_buddy(&e4b);
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3758
void ext4_discard_preallocations(struct inode *inode)
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3769
	if (!S_ISREG(inode->i_mode)) {
3770 3771 3772 3773
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3774
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3775
	trace_ext4_discard_preallocations(inode);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3792 3793
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3829
		BUG_ON(pa->pa_type != MB_INODE_PA);
3830 3831 3832
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3833
		if (err) {
3834 3835
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3836 3837
			continue;
		}
3838

3839
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3840
		if (bitmap_bh == NULL) {
3841 3842
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3843
			ext4_mb_unload_buddy(&e4b);
3844
			continue;
3845 3846 3847 3848
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3849
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3850 3851
		ext4_unlock_group(sb, group);

3852
		ext4_mb_unload_buddy(&e4b);
3853 3854 3855 3856 3857 3858 3859
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3860
#ifdef CONFIG_EXT4_DEBUG
3861 3862 3863
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3864
	ext4_group_t ngroups, i;
3865

3866 3867
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3868 3869
		return;

3870 3871 3872
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: Can't allocate:"
			" Allocation context details:");
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: status %d flags %d",
3873
			ac->ac_status, ac->ac_flags);
3874 3875 3876
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
3890 3891 3892
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: %lu scanned, %d found",
		 ac->ac_ex_scanned, ac->ac_found);
	ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: groups: ");
3893 3894
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3907 3908
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3909
		}
3910
		ext4_unlock_group(sb, i);
3911 3912 3913

		if (grp->bb_free == 0)
			continue;
3914
		printk(KERN_ERR "%u: %d/%d \n",
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3931
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3942 3943 3944
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3945
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3946 3947
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3948

3949 3950 3951 3952 3953 3954 3955
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

3956 3957 3958 3959 3960
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

3961
	/* don't use group allocation for large files */
3962
	size = max(size, isize);
3963
	if (size > sbi->s_mb_stream_request) {
3964
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3965
		return;
3966
	}
3967 3968 3969 3970 3971 3972 3973

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
3974
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3975 3976 3977 3978 3979 3980 3981 3982

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

3983 3984
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3985 3986 3987 3988 3989 3990
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
3991 3992
	unsigned int len;
	ext4_fsblk_t goal;
3993 3994 3995 3996 3997 3998
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
3999 4000
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4001 4002 4003 4004 4005 4006 4007 4008 4009

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4010
	memset(ac, 0, sizeof(struct ext4_allocation_context));
4011
	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4012 4013 4014
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4015
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4016 4017 4018
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4019
	ac->ac_g_ex = ac->ac_o_ex;
4020 4021 4022 4023 4024 4025
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4026
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4047
	mb_debug(1, "discard locality group preallocation\n");
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4069
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4095 4096
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4097 4098 4099 4100
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4101
		ext4_mb_release_group_pa(&e4b, pa);
4102 4103
		ext4_unlock_group(sb, group);

4104
		ext4_mb_unload_buddy(&e4b);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4136
			spin_unlock(&tmp_pa->pa_lock);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4166 4167 4168 4169 4170
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4171
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4172 4173
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4174
		if (pa->pa_type == MB_GROUP_PA) {
4175
			/* see comment in ext4_mb_use_group_pa() */
4176
			spin_lock(&pa->pa_lock);
4177 4178
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 4180 4181
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4182 4183
		}
	}
A
Aneesh Kumar K.V 已提交
4184 4185 4186 4187 4188
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4189
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4190
		 */
4191
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4192 4193 4194 4195 4196 4197 4198
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4211
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4212 4213 4214
	int ret;
	int freed = 0;

4215
	trace_ext4_mb_discard_preallocations(sb, needed);
4216
	for (i = 0; i < ngroups && needed > 0; i++) {
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4231
				struct ext4_allocation_request *ar, int *errp)
4232
{
4233
	int freed;
4234
	struct ext4_allocation_context *ac = NULL;
4235 4236 4237
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4238
	unsigned int inquota = 0;
4239
	unsigned int reserv_clstrs = 0;
4240 4241 4242 4243

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4244
	trace_ext4_request_blocks(ar);
4245

4246 4247 4248 4249
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4250 4251 4252 4253 4254
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4255
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4256 4257 4258 4259 4260
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4261
		 */
4262
		while (ar->len &&
4263
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4264

A
Aneesh Kumar K.V 已提交
4265 4266 4267 4268 4269
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4270 4271 4272
			*errp = -ENOSPC;
			return 0;
		}
4273
		reserv_clstrs = ar->len;
4274
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4275 4276
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4277 4278
		} else {
			while (ar->len &&
4279 4280
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4281 4282 4283 4284

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4285 4286 4287 4288
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4289
			goto out;
4290
		}
4291
	}
4292

4293
	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4294
	if (!ac) {
4295
		ar->len = 0;
4296
		*errp = -ENOMEM;
4297
		goto out;
4298 4299 4300
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4301 4302
	if (*errp) {
		ar->len = 0;
4303
		goto out;
4304 4305
	}

4306 4307 4308 4309
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4310 4311
repeat:
		/* allocate space in core */
4312 4313 4314
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4315 4316 4317 4318

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4319 4320 4321
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4322
	}
4323
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4324
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4325
		if (*errp == -EAGAIN) {
4326 4327 4328 4329 4330
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4331 4332 4333 4334 4335
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4336 4337
		} else if (*errp)
		errout:
4338
			ext4_discard_allocated_blocks(ac);
4339
		else {
4340 4341 4342
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4343
	} else {
4344
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4345 4346 4347
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4348 4349 4350
	}

	if (*errp) {
4351
		ac->ac_b_ex.fe_len = 0;
4352
		ar->len = 0;
4353
		ext4_mb_show_ac(ac);
4354
	}
4355
	ext4_mb_release_context(ac);
4356 4357 4358
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4359
	if (inquota && ar->len < inquota)
4360
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4361
	if (!ar->len) {
4362 4363
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4364
			/* release all the reserved blocks if non delalloc */
4365
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4366
						reserv_clstrs);
4367
	}
4368

4369
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4370

4371 4372 4373
	return block;
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
	if ((entry1->t_tid == entry2->t_tid) &&
	    (entry1->group == entry2->group) &&
4384
	    ((entry1->start_cluster + entry1->count) == entry2->start_cluster))
4385 4386 4387 4388
		return 1;
	return 0;
}

4389 4390
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4391
		      struct ext4_free_data *new_entry)
4392
{
4393
	ext4_group_t group = e4b->bd_group;
4394
	ext4_grpblk_t cluster;
4395
	struct ext4_free_data *entry;
4396 4397 4398
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 4400 4401
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4402
	BUG_ON(!ext4_handle_valid(handle));
4403 4404 4405
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

4406
	new_node = &new_entry->node;
4407
	cluster = new_entry->start_cluster;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
		entry = rb_entry(parent, struct ext4_free_data, node);
4421
		if (cluster < entry->start_cluster)
4422
			n = &(*n)->rb_left;
4423
		else if (cluster >= (entry->start_cluster + entry->count))
4424 4425
			n = &(*n)->rb_right;
		else {
4426
			ext4_grp_locked_error(sb, group, 0,
4427 4428
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4429
				"Block already on to-be-freed list");
4430
			return 0;
4431
		}
4432
	}
4433

4434 4435 4436 4437 4438 4439 4440 4441
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(entry, new_entry)) {
4442
			new_entry->start_cluster = entry->start_cluster;
4443 4444 4445 4446 4447 4448
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4449
		}
4450
	}
4451

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	node = rb_next(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(new_entry, entry)) {
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4462 4463
		}
	}
4464
	/* Add the extent to transaction's private list */
4465
	spin_lock(&sbi->s_md_lock);
4466
	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4467
	spin_unlock(&sbi->s_md_lock);
4468 4469 4470
	return 0;
}

4471 4472 4473 4474 4475 4476
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4477
 * @flags:		flags used by ext4_free_blocks
4478
 */
4479
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4480 4481
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4482
{
4483
	struct buffer_head *bitmap_bh = NULL;
4484 4485
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4486
	unsigned long freed = 0;
4487
	unsigned int overflow;
4488 4489 4490 4491 4492
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4493
	unsigned int count_clusters;
4494 4495 4496
	int err = 0;
	int ret;

4497 4498 4499 4500 4501 4502
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4503 4504

	sbi = EXT4_SB(sb);
4505 4506
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4507
		ext4_error(sb, "Freeing blocks not in datazone - "
4508
			   "block = %llu, count = %lu", block, count);
4509 4510 4511
		goto error_return;
	}

4512
	ext4_debug("freeing block %llu\n", block);
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4525 4526
			if (unlikely(!tbh))
				continue;
4527
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4528 4529 4530 4531
				    inode, tbh, block + i);
		}
	}

4532
	/*
4533 4534 4535 4536 4537 4538 4539 4540
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
	overflow = block & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
	overflow = count & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4574 4575 4576 4577 4578 4579 4580 4581
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4582 4583 4584
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4585 4586
		count -= overflow;
	}
4587
	count_clusters = EXT4_B2C(sbi, count);
4588
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4589 4590
	if (!bitmap_bh) {
		err = -EIO;
4591
		goto error_return;
4592
	}
4593
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4594 4595
	if (!gdp) {
		err = -EIO;
4596
		goto error_return;
4597
	}
4598 4599 4600 4601

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4602
		     EXT4_SB(sb)->s_itb_per_group) ||
4603
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4604
		     EXT4_SB(sb)->s_itb_per_group)) {
4605

4606
		ext4_error(sb, "Freeing blocks in system zone - "
4607
			   "Block = %llu, count = %lu", block, count);
4608 4609
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4629
		for (i = 0; i < count_clusters; i++)
4630 4631 4632
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4633
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4634

4635 4636 4637
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4638 4639

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4640 4641 4642 4643 4644
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
4645 4646 4647 4648 4649
		new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
		if (!new_entry) {
			err = -ENOMEM;
			goto error_return;
		}
4650
		new_entry->start_cluster = bit;
4651
		new_entry->group  = block_group;
4652
		new_entry->count = count_clusters;
4653
		new_entry->t_tid = handle->h_transaction->t_tid;
4654

4655
		ext4_lock_group(sb, block_group);
4656
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4657
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4658
	} else {
4659 4660 4661 4662
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4663
		ext4_lock_group(sb, block_group);
4664 4665
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4666 4667
	}

4668 4669
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4670
	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4671
	ext4_unlock_group(sb, block_group);
4672
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4673

4674 4675
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4676 4677
		atomic_add(count_clusters,
			   &sbi->s_flex_groups[flex_group].free_clusters);
4678 4679
	}

4680
	ext4_mb_unload_buddy(&e4b);
4681

4682
	freed += count;
4683

4684 4685 4686
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));

4687 4688 4689 4690
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4691 4692
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4693
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4694 4695 4696 4697 4698 4699 4700 4701 4702
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
T
Theodore Ts'o 已提交
4703
	ext4_mark_super_dirty(sb);
4704 4705 4706 4707 4708
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4709

4710
/**
4711
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4712 4713 4714 4715 4716
 * @handle:			handle to this transaction
 * @sb:				super block
 * @block:			start physcial block to add to the block group
 * @count:			number of blocks to free
 *
4717
 * This marks the blocks as free in the bitmap and buddy.
4718
 */
4719
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4720 4721 4722 4723 4724 4725 4726 4727 4728
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4729
	struct ext4_buddy e4b;
4730 4731 4732 4733 4734
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4735 4736 4737
	if (count == 0)
		return 0;

4738 4739 4740 4741 4742
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4743 4744 4745 4746
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		ext4_warning(sb, "too much blocks added to group %u\n",
			     block_group);
		err = -EINVAL;
4747
		goto error_return;
4748
	}
4749

4750
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4751 4752
	if (!bitmap_bh) {
		err = -EIO;
4753
		goto error_return;
4754 4755
	}

4756
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4757 4758
	if (!desc) {
		err = -EIO;
4759
		goto error_return;
4760
	}
4761 4762 4763 4764 4765 4766 4767 4768 4769

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4770
		err = -EINVAL;
4771 4772 4773
		goto error_return;
	}

4774 4775
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4788

4789 4790
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4791
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4792 4793 4794 4795 4796 4797 4798
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
4809
	ext4_lock_group(sb, block_group);
4810 4811
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
4812 4813
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4814 4815
	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
	ext4_unlock_group(sb, block_group);
4816 4817
	percpu_counter_add(&sbi->s_freeclusters_counter,
			   EXT4_B2C(sbi, blocks_freed));
4818 4819 4820

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4821 4822
		atomic_add(EXT4_B2C(sbi, blocks_freed),
			   &sbi->s_flex_groups[flex_group].free_clusters);
4823
	}
4824 4825

	ext4_mb_unload_buddy(&e4b);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
4840
	return err;
4841 4842
}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
4855 4856
static void ext4_trim_extent(struct super_block *sb, int start, int count,
			     ext4_group_t group, struct ext4_buddy *e4b)
4857 4858 4859
{
	struct ext4_free_extent ex;

T
Tao Ma 已提交
4860 4861
	trace_ext4_trim_extent(sb, group, start, count);

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
4874
	ext4_issue_discard(sb, group, start, count);
4875 4876 4877 4878 4879 4880 4881
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
4882
 * @group:		group to be trimmed
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4897
static ext4_grpblk_t
4898 4899 4900
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
4901 4902
{
	void *bitmap;
4903
	ext4_grpblk_t next, count = 0, free_count = 0;
4904 4905
	struct ext4_buddy e4b;
	int ret;
4906

T
Tao Ma 已提交
4907 4908
	trace_ext4_trim_all_free(sb, group, start, max);

4909 4910 4911 4912 4913 4914 4915
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
4916 4917

	ext4_lock_group(sb, group);
4918 4919 4920 4921
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

4922 4923
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
4924 4925 4926 4927 4928 4929 4930 4931

	while (start < max) {
		start = mb_find_next_zero_bit(bitmap, max, start);
		if (start >= max)
			break;
		next = mb_find_next_bit(bitmap, max, start);

		if ((next - start) >= minblocks) {
4932
			ext4_trim_extent(sb, start,
4933
					 next - start, group, &e4b);
4934 4935
			count += next - start;
		}
4936
		free_count += next - start;
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

4950
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4951 4952
			break;
	}
4953 4954 4955 4956

	if (!ret)
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
out:
4957
	ext4_unlock_group(sb, group);
4958
	ext4_mb_unload_buddy(&e4b);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
4980
	struct ext4_group_info *grp;
4981 4982
	ext4_group_t first_group, last_group;
	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4983
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4984
	uint64_t start, len, minlen, trimmed = 0;
4985 4986
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4987 4988 4989 4990 4991 4992
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
	len = range->len >> sb->s_blocksize_bits;
	minlen = range->minlen >> sb->s_blocksize_bits;

4993
	if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)))
4994
		return -EINVAL;
4995 4996
	if (start + len <= first_data_blk)
		goto out;
4997 4998 4999 5000
	if (start < first_data_blk) {
		len -= first_data_blk - start;
		start = first_data_blk;
	}
5001 5002 5003

	/* Determine first and last group to examine based on start and len */
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5004
				     &first_group, &first_cluster);
5005
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
5006
				     &last_group, &last_cluster);
5007
	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
5008
	last_cluster = EXT4_CLUSTERS_PER_GROUP(sb);
5009 5010 5011 5012 5013

	if (first_group > last_group)
		return -EINVAL;

	for (group = first_group; group <= last_group; group++) {
5014 5015 5016 5017 5018 5019
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
			ret = ext4_mb_init_group(sb, group);
			if (ret)
				break;
5020 5021
		}

5022 5023 5024 5025 5026 5027
		/*
		 * For all the groups except the last one, last block will
		 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
		 * change it for the last group in which case start +
		 * len < EXT4_BLOCKS_PER_GROUP(sb).
		 */
5028 5029 5030
		if (first_cluster + len < EXT4_CLUSTERS_PER_GROUP(sb))
			last_cluster = first_cluster + len;
		len -= last_cluster - first_cluster;
5031

5032
		if (grp->bb_free >= minlen) {
5033 5034
			cnt = ext4_trim_all_free(sb, group, first_cluster,
						last_cluster, minlen);
5035 5036 5037 5038 5039 5040
			if (cnt < 0) {
				ret = cnt;
				break;
			}
		}
		trimmed += cnt;
5041
		first_cluster = 0;
5042 5043 5044
	}
	range->len = trimmed * sb->s_blocksize;

5045 5046 5047
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5048
out:
5049 5050
	return ret;
}