mballoc.c 138.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

B
Bobi Jam 已提交
24
#include "ext4_jbd2.h"
25
#include "mballoc.h"
26
#include <linux/debugfs.h>
27
#include <linux/log2.h>
28
#include <linux/slab.h>
29 30
#include <trace/events/ext4.h>

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
55 56 57 58 59 60 61 62 63
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
64 65
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
66
 * ensure that we have small files closer together on the disk.
67
 *
T
Theodore Ts'o 已提交
68 69 70 71
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
72 73 74
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
75 76
 * pa_len    -> length for this prealloc space (in clusters)
 * pa_free   ->  free space available in this prealloc space (in clusters)
77 78 79
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
80 81
 * space we will consume the particular prealloc space. This makes sure that
 * we have contiguous physical blocks representing the file blocks
82 83 84 85 86 87 88
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
89
 * prealloc space. These are per CPU prealloc list represented as
90 91 92 93 94 95 96
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
L
Lucas De Marchi 已提交
97
 * enough free space (pa_free) within the prealloc space.
98 99 100 101 102 103 104 105 106 107 108 109
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
110
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
131 132
 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 * dependent on the cluster size; for non-bigalloc file systems, it is
133
 * 512 blocks. This can be tuned via
134
 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
135 136
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
137 138
 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 * greater than the default mb_group_prealloc.
139
 *
140
 * The regular allocator (using the buddy cache) supports a few tunables.
141
 *
T
Theodore Ts'o 已提交
142 143 144
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
145
 *
T
Theodore Ts'o 已提交
146
 * The regular allocator uses buddy scan only if the request len is power of
147 148
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
149
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
150
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
151 152 153
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
154
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
155
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
156 157 158
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
159
 * can be used for allocation. ext4_mb_good_group explains how the groups are
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
342 343
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
B
Bobi Jam 已提交
344
static struct kmem_cache *ext4_free_data_cachep;
345 346 347 348

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
349
#define NR_GRPINFO_CACHES 8
350 351
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

352 353 354 355 356 357
static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
};

358 359
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
360 361
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
B
Bobi Jam 已提交
362 363
static void ext4_free_data_callback(struct super_block *sb,
				struct ext4_journal_cb_entry *jce, int rc);
364

365 366
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
367
#if BITS_PER_LONG == 64
368 369
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
370
#elif BITS_PER_LONG == 32
371 372
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
373 374 375
#else
#error "how many bits you are?!"
#endif
376 377
	return addr;
}
378 379 380 381 382 383 384

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
385
	addr = mb_correct_addr_and_bit(&bit, addr);
386 387 388 389 390
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
391
	addr = mb_correct_addr_and_bit(&bit, addr);
392 393 394 395 396
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
397
	addr = mb_correct_addr_and_bit(&bit, addr);
398 399 400
	ext4_clear_bit(bit, addr);
}

401 402
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
403
	int fix = 0, ret, tmpmax;
404
	addr = mb_correct_addr_and_bit(&fix, addr);
405
	tmpmax = max + fix;
406 407
	start += fix;

408 409 410 411
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
412 413 414 415
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
416
	int fix = 0, ret, tmpmax;
417
	addr = mb_correct_addr_and_bit(&fix, addr);
418
	tmpmax = max + fix;
419 420
	start += fix;

421 422 423 424
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
425 426
}

427 428 429 430
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

431
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 433 434 435 436 437 438 439
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
C
Coly Li 已提交
440 441
	if (order == 0) {
		*max = 1 << (e4b->bd_blkbits + 3);
442
		return e4b->bd_bitmap;
C
Coly Li 已提交
443
	}
444

445
	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 447 448 449 450 451 452 453 454 455 456 457 458 459
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
460
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 462 463
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
464 465

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466
			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467
			ext4_grp_locked_error(sb, e4b->bd_group,
468 469 470 471 472
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
473 474 475 476 477 478 479 480 481 482 483
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
484
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
500 501 502 503 504
				ext4_msg(e4b->bd_sb, KERN_ERR,
					 "corruption in group %u "
					 "at byte %u(%u): %x in copy != %x "
					 "on disk/prealloc",
					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

587
			/* both bits in buddy2 must be 1 */
588 589 590 591 592 593
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
594
					!mb_test_bit(k, e4b->bd_bitmap));
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
629 630
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
631
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
632
		for (i = 0; i < pa->pa_len; i++)
633 634 635 636 637 638
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
639
					__FILE__, __func__, __LINE__)
640 641 642 643
#else
#define mb_check_buddy(e4b)
#endif

644 645 646 647 648 649
/*
 * Divide blocks started from @first with length @len into
 * smaller chunks with power of 2 blocks.
 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 * then increase bb_counters[] for corresponded chunk size.
 */
650
static void ext4_mb_mark_free_simple(struct super_block *sb,
651
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
652 653 654
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
655 656 657
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
658 659
	unsigned short border;

660
	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

707 708
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
709 710 711
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
712
	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
713 714 715
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
716 717 718 719 720 721
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
722
	i = mb_find_next_zero_bit(bitmap, max, 0);
723 724 725 726
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
727
		i = mb_find_next_bit(bitmap, max, i);
728 729 730 731 732 733 734
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
735
			i = mb_find_next_zero_bit(bitmap, max, i);
736 737 738 739
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
740
		ext4_grp_locked_error(sb, group, 0, 0,
741
				      "%u clusters in bitmap, %u in gd",
742
				      free, grp->bb_free);
743 744 745 746
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
747 748
		grp->bb_free = free;
	}
749
	mb_set_largest_free_order(sb, grp);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
767
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
768 769 770 771 772 773 774
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
775 776 777
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
778 779 780 781
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
782
	ext4_group_t ngroups;
783 784 785 786 787
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
788
	ext4_group_t first_group, group;
789 790 791
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
792
	struct buffer_head **bh = NULL;
793 794 795
	struct inode *inode;
	char *data;
	char *bitmap;
796
	struct ext4_group_info *grinfo;
797

798
	mb_debug(1, "init page %lu\n", page->index);
799 800 801

	inode = page->mapping->host;
	sb = inode->i_sb;
802
	ngroups = ext4_get_groups_count(sb);
803 804 805 806 807 808 809 810 811 812 813
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
814 815
		if (bh == NULL) {
			err = -ENOMEM;
816
			goto out;
817
		}
818 819 820 821 822 823
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
824 825
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (group >= ngroups)
826 827
			break;

828
		grinfo = ext4_get_group_info(sb, group);
829 830 831 832 833 834 835 836 837 838
		/*
		 * If page is uptodate then we came here after online resize
		 * which added some new uninitialized group info structs, so
		 * we must skip all initialized uptodate buddies on the page,
		 * which may be currently in use by an allocating task.
		 */
		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
			bh[i] = NULL;
			continue;
		}
839 840
		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
			err = -ENOMEM;
841
			goto out;
842
		}
843
		mb_debug(1, "read bitmap for group %u\n", group);
844 845 846
	}

	/* wait for I/O completion */
847 848 849
	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
			err = -EIO;
850
			goto out;
851 852
		}
	}
853 854 855 856 857 858

	first_block = page->index * blocks_per_page;
	for (i = 0; i < blocks_per_page; i++) {
		int group;

		group = (first_block + i) >> 1;
859
		if (group >= ngroups)
860 861
			break;

862 863 864 865
		if (!bh[group - first_group])
			/* skip initialized uptodate buddy */
			continue;

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
882
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
883
				group, page->index, i * blocksize);
884
			trace_ext4_mb_buddy_bitmap_load(sb, group);
885 886 887
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
888 889
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
890 891 892
			/*
			 * incore got set to the group block bitmap below
			 */
893
			ext4_lock_group(sb, group);
894 895
			/* init the buddy */
			memset(data, 0xff, blocksize);
896
			ext4_mb_generate_buddy(sb, data, incore, group);
897
			ext4_unlock_group(sb, group);
898 899 900 901
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
902
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
903
				group, page->index, i * blocksize);
904
			trace_ext4_mb_bitmap_load(sb, group);
905 906 907 908 909 910 911

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
912
			ext4_mb_generate_from_freelist(sb, data, group);
913 914 915 916 917 918 919 920 921 922 923 924
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
925
		for (i = 0; i < groups_per_page; i++)
926 927 928 929 930 931 932
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

933
/*
934 935 936 937
 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 * on the same buddy page doesn't happen whild holding the buddy page lock.
 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
938
 */
939 940
static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
		ext4_group_t group, struct ext4_buddy *e4b)
941
{
942 943
	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
	int block, pnum, poff;
944
	int blocks_per_page;
945 946 947 948
	struct page *page;

	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
949 950 951 952 953 954 955 956 957

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
958 959 960 961 962 963 964 965 966 967 968
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);

	if (blocks_per_page >= 2) {
		/* buddy and bitmap are on the same page */
		return 0;
969
	}
970 971 972 973 974 975 976 977 978

	block++;
	pnum = block / blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (!page)
		return -EIO;
	BUG_ON(page->mapping != inode->i_mapping);
	e4b->bd_buddy_page = page;
	return 0;
979 980
}

981
static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982
{
983 984 985 986 987 988 989
	if (e4b->bd_bitmap_page) {
		unlock_page(e4b->bd_bitmap_page);
		page_cache_release(e4b->bd_bitmap_page);
	}
	if (e4b->bd_buddy_page) {
		unlock_page(e4b->bd_buddy_page);
		page_cache_release(e4b->bd_buddy_page);
990 991 992
	}
}

993 994 995 996 997
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
998 999 1000 1001 1002
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	struct ext4_group_info *this_grp;
1003 1004 1005
	struct ext4_buddy e4b;
	struct page *page;
	int ret = 0;
1006 1007 1008 1009

	mb_debug(1, "init group %u\n", group);
	this_grp = ext4_get_group_info(sb, group);
	/*
1010 1011 1012 1013
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
1014
	 * would have pinned buddy page to page cache.
1015
	 */
1016 1017
	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 1019 1020 1021 1022 1023
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		goto err;
	}
1024 1025 1026 1027 1028 1029

	page = e4b.bd_bitmap_page;
	ret = ext4_mb_init_cache(page, NULL);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1030 1031 1032 1033 1034
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);

1035
	if (e4b.bd_buddy_page == NULL) {
1036 1037 1038 1039 1040
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
1041 1042
		ret = 0;
		goto err;
1043
	}
1044 1045 1046 1047 1048 1049
	/* init buddy cache */
	page = e4b.bd_buddy_page;
	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
	if (ret)
		goto err;
	if (!PageUptodate(page)) {
1050 1051 1052 1053 1054
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
1055
	ext4_mb_put_buddy_page_lock(&e4b);
1056 1057 1058
	return ret;
}

1059 1060 1061 1062 1063
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1064 1065 1066
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1067 1068 1069 1070 1071 1072
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1073
	int ret;
1074 1075 1076
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1077

1078
	mb_debug(1, "load group %u\n", group);
1079 1080

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081
	grp = ext4_get_group_info(sb, group);
1082 1083

	e4b->bd_blkbits = sb->s_blocksize_bits;
1084
	e4b->bd_info = grp;
1085 1086 1087 1088 1089
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
	}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1114 1115 1116 1117 1118 1119 1120 1121
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1122 1123 1124 1125 1126
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1127 1128 1129 1130 1131
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1132 1133 1134 1135 1136 1137
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1138 1139
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1140
		goto err;
1141
	}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1157 1158 1159 1160 1161 1162 1163
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1164 1165 1166
			unlock_page(page);
		}
	}
1167 1168
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1169
		goto err;
1170
	}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
1181 1182
	if (page)
		page_cache_release(page);
1183 1184 1185 1186 1187 1188
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1189
	return ret;
1190 1191
}

1192
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

1206
	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 1208
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

1209
	bb = e4b->bd_buddy;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1222
static void mb_clear_bits(void *bm, int cur, int len)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1235
		mb_clear_bit(cur, bm);
1236 1237 1238 1239
		cur++;
	}
}

1240
void ext4_set_bits(void *bm, int cur, int len)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1253
		mb_set_bit(cur, bm);
1254 1255 1256 1257
		cur++;
	}
}

1258
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1269
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 1271 1272 1273 1274 1275 1276 1277 1278
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
1279
		block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281
		max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

1292
		if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293
			ext4_fsblk_t blocknr;
1294 1295

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296
			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297
			ext4_grp_locked_error(sb, e4b->bd_group,
1298 1299 1300 1301
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1302
		}
1303
		mb_clear_bit(block, e4b->bd_bitmap);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1338
	mb_set_largest_free_order(sb, e4b->bd_info);
1339 1340 1341
	mb_check_buddy(e4b);
}

1342
static int mb_find_extent(struct ext4_buddy *e4b, int block,
1343 1344 1345
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
1346
	int max, order;
1347 1348
	void *buddy;

1349
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 1351
	BUG_ON(ex == NULL);

1352
	buddy = mb_find_buddy(e4b, 0, &max);
1353 1354 1355 1356 1357 1358 1359 1360 1361
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

1362 1363 1364
	/* find actual order */
	order = mb_find_order_for_block(e4b, block);
	block = block >> order;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
A
Alan Cox 已提交
1376
	       mb_find_buddy(e4b, order, &max)) {
1377 1378 1379 1380 1381

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
1382
		if (mb_test_bit(next, e4b->bd_bitmap))
1383 1384
			break;

1385
		order = mb_find_order_for_block(e4b, next);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1409
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1410 1411 1412 1413 1414 1415 1416 1417 1418
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
1419
		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1420
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1421
		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1462
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1463

1464
	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1494 1495 1496 1497 1498 1499 1500
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1501 1502 1503 1504 1505
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
	/* store last allocated for subsequent stream allocation */
1506
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1528 1529
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
1550
		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1576 1577
	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1627 1628
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
1642
	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1643 1644 1645 1646 1647 1648 1649

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1650
	ext4_mb_unload_buddy(e4b);
1651 1652 1653 1654

	return 0;
}

1655 1656
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1657 1658 1659 1660 1661 1662
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1663
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1664 1665 1666 1667
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;
1668 1669
	if (grp->bb_free == 0)
		return 0;
1670 1671 1672 1673 1674 1675

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
1676
	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1677 1678 1679 1680 1681
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1682 1683
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1708
	ext4_mb_unload_buddy(e4b);
1709 1710 1711 1712 1713 1714 1715 1716

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1717 1718
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1736
		k = mb_find_next_zero_bit(buddy, max, 0);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1761 1762
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 1764 1765
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
1766
	void *bitmap = e4b->bd_bitmap;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777
		i = mb_find_next_zero_bit(bitmap,
1778 1779
						EXT4_CLUSTERS_PER_GROUP(sb), i);
		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780
			/*
1781
			 * IF we have corrupt bitmap, we won't find any
1782 1783 1784
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1785
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786
					"%d free clusters as per "
1787
					"group info. But bitmap says 0",
1788
					free);
1789 1790 1791
			break;
		}

1792
		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1793
		BUG_ON(ex.fe_len <= 0);
1794
		if (free < ex.fe_len) {
1795
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796
					"%d free clusters as per "
1797
					"group info. But got %d blocks",
1798
					free, ex.fe_len);
1799 1800 1801 1802 1803 1804
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1805
		}
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1818
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819
 */
1820 1821
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 1823 1824 1825
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
1826
	void *bitmap = e4b->bd_bitmap;
1827 1828 1829 1830 1831 1832 1833 1834 1835
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1836 1837
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1838 1839 1840 1841
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

1842
	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843
		if (!mb_test_bit(i, bitmap)) {
1844
			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1856
/* This is now called BEFORE we load the buddy bitmap. */
1857 1858 1859 1860
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1861
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 1863 1864
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1865

1866 1867 1868 1869 1870 1871
	free = grp->bb_free;
	if (free == 0)
		return 0;
	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
		return 0;

1872 1873 1874 1875 1876 1877
	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886

	fragments = grp->bb_fragments;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1887 1888 1889 1890 1891 1892
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1893 1894 1895 1896 1897 1898 1899
		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
		    (free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;

		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1900
		return 1;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

1918 1919
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1920
{
1921
	ext4_group_t ngroups, group, i;
1922 1923 1924 1925 1926 1927 1928 1929
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
1930
	ngroups = ext4_get_groups_count(sb);
1931
	/* non-extent files are limited to low blocks/groups */
1932
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1933 1934
		ngroups = sbi->s_blockfile_groups;

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
1955
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1956 1957 1958 1959 1960 1961 1962 1963 1964
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

1965 1966
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1967 1968 1969 1970 1971 1972
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
1983 1984 1985 1986 1987 1988
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

1989 1990
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
1991 1992
				group = 0;

1993 1994
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
1995 1996 1997 1998 1999 2000 2001
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
2002 2003 2004 2005 2006

			/*
			 * We need to check again after locking the
			 * block group
			 */
2007 2008
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2009
				ext4_mb_unload_buddy(&e4b);
2010 2011 2012 2013
				continue;
			}

			ac->ac_groups_scanned++;
2014
			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2015
				ext4_mb_simple_scan_group(ac, &e4b);
2016 2017
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2018 2019 2020 2021 2022
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2023
			ext4_mb_unload_buddy(&e4b);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2064
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2065 2066
		return NULL;
	group = *pos + 1;
2067
	return (void *) ((unsigned long) group);
2068 2069 2070 2071 2072 2073 2074 2075
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2076
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2077 2078
		return NULL;
	group = *pos + 1;
2079
	return (void *) ((unsigned long) group);
2080 2081 2082 2083 2084
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2085
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2086
	int i;
2087
	int err, buddy_loaded = 0;
2088
	struct ext4_buddy e4b;
2089
	struct ext4_group_info *grinfo;
2090 2091
	struct sg {
		struct ext4_group_info info;
2092
		ext4_grpblk_t counters[16];
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
2106 2107 2108 2109 2110 2111 2112 2113 2114
	grinfo = ext4_get_group_info(sb, group);
	/* Load the group info in memory only if not already loaded. */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
		err = ext4_mb_load_buddy(sb, group, &e4b);
		if (err) {
			seq_printf(seq, "#%-5u: I/O error\n", group);
			return 0;
		}
		buddy_loaded = 1;
2115
	}
2116

2117
	memcpy(&sg, ext4_get_group_info(sb, group), i);
2118 2119 2120

	if (buddy_loaded)
		ext4_mb_unload_buddy(&e4b);
2121

2122
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2136
static const struct seq_operations ext4_mb_seq_groups_ops = {
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2150
		struct seq_file *m = file->private_data;
2151 2152 2153 2154 2155 2156
		m->private = sb;
	}
	return rc;

}

2157
static const struct file_operations ext4_mb_seq_groups_fops = {
2158 2159 2160 2161 2162 2163 2164
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2165 2166 2167 2168 2169 2170 2171 2172
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/*
 * Allocate the top-level s_group_info array for the specified number
 * of groups
 */
int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned size;
	struct ext4_group_info ***new_groupinfo;

	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
		EXT4_DESC_PER_BLOCK_BITS(sb);
	if (size <= sbi->s_group_info_size)
		return 0;

	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
	if (!new_groupinfo) {
		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
		return -ENOMEM;
	}
	if (sbi->s_group_info) {
		memcpy(new_groupinfo, sbi->s_group_info,
		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
		ext4_kvfree(sbi->s_group_info);
	}
	sbi->s_group_info = new_groupinfo;
	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
		   sbi->s_group_info_size);
	return 0;
}

2207
/* Create and initialize ext4_group_info data for the given group. */
2208
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2209 2210
			  struct ext4_group_desc *desc)
{
2211
	int i;
2212 2213 2214
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2215
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
2227
			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2228
				 "for a buddy group");
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2239
	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2240
	if (meta_group_info[i] == NULL) {
2241
		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		goto exit_group_info;
	}
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
2253
			ext4_free_clusters_after_init(sb, group, desc);
2254 2255
	} else {
		meta_group_info[i]->bb_free =
2256
			ext4_free_group_clusters(sb, desc);
2257 2258 2259
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2260
	init_rwsem(&meta_group_info[i]->alloc_sem);
2261
	meta_group_info[i]->bb_free_root = RB_ROOT;
2262
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
2282
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2283
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2284 2285
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
	}
2286 2287 2288 2289
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2290 2291
static int ext4_mb_init_backend(struct super_block *sb)
{
2292
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2293 2294
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2295
	int err;
2296
	struct ext4_group_desc *desc;
2297
	struct kmem_cache *cachep;
2298

2299 2300 2301
	err = ext4_mb_alloc_groupinfo(sb, ngroups);
	if (err)
		return err;
2302 2303 2304

	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
2305
		ext4_msg(sb, KERN_ERR, "can't get new inode");
2306 2307
		goto err_freesgi;
	}
2308 2309 2310 2311 2312
	/* To avoid potentially colliding with an valid on-disk inode number,
	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
	 * not in the inode hash, so it should never be found by iget(), but
	 * this will avoid confusion if it ever shows up during debugging. */
	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2313
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2314
	for (i = 0; i < ngroups; i++) {
2315 2316
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
2317
			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2318 2319
			goto err_freebuddy;
		}
2320 2321
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2322 2323 2324 2325 2326
	}

	return 0;

err_freebuddy:
2327
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2328
	while (i-- > 0)
2329
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2330
	i = sbi->s_group_info_size;
2331
	while (i-- > 0)
2332 2333 2334
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
2335
	ext4_kvfree(sbi->s_group_info);
2336 2337 2338
	return -ENOMEM;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static void ext4_groupinfo_destroy_slabs(void)
{
	int i;

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		if (ext4_groupinfo_caches[i])
			kmem_cache_destroy(ext4_groupinfo_caches[i]);
		ext4_groupinfo_caches[i] = NULL;
	}
}

static int ext4_groupinfo_create_slab(size_t size)
{
	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
	int slab_size;
	int blocksize_bits = order_base_2(size);
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep;

	if (cache_index >= NR_GRPINFO_CACHES)
		return -EINVAL;

	if (unlikely(cache_index < 0))
		cache_index = 0;

	mutex_lock(&ext4_grpinfo_slab_create_mutex);
	if (ext4_groupinfo_caches[cache_index]) {
		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
		return 0;	/* Already created */
	}

	slab_size = offsetof(struct ext4_group_info,
				bb_counters[blocksize_bits + 2]);

	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
					NULL);

2377 2378
	ext4_groupinfo_caches[cache_index] = cachep;

2379 2380
	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
	if (!cachep) {
2381 2382
		printk(KERN_EMERG
		       "EXT4-fs: no memory for groupinfo slab cache\n");
2383 2384 2385 2386 2387 2388
		return -ENOMEM;
	}

	return 0;
}

2389
int ext4_mb_init(struct super_block *sb)
2390 2391
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2392
	unsigned i, j;
2393 2394
	unsigned offset;
	unsigned max;
2395
	int ret;
2396

2397
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2398 2399 2400

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2401 2402
		ret = -ENOMEM;
		goto out;
2403
	}
2404

2405
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2406 2407
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2408 2409 2410 2411
		ret = -ENOMEM;
		goto out;
	}

2412 2413 2414
	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
	if (ret < 0)
		goto out;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	/*
	 * The default group preallocation is 512, which for 4k block
	 * sizes translates to 2 megabytes.  However for bigalloc file
	 * systems, this is probably too big (i.e, if the cluster size
	 * is 1 megabyte, then group preallocation size becomes half a
	 * gigabyte!).  As a default, we will keep a two megabyte
	 * group pralloc size for cluster sizes up to 64k, and after
	 * that, we will force a minimum group preallocation size of
	 * 32 clusters.  This translates to 8 megs when the cluster
	 * size is 256k, and 32 megs when the cluster size is 1 meg,
	 * which seems reasonable as a default.
	 */
	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
				       sbi->s_cluster_bits, 32);
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/*
	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
	 * to the lowest multiple of s_stripe which is bigger than
	 * the s_mb_group_prealloc as determined above. We want
	 * the preallocation size to be an exact multiple of the
	 * RAID stripe size so that preallocations don't fragment
	 * the stripes.
	 */
	if (sbi->s_stripe > 1) {
		sbi->s_mb_group_prealloc = roundup(
			sbi->s_mb_group_prealloc, sbi->s_stripe);
	}
2465

2466
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2467
	if (sbi->s_locality_groups == NULL) {
2468
		ret = -ENOMEM;
2469
		goto out_free_groupinfo_slab;
2470
	}
2471
	for_each_possible_cpu(i) {
2472
		struct ext4_locality_group *lg;
2473
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2474
		mutex_init(&lg->lg_mutex);
2475 2476
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2477 2478 2479
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2480 2481
	/* init file for buddy data */
	ret = ext4_mb_init_backend(sb);
2482 2483
	if (ret != 0)
		goto out_free_locality_groups;
2484

2485 2486 2487
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2488

2489 2490 2491 2492 2493 2494 2495
	return 0;

out_free_locality_groups:
	free_percpu(sbi->s_locality_groups);
	sbi->s_locality_groups = NULL;
out_free_groupinfo_slab:
	ext4_groupinfo_destroy_slabs();
2496
out:
2497 2498 2499 2500
	kfree(sbi->s_mb_offsets);
	sbi->s_mb_offsets = NULL;
	kfree(sbi->s_mb_maxs);
	sbi->s_mb_maxs = NULL;
2501
	return ret;
2502 2503
}

2504
/* need to called with the ext4 group lock held */
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2515
		kmem_cache_free(ext4_pspace_cachep, pa);
2516 2517
	}
	if (count)
2518
		mb_debug(1, "mballoc: %u PAs left\n", count);
2519 2520 2521 2522 2523

}

int ext4_mb_release(struct super_block *sb)
{
2524
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2525 2526 2527 2528
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2529
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2530

2531 2532 2533
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);

2534
	if (sbi->s_group_info) {
2535
		for (i = 0; i < ngroups; i++) {
2536 2537 2538 2539 2540 2541 2542
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2543
			kmem_cache_free(cachep, grinfo);
2544
		}
2545
		num_meta_group_infos = (ngroups +
2546 2547 2548 2549
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
2550
		ext4_kvfree(sbi->s_group_info);
2551 2552 2553 2554 2555 2556
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
2557 2558
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u blocks %u reqs (%u success)",
2559 2560 2561
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
2562 2563 2564
		ext4_msg(sb, KERN_INFO,
		      "mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost",
2565 2566 2567 2568 2569
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
2570 2571
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %lu generated and it took %Lu",
2572
				sbi->s_mb_buddies_generated,
2573
				sbi->s_mb_generation_time);
2574 2575
		ext4_msg(sb, KERN_INFO,
		       "mballoc: %u preallocated, %u discarded",
2576 2577 2578 2579
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2580
	free_percpu(sbi->s_locality_groups);
2581 2582 2583 2584

	return 0;
}

2585
static inline int ext4_issue_discard(struct super_block *sb,
2586
		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2587 2588 2589
{
	ext4_fsblk_t discard_block;

2590 2591 2592
	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
			 ext4_group_first_block_no(sb, block_group));
	count = EXT4_C2B(EXT4_SB(sb), count);
2593 2594
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2595
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2596 2597
}

2598 2599 2600 2601
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
B
Bobi Jam 已提交
2602 2603 2604
static void ext4_free_data_callback(struct super_block *sb,
				    struct ext4_journal_cb_entry *jce,
				    int rc)
2605
{
B
Bobi Jam 已提交
2606
	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2607
	struct ext4_buddy e4b;
2608
	struct ext4_group_info *db;
2609
	int err, count = 0, count2 = 0;
2610

B
Bobi Jam 已提交
2611 2612
	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
		 entry->efd_count, entry->efd_group, entry);
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	if (test_opt(sb, DISCARD)) {
		err = ext4_issue_discard(sb, entry->efd_group,
					 entry->efd_start_cluster,
					 entry->efd_count);
		if (err && err != -EOPNOTSUPP)
			ext4_msg(sb, KERN_WARNING, "discard request in"
				 " group:%d block:%d count:%d failed"
				 " with %d", entry->efd_group,
				 entry->efd_start_cluster,
				 entry->efd_count, err);
	}
2625

B
Bobi Jam 已提交
2626 2627 2628
	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
	/* we expect to find existing buddy because it's pinned */
	BUG_ON(err != 0);
2629

2630

B
Bobi Jam 已提交
2631 2632 2633 2634 2635 2636 2637 2638
	db = e4b.bd_info;
	/* there are blocks to put in buddy to make them really free */
	count += entry->efd_count;
	count2++;
	ext4_lock_group(sb, entry->efd_group);
	/* Take it out of per group rb tree */
	rb_erase(&entry->efd_node, &(db->bb_free_root));
	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2639

B
Bobi Jam 已提交
2640 2641 2642 2643 2644 2645 2646 2647
	/*
	 * Clear the trimmed flag for the group so that the next
	 * ext4_trim_fs can trim it.
	 * If the volume is mounted with -o discard, online discard
	 * is supported and the free blocks will be trimmed online.
	 */
	if (!test_opt(sb, DISCARD))
		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2648

B
Bobi Jam 已提交
2649 2650 2651 2652 2653 2654
	if (!db->bb_free_root.rb_node) {
		/* No more items in the per group rb tree
		 * balance refcounts from ext4_mb_free_metadata()
		 */
		page_cache_release(e4b.bd_buddy_page);
		page_cache_release(e4b.bd_bitmap_page);
2655
	}
B
Bobi Jam 已提交
2656 2657 2658
	ext4_unlock_group(sb, entry->efd_group);
	kmem_cache_free(ext4_free_data_cachep, entry);
	ext4_mb_unload_buddy(&e4b);
2659

2660
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2661 2662
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2697
int __init ext4_init_mballoc(void)
2698
{
2699 2700
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2701 2702 2703
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2704 2705
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2706 2707 2708 2709
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2710

B
Bobi Jam 已提交
2711 2712 2713
	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
					   SLAB_RECLAIM_ACCOUNT);
	if (ext4_free_data_cachep == NULL) {
2714 2715 2716 2717
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2718
	ext4_create_debugfs_entry();
2719 2720 2721
	return 0;
}

2722
void ext4_exit_mballoc(void)
2723
{
2724
	/*
2725 2726 2727 2728
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2729
	kmem_cache_destroy(ext4_pspace_cachep);
2730
	kmem_cache_destroy(ext4_ac_cachep);
B
Bobi Jam 已提交
2731
	kmem_cache_destroy(ext4_free_data_cachep);
2732
	ext4_groupinfo_destroy_slabs();
2733
	ext4_remove_debugfs_entry();
2734 2735 2736 2737
}


/*
2738
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2739 2740
 * Returns 0 if success or error code
 */
2741 2742
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2743
				handle_t *handle, unsigned int reserv_clstrs)
2744 2745 2746 2747 2748 2749 2750
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2751
	int err, len;
2752 2753 2754 2755 2756 2757 2758 2759

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2760
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2773
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2774
			ext4_free_group_clusters(sb, gdp));
2775

2776 2777 2778 2779
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2780
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2781

2782
	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2783
	if (!ext4_data_block_valid(sbi, block, len)) {
2784
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2785
			   "fs metadata", block, block+len);
2786 2787 2788 2789
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2790
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2791 2792
		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			      ac->ac_b_ex.fe_len);
2793
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2794
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2795 2796 2797
		if (!err)
			err = -EAGAIN;
		goto out_err;
2798
	}
2799 2800

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2801 2802 2803 2804 2805 2806 2807 2808 2809
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2810 2811
	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
		      ac->ac_b_ex.fe_len);
2812 2813
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2814
		ext4_free_group_clusters_set(sb, gdp,
2815
					     ext4_free_clusters_after_init(sb,
2816
						ac->ac_b_ex.fe_group, gdp));
2817
	}
2818 2819
	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_group_clusters_set(sb, gdp, len);
2820
	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2821
	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2822 2823

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2824
	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2825
	/*
2826
	 * Now reduce the dirty block count also. Should not go negative
2827
	 */
2828 2829
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
2830 2831
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
				   reserv_clstrs);
2832

2833 2834 2835
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2836
		atomic_sub(ac->ac_b_ex.fe_len,
2837
			   &sbi->s_flex_groups[flex_group].free_clusters);
2838 2839
	}

2840
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2841 2842
	if (err)
		goto out_err;
2843
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2844 2845

out_err:
2846
	brelse(bitmap_bh);
2847 2848 2849 2850 2851
	return err;
}

/*
 * here we normalize request for locality group
2852 2853 2854
 * Group request are normalized to s_mb_group_prealloc, which goes to
 * s_strip if we set the same via mount option.
 * s_mb_group_prealloc can be configured via
T
Theodore Ts'o 已提交
2855
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2856 2857 2858 2859 2860 2861 2862 2863 2864
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
2865
	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2866
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2867 2868 2869 2870 2871 2872 2873
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2874 2875
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2876 2877
				struct ext4_allocation_request *ar)
{
2878
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2879 2880
	int bsbits, max;
	ext4_lblk_t end;
2881 2882
	loff_t size, start_off;
	loff_t orig_size __maybe_unused;
2883
	ext4_lblk_t start;
2884
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2885
	struct ext4_prealloc_space *pa;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
2910
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2911 2912 2913
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2914
	orig_size = size;
2915

2916 2917
	/* max size of free chunks */
	max = 2 << bsbits;
2918

2919 2920
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2939
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2940
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2941 2942 2943
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2944 2945 2946 2947
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2948
					(8<<20)>>bsbits, max, 8 * 1024)) {
2949 2950 2951 2952 2953 2954 2955
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2956 2957
	size = size >> bsbits;
	start = start_off >> bsbits;
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
2971
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2972
		ext4_lblk_t pa_end;
2973 2974 2975 2976 2977 2978 2979 2980 2981

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

2982 2983
		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
						  pa->pa_len);
2984 2985 2986 2987 2988

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

2989 2990
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
2991 2992 2993 2994 2995
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

2996
		/* adjust start or end to be adjacent to this pa */
2997 2998 2999
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
3000
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
3011
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3012
		ext4_lblk_t pa_end;
3013

3014 3015
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
3016 3017
			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
							  pa->pa_len);
3018 3019 3020 3021 3022 3023 3024 3025
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
3026 3027 3028 3029
		ext4_msg(ac->ac_sb, KERN_ERR,
			 "start %lu, size %lu, fe_logical %lu",
			 (unsigned long) start, (unsigned long) size,
			 (unsigned long) ac->ac_o_ex.fe_logical);
3030 3031 3032
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3033
	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3034 3035 3036 3037 3038 3039

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
3040
	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3058
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3069
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3070 3071 3072 3073 3074 3075 3076 3077 3078
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3079 3080 3081 3082
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3083 3084
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;

3095 3096
	if (pa && pa->pa_type == MB_INODE_PA)
		pa->pa_free += ac->ac_b_ex.fe_len;
3097 3098
}

3099 3100 3101 3102 3103 3104
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3105
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3106 3107 3108 3109 3110 3111
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3112 3113 3114
	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
	len = EXT4_NUM_B2C(sbi, end - start);
3115 3116 3117 3118 3119 3120 3121
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
3122
	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3123 3124 3125
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3126
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3127 3128 3129 3130 3131 3132 3133 3134
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3135
	unsigned int len = ac->ac_o_ex.fe_len;
3136

3137 3138 3139 3140 3141 3142 3143 3144
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3145
	 * possible race when the group is being loaded concurrently
3146
	 * instead we correct pa later, after blocks are marked
3147 3148
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3149
	 */
3150
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3151 3152
}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

3173
	if (cur_distance <= new_distance)
3174 3175 3176 3177 3178 3179 3180 3181
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3182 3183 3184
/*
 * search goal blocks in preallocated space
 */
3185 3186
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3187
{
3188
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3189
	int order, i;
3190 3191
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3192 3193
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3194 3195 3196 3197 3198 3199 3200

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3201
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3202 3203 3204 3205

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3206 3207
		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
					       EXT4_C2B(sbi, pa->pa_len)))
3208 3209
			continue;

3210
		/* non-extent files can't have physical blocks past 2^32 */
3211
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3212 3213
		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
		     EXT4_MAX_BLOCK_FILE_PHYS))
3214 3215
			continue;

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3238 3239 3240 3241 3242
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3243
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3244 3245 3246 3247
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3248 3249 3250 3251 3252 3253 3254
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3255 3256 3257

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3258
			}
3259 3260
			spin_unlock(&pa->pa_lock);
		}
3261
		rcu_read_unlock();
3262
	}
3263 3264 3265 3266 3267
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3268 3269 3270
	return 0;
}

3271 3272 3273 3274
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3275
 * Need to be called with the ext4 group lock held
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
B
Bobi Jam 已提交
3288 3289
		entry = rb_entry(n, struct ext4_free_data, efd_node);
		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3290 3291 3292 3293 3294
		n = rb_next(n);
	}
	return;
}

3295 3296 3297
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3298
 * Need to be called with ext4 group lock held
3299
 */
3300 3301
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3330
		ext4_set_bits(bitmap, start, len);
3331 3332
		preallocated += len;
	}
3333
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3350
	ext4_group_t grp;
3351
	ext4_fsblk_t grp_blk;
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3366
	grp_blk = pa->pa_pstart;
3367
	/*
3368 3369 3370 3371
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3372 3373 3374
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3404 3405
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3406 3407
{
	struct super_block *sb = ac->ac_sb;
3408
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
3440
		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3441 3442 3443 3444

		/* the smallest one defines real window */
		win = min(winl, wins);

3445 3446
		offs = ac->ac_o_ex.fe_logical %
			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3447 3448 3449
		if (offs && offs < win)
			win = offs;

3450 3451
		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
			EXT4_B2C(sbi, win);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3466 3467
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3468
	pa->pa_deleted = 0;
3469
	pa->pa_type = MB_INODE_PA;
3470

3471
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3472
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3473
	trace_ext4_mb_new_inode_pa(ac, pa);
3474 3475

	ext4_mb_use_inode_pa(ac, pa);
3476
	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3498 3499
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3526
	INIT_LIST_HEAD(&pa->pa_inode_list);
3527
	INIT_LIST_HEAD(&pa->pa_group_list);
3528
	pa->pa_deleted = 0;
3529
	pa->pa_type = MB_GROUP_PA;
3530

3531
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3532 3533
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3549 3550 3551 3552
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3575 3576
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3577
			struct ext4_prealloc_space *pa)
3578 3579 3580
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3581 3582
	unsigned int end;
	unsigned int next;
3583 3584
	ext4_group_t group;
	ext4_grpblk_t bit;
3585
	unsigned long long grp_blk_start;
3586 3587 3588 3589 3590
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3591
	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3592 3593 3594 3595
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3596
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3597 3598
		if (bit >= end)
			break;
3599
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3600
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3601 3602
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3603 3604
		free += next - bit;

3605
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3606 3607
		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
						    EXT4_C2B(sbi, bit)),
L
Lukas Czerner 已提交
3608
					       next - bit);
3609 3610 3611 3612
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3613 3614 3615 3616 3617
		ext4_msg(e4b->bd_sb, KERN_CRIT,
			 "pa %p: logic %lu, phys. %lu, len %lu",
			 pa, (unsigned long) pa->pa_lstart,
			 (unsigned long) pa->pa_pstart,
			 (unsigned long) pa->pa_len);
3618
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3619
					free, pa->pa_free);
3620 3621 3622 3623
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3624 3625 3626 3627 3628 3629
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3630 3631
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3632
				struct ext4_prealloc_space *pa)
3633 3634 3635 3636 3637
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3638
	trace_ext4_mb_release_group_pa(sb, pa);
3639 3640 3641 3642 3643
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3644
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3658 3659
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3671
	mb_debug(1, "discard preallocation for group %u\n", group);
3672 3673 3674 3675

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3676
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3677
	if (bitmap_bh == NULL) {
3678
		ext4_error(sb, "Error reading block bitmap for %u", group);
3679
		return 0;
3680 3681 3682
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3683
	if (err) {
3684
		ext4_error(sb, "Error loading buddy information for %u", group);
3685 3686 3687
		put_bh(bitmap_bh);
		return 0;
	}
3688 3689

	if (needed == 0)
3690
		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3746
		if (pa->pa_type == MB_GROUP_PA)
3747
			ext4_mb_release_group_pa(&e4b, pa);
3748
		else
3749
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3750 3751 3752 3753 3754 3755 3756

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3757
	ext4_mb_unload_buddy(&e4b);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3771
void ext4_discard_preallocations(struct inode *inode)
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3782
	if (!S_ISREG(inode->i_mode)) {
3783 3784 3785 3786
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3787
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3788
	trace_ext4_discard_preallocations(inode);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
3805 3806
			ext4_msg(sb, KERN_ERR,
				 "uh-oh! used pa while discarding");
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3842
		BUG_ON(pa->pa_type != MB_INODE_PA);
3843 3844 3845
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3846
		if (err) {
3847 3848
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3849 3850
			continue;
		}
3851

3852
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3853
		if (bitmap_bh == NULL) {
3854 3855
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3856
			ext4_mb_unload_buddy(&e4b);
3857
			continue;
3858 3859 3860 3861
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3862
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3863 3864
		ext4_unlock_group(sb, group);

3865
		ext4_mb_unload_buddy(&e4b);
3866 3867 3868 3869 3870 3871 3872
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

3873
#ifdef CONFIG_EXT4_DEBUG
3874 3875 3876
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3877
	ext4_group_t ngroups, i;
3878

3879 3880
	if (!mb_enable_debug ||
	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3881 3882
		return;

3883
	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3884
			" Allocation context details:");
3885
	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3886
			ac->ac_status, ac->ac_flags);
3887
	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3888 3889
		 	"goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d",
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
3903
	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3904
		 ac->ac_ex_scanned, ac->ac_found);
3905
	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3906 3907
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3920 3921
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3922
		}
3923
		ext4_unlock_group(sb, i);
3924 3925 3926

		if (grp->bb_free == 0)
			continue;
3927
		printk(KERN_ERR "%u: %d/%d \n",
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3944
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3955 3956 3957
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3958
	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3959 3960
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3961

3962 3963 3964 3965 3966 3967 3968
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

3969 3970 3971 3972 3973
	if (sbi->s_mb_group_prealloc <= 0) {
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
		return;
	}

3974
	/* don't use group allocation for large files */
3975
	size = max(size, isize);
3976
	if (size > sbi->s_mb_stream_request) {
3977
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3978
		return;
3979
	}
3980 3981 3982 3983 3984 3985 3986

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
3987
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3988 3989 3990 3991 3992 3993 3994 3995

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

3996 3997
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3998 3999 4000 4001 4002 4003
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
4004 4005
	unsigned int len;
	ext4_fsblk_t goal;
4006 4007 4008 4009 4010 4011
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
4012 4013
	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
		len = EXT4_CLUSTERS_PER_GROUP(sb);
4014 4015 4016 4017 4018 4019 4020 4021 4022

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4023
	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4024 4025 4026
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
4027
	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4028 4029 4030
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
4031
	ac->ac_g_ex = ac->ac_o_ex;
4032 4033 4034 4035 4036 4037
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4038
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4059
	mb_debug(1, "discard locality group preallocation\n");
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4081
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4107 4108
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4109 4110 4111 4112
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4113
		ext4_mb_release_group_pa(&e4b, pa);
4114 4115
		ext4_unlock_group(sb, group);

4116
		ext4_mb_unload_buddy(&e4b);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
4143
	spin_lock(&lg->lg_prealloc_lock);
4144 4145 4146 4147
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4148
			spin_unlock(&tmp_pa->pa_lock);
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
4167
	spin_unlock(&lg->lg_prealloc_lock);
4168 4169 4170 4171

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
4172
						  order, lg_prealloc_count);
4173 4174 4175 4176 4177
		return;
	}
	return ;
}

4178 4179 4180 4181 4182
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4183
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4184 4185
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4186
		if (pa->pa_type == MB_GROUP_PA) {
4187
			/* see comment in ext4_mb_use_group_pa() */
4188
			spin_lock(&pa->pa_lock);
4189 4190
			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4191 4192 4193
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4194 4195
		}
	}
A
Aneesh Kumar K.V 已提交
4196 4197 4198 4199 4200
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
A
Amir Goldstein 已提交
4201
		 * doesn't grow big.
A
Aneesh Kumar K.V 已提交
4202
		 */
4203
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4204 4205 4206 4207 4208 4209 4210
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4223
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4224 4225 4226
	int ret;
	int freed = 0;

4227
	trace_ext4_mb_discard_preallocations(sb, needed);
4228
	for (i = 0; i < ngroups && needed > 0; i++) {
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4243
				struct ext4_allocation_request *ar, int *errp)
4244
{
4245
	int freed;
4246
	struct ext4_allocation_context *ac = NULL;
4247 4248 4249
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4250
	unsigned int inquota = 0;
4251
	unsigned int reserv_clstrs = 0;
4252 4253 4254 4255

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4256
	trace_ext4_request_blocks(ar);
4257

4258 4259 4260 4261
	/* Allow to use superuser reservation for quota file */
	if (IS_NOQUOTA(ar->inode))
		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;

4262 4263 4264 4265 4266
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4267
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4268 4269 4270 4271 4272
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4273
		 */
4274
		while (ar->len &&
4275
			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4276

A
Aneesh Kumar K.V 已提交
4277 4278 4279 4280 4281
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4282 4283 4284
			*errp = -ENOSPC;
			return 0;
		}
4285
		reserv_clstrs = ar->len;
4286
		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4287 4288
			dquot_alloc_block_nofail(ar->inode,
						 EXT4_C2B(sbi, ar->len));
4289 4290
		} else {
			while (ar->len &&
4291 4292
				dquot_alloc_block(ar->inode,
						  EXT4_C2B(sbi, ar->len))) {
4293 4294 4295 4296

				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
				ar->len--;
			}
4297 4298 4299 4300
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4301
			goto out;
4302
		}
4303
	}
4304

4305
	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4306
	if (!ac) {
4307
		ar->len = 0;
4308
		*errp = -ENOMEM;
4309
		goto out;
4310 4311 4312
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4313 4314
	if (*errp) {
		ar->len = 0;
4315
		goto out;
4316 4317
	}

4318 4319 4320 4321
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4322 4323
repeat:
		/* allocate space in core */
4324
		*errp = ext4_mb_regular_allocator(ac);
4325 4326
		if (*errp) {
			ext4_discard_allocated_blocks(ac);
4327
			goto errout;
4328
		}
4329 4330 4331 4332

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4333 4334 4335
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4336
	}
4337
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4338
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4339
		if (*errp == -EAGAIN) {
4340 4341 4342 4343 4344
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4345 4346 4347 4348 4349
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4350
		} else if (*errp) {
4351
			ext4_discard_allocated_blocks(ac);
4352 4353
			goto errout;
		} else {
4354 4355 4356
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4357
	} else {
4358
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4359 4360 4361
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4362 4363
	}

4364
errout:
4365
	if (*errp) {
4366
		ac->ac_b_ex.fe_len = 0;
4367
		ar->len = 0;
4368
		ext4_mb_show_ac(ac);
4369
	}
4370
	ext4_mb_release_context(ac);
4371 4372 4373
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4374
	if (inquota && ar->len < inquota)
4375
		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4376
	if (!ar->len) {
4377 4378
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4379
			/* release all the reserved blocks if non delalloc */
4380
			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4381
						reserv_clstrs);
4382
	}
4383

4384
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4385

4386 4387 4388
	return block;
}

4389 4390 4391 4392 4393 4394 4395 4396
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
B
Bobi Jam 已提交
4397 4398 4399
	if ((entry1->efd_tid == entry2->efd_tid) &&
	    (entry1->efd_group == entry2->efd_group) &&
	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4400 4401 4402 4403
		return 1;
	return 0;
}

4404 4405
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4406
		      struct ext4_free_data *new_entry)
4407
{
4408
	ext4_group_t group = e4b->bd_group;
4409
	ext4_grpblk_t cluster;
4410
	struct ext4_free_data *entry;
4411 4412 4413
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4414 4415 4416
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4417
	BUG_ON(!ext4_handle_valid(handle));
4418 4419 4420
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

B
Bobi Jam 已提交
4421 4422
	new_node = &new_entry->efd_node;
	cluster = new_entry->efd_start_cluster;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
B
Bobi Jam 已提交
4435 4436
		entry = rb_entry(parent, struct ext4_free_data, efd_node);
		if (cluster < entry->efd_start_cluster)
4437
			n = &(*n)->rb_left;
B
Bobi Jam 已提交
4438
		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4439 4440
			n = &(*n)->rb_right;
		else {
4441
			ext4_grp_locked_error(sb, group, 0,
4442 4443
				ext4_group_first_block_no(sb, group) +
				EXT4_C2B(sbi, cluster),
4444
				"Block already on to-be-freed list");
4445
			return 0;
4446
		}
4447
	}
4448

4449 4450 4451 4452 4453 4454
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
B
Bobi Jam 已提交
4455
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4456
		if (can_merge(entry, new_entry)) {
B
Bobi Jam 已提交
4457 4458
			new_entry->efd_start_cluster = entry->efd_start_cluster;
			new_entry->efd_count += entry->efd_count;
4459
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4460 4461
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4462
		}
4463
	}
4464

4465 4466
	node = rb_next(new_node);
	if (node) {
B
Bobi Jam 已提交
4467
		entry = rb_entry(node, struct ext4_free_data, efd_node);
4468
		if (can_merge(new_entry, entry)) {
B
Bobi Jam 已提交
4469
			new_entry->efd_count += entry->efd_count;
4470
			rb_erase(node, &(db->bb_free_root));
B
Bobi Jam 已提交
4471 4472
			ext4_journal_callback_del(handle, &entry->efd_jce);
			kmem_cache_free(ext4_free_data_cachep, entry);
4473 4474
		}
	}
4475
	/* Add the extent to transaction's private list */
B
Bobi Jam 已提交
4476 4477
	ext4_journal_callback_add(handle, ext4_free_data_callback,
				  &new_entry->efd_jce);
4478 4479 4480
	return 0;
}

4481 4482 4483 4484 4485 4486
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
4487
 * @flags:		flags used by ext4_free_blocks
4488
 */
4489
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4490 4491
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4492
{
4493
	struct buffer_head *bitmap_bh = NULL;
4494 4495
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4496
	unsigned long freed = 0;
4497
	unsigned int overflow;
4498 4499 4500 4501 4502
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
4503
	unsigned int count_clusters;
4504 4505 4506
	int err = 0;
	int ret;

4507 4508 4509 4510 4511 4512
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4513 4514

	sbi = EXT4_SB(sb);
4515 4516
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4517
		ext4_error(sb, "Freeing blocks not in datazone - "
4518
			   "block = %llu, count = %lu", block, count);
4519 4520 4521
		goto error_return;
	}

4522
	ext4_debug("freeing block %llu\n", block);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4535 4536
			if (unlikely(!tbh))
				continue;
4537
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4538 4539 4540 4541
				    inode, tbh, block + i);
		}
	}

4542
	/*
4543 4544 4545 4546 4547 4548 4549 4550
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4551

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	/*
	 * If the extent to be freed does not begin on a cluster
	 * boundary, we need to deal with partial clusters at the
	 * beginning and end of the extent.  Normally we will free
	 * blocks at the beginning or the end unless we are explicitly
	 * requested to avoid doing so.
	 */
	overflow = block & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
			overflow = sbi->s_cluster_ratio - overflow;
			block += overflow;
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else {
			block -= overflow;
			count += overflow;
		}
	}
	overflow = count & (sbi->s_cluster_ratio - 1);
	if (overflow) {
		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
			if (count > overflow)
				count -= overflow;
			else
				return;
		} else
			count += sbi->s_cluster_ratio - overflow;
	}

4584 4585 4586 4587 4588 4589 4590 4591
do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4592 4593 4594
	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = EXT4_C2B(sbi, bit) + count -
			EXT4_BLOCKS_PER_GROUP(sb);
4595 4596
		count -= overflow;
	}
4597
	count_clusters = EXT4_B2C(sbi, count);
4598
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4599 4600
	if (!bitmap_bh) {
		err = -EIO;
4601
		goto error_return;
4602
	}
4603
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4604 4605
	if (!gdp) {
		err = -EIO;
4606
		goto error_return;
4607
	}
4608 4609 4610 4611

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
4612
		     EXT4_SB(sb)->s_itb_per_group) ||
4613
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4614
		     EXT4_SB(sb)->s_itb_per_group)) {
4615

4616
		ext4_error(sb, "Freeing blocks in system zone - "
4617
			   "Block = %llu, count = %lu", block, count);
4618 4619
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
4639
		for (i = 0; i < count_clusters; i++)
4640 4641 4642
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4643
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4644

4645 4646 4647
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4648 4649

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4650 4651 4652 4653 4654
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
B
Bobi Jam 已提交
4655
		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4656
		if (!new_entry) {
4657
			ext4_mb_unload_buddy(&e4b);
4658 4659 4660
			err = -ENOMEM;
			goto error_return;
		}
B
Bobi Jam 已提交
4661 4662 4663 4664
		new_entry->efd_start_cluster = bit;
		new_entry->efd_group = block_group;
		new_entry->efd_count = count_clusters;
		new_entry->efd_tid = handle->h_transaction->t_tid;
4665

4666
		ext4_lock_group(sb, block_group);
4667
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4668
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4669
	} else {
4670 4671 4672 4673
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
		if (test_opt(sb, DISCARD)) {
			err = ext4_issue_discard(sb, block_group, bit, count);
			if (err && err != -EOPNOTSUPP)
				ext4_msg(sb, KERN_WARNING, "discard request in"
					 " group:%d block:%d count:%lu failed"
					 " with %d", block_group, bit, count,
					 err);
		}


4684
		ext4_lock_group(sb, block_group);
4685 4686
		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
		mb_free_blocks(inode, &e4b, bit, count_clusters);
4687 4688
	}

4689 4690
	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
	ext4_free_group_clusters_set(sb, gdp, ret);
4691
	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4692
	ext4_group_desc_csum_set(sb, block_group, gdp);
4693
	ext4_unlock_group(sb, block_group);
4694
	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4695

4696 4697
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4698 4699
		atomic_add(count_clusters,
			   &sbi->s_flex_groups[flex_group].free_clusters);
4700 4701
	}

4702
	ext4_mb_unload_buddy(&e4b);
4703

4704
	freed += count;
4705

4706 4707 4708
	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));

4709 4710 4711 4712
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4713 4714
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4715
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4730

4731
/**
4732
 * ext4_group_add_blocks() -- Add given blocks to an existing group
4733 4734
 * @handle:			handle to this transaction
 * @sb:				super block
4735
 * @block:			start physical block to add to the block group
4736 4737
 * @count:			number of blocks to free
 *
4738
 * This marks the blocks as free in the bitmap and buddy.
4739
 */
4740
int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4741 4742 4743 4744 4745 4746 4747 4748 4749
			 ext4_fsblk_t block, unsigned long count)
{
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	ext4_grpblk_t bit;
	unsigned int i;
	struct ext4_group_desc *desc;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4750
	struct ext4_buddy e4b;
4751 4752 4753 4754 4755
	int err = 0, ret, blk_free_count;
	ext4_grpblk_t blocks_freed;

	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);

4756 4757 4758
	if (count == 0)
		return 0;

4759 4760 4761 4762 4763
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
4764 4765 4766 4767
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		ext4_warning(sb, "too much blocks added to group %u\n",
			     block_group);
		err = -EINVAL;
4768
		goto error_return;
4769
	}
4770

4771
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4772 4773
	if (!bitmap_bh) {
		err = -EIO;
4774
		goto error_return;
4775 4776
	}

4777
	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4778 4779
	if (!desc) {
		err = -EIO;
4780
		goto error_return;
4781
	}
4782 4783 4784 4785 4786 4787 4788 4789 4790

	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, desc),
		     sbi->s_itb_per_group)) {
		ext4_error(sb, "Adding blocks in system zones - "
			   "Block = %llu, count = %lu",
			   block, count);
4791
		err = -EINVAL;
4792 4793 4794
		goto error_return;
	}

4795 4796
	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
4809

4810 4811
	for (i = 0, blocks_freed = 0; i < count; i++) {
		BUFFER_TRACE(bitmap_bh, "clear bit");
4812
		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4813 4814 4815 4816 4817 4818 4819
			ext4_error(sb, "bit already cleared for block %llu",
				   (ext4_fsblk_t)(block + i));
			BUFFER_TRACE(bitmap_bh, "bit already cleared");
		} else {
			blocks_freed++;
		}
	}
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;

	/*
	 * need to update group_info->bb_free and bitmap
	 * with group lock held. generate_buddy look at
	 * them with group lock_held
	 */
4830
	ext4_lock_group(sb, block_group);
4831 4832
	mb_clear_bits(bitmap_bh->b_data, bit, count);
	mb_free_blocks(NULL, &e4b, bit, count);
4833 4834
	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4835
	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4836
	ext4_group_desc_csum_set(sb, block_group, desc);
4837
	ext4_unlock_group(sb, block_group);
4838 4839
	percpu_counter_add(&sbi->s_freeclusters_counter,
			   EXT4_B2C(sbi, blocks_freed));
4840 4841 4842

	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4843 4844
		atomic_add(EXT4_B2C(sbi, blocks_freed),
			   &sbi->s_flex_groups[flex_group].free_clusters);
4845
	}
4846 4847

	ext4_mb_unload_buddy(&e4b);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
	if (!err)
		err = ret;

error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
4862
	return err;
4863 4864
}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
4877
static int ext4_trim_extent(struct super_block *sb, int start, int count,
4878
			     ext4_group_t group, struct ext4_buddy *e4b)
4879 4880
{
	struct ext4_free_extent ex;
4881
	int ret = 0;
4882

T
Tao Ma 已提交
4883 4884
	trace_ext4_trim_extent(sb, group, start, count);

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);
4897
	ret = ext4_issue_discard(sb, group, start, count);
4898 4899
	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
4900
	return ret;
4901 4902 4903 4904 4905
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
4906
 * @group:		group to be trimmed
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
4921
static ext4_grpblk_t
4922 4923 4924
ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
		   ext4_grpblk_t start, ext4_grpblk_t max,
		   ext4_grpblk_t minblocks)
4925 4926
{
	void *bitmap;
4927
	ext4_grpblk_t next, count = 0, free_count = 0;
4928
	struct ext4_buddy e4b;
4929
	int ret = 0;
4930

T
Tao Ma 已提交
4931 4932
	trace_ext4_trim_all_free(sb, group, start, max);

4933 4934 4935 4936 4937 4938 4939
	ret = ext4_mb_load_buddy(sb, group, &e4b);
	if (ret) {
		ext4_error(sb, "Error in loading buddy "
				"information for %u", group);
		return ret;
	}
	bitmap = e4b.bd_bitmap;
4940 4941

	ext4_lock_group(sb, group);
4942 4943 4944 4945
	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
		goto out;

4946 4947
	start = (e4b.bd_info->bb_first_free > start) ?
		e4b.bd_info->bb_first_free : start;
4948

4949 4950 4951
	while (start <= max) {
		start = mb_find_next_zero_bit(bitmap, max + 1, start);
		if (start > max)
4952
			break;
4953
		next = mb_find_next_bit(bitmap, max + 1, start);
4954 4955

		if ((next - start) >= minblocks) {
4956 4957 4958 4959 4960
			ret = ext4_trim_extent(sb, start,
					       next - start, group, &e4b);
			if (ret && ret != -EOPNOTSUPP)
				break;
			ret = 0;
4961 4962
			count += next - start;
		}
4963
		free_count += next - start;
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

4977
		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4978 4979
			break;
	}
4980

4981 4982
	if (!ret) {
		ret = count;
4983
		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4984
	}
4985
out:
4986
	ext4_unlock_group(sb, group);
4987
	ext4_mb_unload_buddy(&e4b);
4988 4989 4990 4991

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

4992
	return ret;
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
5009
	struct ext4_group_info *grp;
5010
	ext4_group_t group, first_group, last_group;
5011
	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5012
	uint64_t start, end, minlen, trimmed = 0;
5013 5014
	ext4_fsblk_t first_data_blk =
			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5015
	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5016 5017 5018
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
5019
	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5020 5021
	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
			      range->minlen >> sb->s_blocksize_bits);
5022

5023 5024 5025
	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
	    start >= max_blks ||
	    range->len < sb->s_blocksize)
5026
		return -EINVAL;
5027 5028 5029
	if (end >= max_blks)
		end = max_blks - 1;
	if (end <= first_data_blk)
5030
		goto out;
5031
	if (start < first_data_blk)
5032
		start = first_data_blk;
5033

5034
	/* Determine first and last group to examine based on start and end */
5035
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5036
				     &first_group, &first_cluster);
5037
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5038
				     &last_group, &last_cluster);
5039

5040 5041
	/* end now represents the last cluster to discard in this group */
	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5042 5043

	for (group = first_group; group <= last_group; group++) {
5044 5045 5046 5047 5048 5049
		grp = ext4_get_group_info(sb, group);
		/* We only do this if the grp has never been initialized */
		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
			ret = ext4_mb_init_group(sb, group);
			if (ret)
				break;
5050 5051
		}

5052
		/*
5053 5054 5055 5056
		 * For all the groups except the last one, last cluster will
		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
		 * change it for the last group, note that last_cluster is
		 * already computed earlier by ext4_get_group_no_and_offset()
5057
		 */
5058 5059
		if (group == last_group)
			end = last_cluster;
5060

5061
		if (grp->bb_free >= minlen) {
5062
			cnt = ext4_trim_all_free(sb, group, first_cluster,
5063
						end, minlen);
5064 5065 5066 5067
			if (cnt < 0) {
				ret = cnt;
				break;
			}
5068
			trimmed += cnt;
5069
		}
5070 5071 5072 5073 5074

		/*
		 * For every group except the first one, we are sure
		 * that the first cluster to discard will be cluster #0.
		 */
5075
		first_cluster = 0;
5076 5077
	}

5078 5079 5080
	if (!ret)
		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);

5081
out:
5082
	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5083 5084
	return ret;
}