sched_fair.c 50.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
A
Arjan van de Ven 已提交
25

26
/*
27
 * Targeted preemption latency for CPU-bound tasks:
28
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37
 */
38
unsigned int sysctl_sched_latency = 5000000ULL;
39
unsigned int normalized_sysctl_sched_latency = 5000000ULL;
40

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

53
/*
54
 * Minimal preemption granularity for CPU-bound tasks:
55
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
56
 */
57
unsigned int sysctl_sched_min_granularity = 1000000ULL;
58
unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
59 60

/*
61 62
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
63
static unsigned int sched_nr_latency = 5;
64 65

/*
66
 * After fork, child runs first. If set to 0 (default) then
67
 * parent will (try to) run first.
68
 */
69
unsigned int sysctl_sched_child_runs_first __read_mostly;
70

71 72 73 74 75 76 77 78
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

79 80
/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93
static const struct sched_class fair_sched_class;

94 95 96 97
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

98
#ifdef CONFIG_FAIR_GROUP_SCHED
99

100
/* cpu runqueue to which this cfs_rq is attached */
101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
103
	return cfs_rq->rq;
104 105
}

106 107
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
108

109 110 111 112 113 114 115 116
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

208 209 210 211 212 213
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
214

215 216 217
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
218 219 220 221
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
222 223
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
224

P
Peter Zijlstra 已提交
225
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226
{
P
Peter Zijlstra 已提交
227
	return &task_rq(p)->cfs;
228 229
}

P
Peter Zijlstra 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

263 264 265 266 267
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
268 269
#endif	/* CONFIG_FAIR_GROUP_SCHED */

270 271 272 273 274

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

275
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276
{
277 278
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
279 280 281 282 283
		min_vruntime = vruntime;

	return min_vruntime;
}

284
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
285 286 287 288 289 290 291 292
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

293 294 295 296 297 298
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

299
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300
{
301
	return se->vruntime - cfs_rq->min_vruntime;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
316
		if (!cfs_rq->curr)
317 318 319 320 321 322 323 324
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

325 326 327
/*
 * Enqueue an entity into the rb-tree:
 */
328
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 330 331 332
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
333
	s64 key = entity_key(cfs_rq, se);
334 335 336 337 338 339 340 341 342 343 344 345
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
346
		if (key < entity_key(cfs_rq, entry)) {
347 348 349 350 351 352 353 354 355 356 357
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
358
	if (leftmost)
I
Ingo Molnar 已提交
359
		cfs_rq->rb_leftmost = &se->run_node;
360 361 362 363 364

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

365
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
P
Peter Zijlstra 已提交
367 368 369 370 371 372
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
373

374 375 376 377 378
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
379 380 381 382 383 384
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
385 386
}

387
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388
{
389
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390

391 392
	if (!last)
		return NULL;
393 394

	return rb_entry(last, struct sched_entity, run_node);
395 396
}

397 398 399 400
/**************************************************************
 * Scheduling class statistics methods:
 */

401
#ifdef CONFIG_SCHED_DEBUG
402
int sched_proc_update_handler(struct ctl_table *table, int write,
403
		void __user *buffer, size_t *lenp,
404 405
		loff_t *ppos)
{
406
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407
	int factor = get_update_sysctl_factor();
408 409 410 411 412 413 414

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

415 416 417 418 419 420 421 422
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
	WRT_SYSCTL(sched_shares_ratelimit);
#undef WRT_SYSCTL

423 424 425
	return 0;
}
#endif
426

427
/*
428
 * delta /= w
429 430 431 432
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
433 434
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435 436 437 438

	return delta;
}

439 440 441 442 443 444 445 446
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
447 448 449
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
450
	unsigned long nr_latency = sched_nr_latency;
451 452

	if (unlikely(nr_running > nr_latency)) {
453
		period = sysctl_sched_min_granularity;
454 455 456 457 458 459
		period *= nr_running;
	}

	return period;
}

460 461 462 463
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
464
 * s = p*P[w/rw]
465
 */
P
Peter Zijlstra 已提交
466
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467
{
M
Mike Galbraith 已提交
468
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469

M
Mike Galbraith 已提交
470
	for_each_sched_entity(se) {
L
Lin Ming 已提交
471
		struct load_weight *load;
472
		struct load_weight lw;
L
Lin Ming 已提交
473 474 475

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
476

M
Mike Galbraith 已提交
477
		if (unlikely(!se->on_rq)) {
478
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
479 480 481 482 483 484 485

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
486 487
}

488
/*
489
 * We calculate the vruntime slice of a to be inserted task
490
 *
491
 * vs = s/w
492
 */
493
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
494
{
495
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 497
}

498 499 500 501 502
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
503 504
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
505
{
506
	unsigned long delta_exec_weighted;
507

508
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
509 510

	curr->sum_exec_runtime += delta_exec;
511
	schedstat_add(cfs_rq, exec_clock, delta_exec);
512
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
513

I
Ingo Molnar 已提交
514
	curr->vruntime += delta_exec_weighted;
515
	update_min_vruntime(cfs_rq);
516 517
}

518
static void update_curr(struct cfs_rq *cfs_rq)
519
{
520
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
521
	u64 now = rq_of(cfs_rq)->clock;
522 523 524 525 526 527 528 529 530 531
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
532
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
533 534
	if (!delta_exec)
		return;
535

I
Ingo Molnar 已提交
536 537
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
538 539 540 541

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

542
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
543
		cpuacct_charge(curtask, delta_exec);
544
		account_group_exec_runtime(curtask, delta_exec);
545
	}
546 547 548
}

static inline void
549
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
550
{
551
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
552 553 554 555 556
}

/*
 * Task is being enqueued - update stats:
 */
557
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 559 560 561 562
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
563
	if (se != cfs_rq->curr)
564
		update_stats_wait_start(cfs_rq, se);
565 566 567
}

static void
568
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
569
{
570 571
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
572 573 574
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
575 576 577 578 579 580
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
581
	schedstat_set(se->wait_start, 0);
582 583 584
}

static inline void
585
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 587 588 589 590
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
591
	if (se != cfs_rq->curr)
592
		update_stats_wait_end(cfs_rq, se);
593 594 595 596 597 598
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
599
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 601 602 603
{
	/*
	 * We are starting a new run period:
	 */
604
	se->exec_start = rq_of(cfs_rq)->clock;
605 606 607 608 609 610
}

/**************************************************
 * Scheduling class queueing methods:
 */

611 612 613 614 615 616 617 618 619 620 621 622 623
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

624 625 626 627
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
628 629
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
630
	if (entity_is_task(se)) {
631
		add_cfs_task_weight(cfs_rq, se->load.weight);
632 633
		list_add(&se->group_node, &cfs_rq->tasks);
	}
634 635 636 637 638 639 640 641
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
642 643
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
644
	if (entity_is_task(se)) {
645
		add_cfs_task_weight(cfs_rq, -se->load.weight);
646 647
		list_del_init(&se->group_node);
	}
648 649 650 651
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

652
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 654
{
#ifdef CONFIG_SCHEDSTATS
655 656 657 658 659
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

660
	if (se->sleep_start) {
661
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
662 663 664 665 666 667 668 669 670

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
671

672
		if (tsk) {
673
			account_scheduler_latency(tsk, delta >> 10, 1);
674 675
			trace_sched_stat_sleep(tsk, delta);
		}
676 677
	}
	if (se->block_start) {
678
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
679 680 681 682 683 684 685 686 687

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
688

689
		if (tsk) {
690 691 692
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
693
				trace_sched_stat_iowait(tsk, delta);
694 695
			}

696 697 698 699 700 701 702 703 704 705 706
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
707
		}
708 709 710 711
	}
#endif
}

P
Peter Zijlstra 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

725 726 727
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
728
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
729

730 731 732 733 734 735
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
736
	if (initial && sched_feat(START_DEBIT))
737
		vruntime += sched_vslice(cfs_rq, se);
738

739 740 741
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
742

743 744 745 746 747 748 749 750 751
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
752

753 754 755 756 757 758
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
759

760
		vruntime -= thresh;
761 762
	}

763 764 765
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
766
	se->vruntime = vruntime;
767 768
}

769 770 771
#define ENQUEUE_WAKEUP	1
#define ENQUEUE_MIGRATE 2

772
static void
773
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
774
{
775 776 777 778 779 780 781
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
		se->vruntime += cfs_rq->min_vruntime;

782
	/*
783
	 * Update run-time statistics of the 'current'.
784
	 */
785
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
786
	account_entity_enqueue(cfs_rq, se);
787

788
	if (flags & ENQUEUE_WAKEUP) {
789
		place_entity(cfs_rq, se, 0);
790
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
791
	}
792

793
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
794
	check_spread(cfs_rq, se);
795 796
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
797 798
}

P
Peter Zijlstra 已提交
799
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
800
{
801
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
802 803
		cfs_rq->last = NULL;

804
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
805 806 807
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
808 809 810 811 812 813
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

814
static void
815
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
816
{
817 818 819 820 821
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

822
	update_stats_dequeue(cfs_rq, se);
823
	if (sleep) {
P
Peter Zijlstra 已提交
824
#ifdef CONFIG_SCHEDSTATS
825 826 827 828
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
829
				se->sleep_start = rq_of(cfs_rq)->clock;
830
			if (tsk->state & TASK_UNINTERRUPTIBLE)
831
				se->block_start = rq_of(cfs_rq)->clock;
832
		}
833
#endif
P
Peter Zijlstra 已提交
834 835
	}

P
Peter Zijlstra 已提交
836
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
837

838
	if (se != cfs_rq->curr)
839 840
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
841
	update_min_vruntime(cfs_rq);
842 843 844 845 846 847 848 849

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
	if (!sleep)
		se->vruntime -= cfs_rq->min_vruntime;
850 851 852 853 854
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
855
static void
I
Ingo Molnar 已提交
856
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
857
{
858 859
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
860
	ideal_runtime = sched_slice(cfs_rq, curr);
861
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
862
	if (delta_exec > ideal_runtime) {
863
		resched_task(rq_of(cfs_rq)->curr);
864 865 866 867 868
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
889
	}
890 891
}

892
static void
893
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
894
{
895 896 897 898 899 900 901 902 903 904 905
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

906
	update_stats_curr_start(cfs_rq, se);
907
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
908 909 910 911 912 913
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
914
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
915 916 917 918
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
919
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
920 921
}

922 923 924
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

925
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
926
{
927
	struct sched_entity *se = __pick_next_entity(cfs_rq);
928
	struct sched_entity *left = se;
929

930 931
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
932

933 934 935 936 937 938 939
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
940 941

	return se;
942 943
}

944
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
945 946 947 948 949 950
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
951
		update_curr(cfs_rq);
952

P
Peter Zijlstra 已提交
953
	check_spread(cfs_rq, prev);
954
	if (prev->on_rq) {
955
		update_stats_wait_start(cfs_rq, prev);
956 957 958
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
959
	cfs_rq->curr = NULL;
960 961
}

P
Peter Zijlstra 已提交
962 963
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
964 965
{
	/*
966
	 * Update run-time statistics of the 'current'.
967
	 */
968
	update_curr(cfs_rq);
969

P
Peter Zijlstra 已提交
970 971 972 973 974
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
975 976 977 978
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
979 980 981 982 983 984 985 986
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

987
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
988
		check_preempt_tick(cfs_rq, curr);
989 990 991 992 993 994
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
1018
		if (rq->curr != p)
1019
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1020

1021
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1022 1023
	}
}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1040
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1041 1042 1043 1044
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1045 1046 1047 1048

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1049 1050
#endif

1051 1052 1053 1054 1055
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1056
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1057 1058
{
	struct cfs_rq *cfs_rq;
1059
	struct sched_entity *se = &p->se;
1060 1061 1062 1063 1064 1065
	int flags = 0;

	if (wakeup)
		flags |= ENQUEUE_WAKEUP;
	if (p->state == TASK_WAKING)
		flags |= ENQUEUE_MIGRATE;
1066 1067

	for_each_sched_entity(se) {
1068
		if (se->on_rq)
1069 1070
			break;
		cfs_rq = cfs_rq_of(se);
1071 1072
		enqueue_entity(cfs_rq, se, flags);
		flags = ENQUEUE_WAKEUP;
1073
	}
P
Peter Zijlstra 已提交
1074

1075
	hrtick_update(rq);
1076 1077 1078 1079 1080 1081 1082
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1083
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1084 1085
{
	struct cfs_rq *cfs_rq;
1086
	struct sched_entity *se = &p->se;
1087 1088 1089

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1090
		dequeue_entity(cfs_rq, se, sleep);
1091
		/* Don't dequeue parent if it has other entities besides us */
1092
		if (cfs_rq->load.weight)
1093
			break;
1094
		sleep = 1;
1095
	}
P
Peter Zijlstra 已提交
1096

1097
	hrtick_update(rq);
1098 1099 1100
}

/*
1101 1102 1103
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1104
 */
1105
static void yield_task_fair(struct rq *rq)
1106
{
1107 1108 1109
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1110 1111

	/*
1112 1113 1114 1115 1116
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1117 1118
	clear_buddies(cfs_rq, se);

1119
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1120
		update_rq_clock(rq);
1121
		/*
1122
		 * Update run-time statistics of the 'current'.
1123
		 */
D
Dmitry Adamushko 已提交
1124
		update_curr(cfs_rq);
1125 1126 1127 1128 1129

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1130
	 */
D
Dmitry Adamushko 已提交
1131
	rightmost = __pick_last_entity(cfs_rq);
1132 1133 1134
	/*
	 * Already in the rightmost position?
	 */
1135
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1136 1137 1138 1139
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1140 1141
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1142
	 */
1143
	se->vruntime = rightmost->vruntime + 1;
1144 1145
}

1146
#ifdef CONFIG_SMP
1147

1148 1149 1150 1151 1152 1153 1154 1155
static void task_waking_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	se->vruntime -= cfs_rq->min_vruntime;
}

1156
#ifdef CONFIG_FAIR_GROUP_SCHED
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1178 1179
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1180
{
P
Peter Zijlstra 已提交
1181
	struct sched_entity *se = tg->se[cpu];
1182 1183 1184 1185

	if (!tg->parent)
		return wl;

1186 1187 1188 1189 1190 1191 1192
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1193
	for_each_sched_entity(se) {
1194
		long S, rw, s, a, b;
1195 1196 1197 1198 1199 1200 1201 1202 1203
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1204 1205 1206

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1207
		rw = se->my_q->rq_weight;
1208

1209 1210
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1211

1212 1213 1214 1215 1216
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1217 1218 1219 1220 1221 1222 1223
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1224 1225
		wg = 0;
	}
1226

P
Peter Zijlstra 已提交
1227
	return wl;
1228
}
P
Peter Zijlstra 已提交
1229

1230
#else
P
Peter Zijlstra 已提交
1231

1232 1233
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1234
{
1235
	return wl;
1236
}
P
Peter Zijlstra 已提交
1237

1238 1239
#endif

1240
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1241
{
1242 1243 1244
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1245
	unsigned long tl_per_task;
1246 1247
	unsigned int imbalance;
	struct task_group *tg;
1248
	unsigned long weight;
1249
	int balanced;
1250

1251 1252 1253 1254 1255
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1268

1269 1270 1271 1272 1273
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1274 1275 1276 1277
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1278
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1279 1280
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1281

1282 1283
	tg = task_group(p);
	weight = p->se.load.weight;
1284

1285 1286
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1287 1288
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1289 1290 1291
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1292 1293 1294 1295
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1296 1297
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1298
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1299

1300
	/*
I
Ingo Molnar 已提交
1301 1302 1303
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1304
	 */
1305 1306
	if (sync && balanced)
		return 1;
1307 1308 1309 1310

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1311 1312 1313
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1314 1315 1316 1317 1318
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1319
		schedstat_inc(sd, ttwu_move_affine);
1320 1321 1322 1323 1324 1325 1326
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1327 1328 1329 1330 1331
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1332
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1333
		  int this_cpu, int load_idx)
1334
{
1335 1336 1337
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1338

1339 1340 1341 1342
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1399 1400 1401
		}
	}

1402 1403
	return idlest;
}
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int i;

	/*
	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
	 * always a better target than the current cpu.
	 */
1420 1421
	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
		return prev_cpu;
1422 1423 1424 1425

	/*
	 * Otherwise, iterate the domain and find an elegible idle cpu.
	 */
1426 1427 1428 1429
	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
		if (!cpu_rq(i)->cfs.nr_running) {
			target = i;
			break;
1430 1431 1432 1433 1434 1435
		}
	}

	return target;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1447
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1448
{
1449
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 1451 1452 1453
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1454
	int want_sd = 1;
1455
	int sync = wake_flags & WF_SYNC;
1456

1457
	if (sd_flag & SD_BALANCE_WAKE) {
1458 1459
		if (sched_feat(AFFINE_WAKEUPS) &&
		    cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 1461 1462
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1463 1464

	for_each_domain(cpu, tmp) {
1465 1466 1467
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

1468
		/*
1469 1470
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1471
		 */
P
Peter Zijlstra 已提交
1472
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1485 1486 1487 1488
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1489
				want_sd = 0;
1490
		}
1491

1492 1493 1494 1495 1496 1497
		/*
		 * While iterating the domains looking for a spanning
		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
		 * in cache sharing domains along the way.
		 */
		if (want_affine) {
1498
			int target = -1;
1499

1500 1501 1502 1503
			/*
			 * If both cpu and prev_cpu are part of this domain,
			 * cpu is a valid SD_WAKE_AFFINE target.
			 */
1504
			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1505
				target = cpu;
1506 1507

			/*
1508 1509
			 * If there's an idle sibling in this domain, make that
			 * the wake_affine target instead of the current cpu.
1510
			 */
1511
			if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1512
				target = select_idle_sibling(p, tmp, target);
1513

1514
			if (target >= 0) {
1515 1516 1517 1518
				if (tmp->flags & SD_WAKE_AFFINE) {
					affine_sd = tmp;
					want_affine = 0;
				}
1519
				cpu = target;
1520
			}
1521 1522
		}

1523 1524 1525
		if (!want_sd && !want_affine)
			break;

1526
		if (!(tmp->flags & sd_flag))
1527 1528
			continue;

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1545
	}
1546

1547 1548
	if (affine_sd && wake_affine(affine_sd, p, sync))
		return cpu;
1549

1550
	while (sd) {
1551
		int load_idx = sd->forkexec_idx;
1552
		struct sched_group *group;
1553
		int weight;
1554

1555
		if (!(sd->flags & sd_flag)) {
1556 1557 1558
			sd = sd->child;
			continue;
		}
1559

1560 1561
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1562

1563
		group = find_idlest_group(sd, p, cpu, load_idx);
1564 1565 1566 1567
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1568

1569
		new_cpu = find_idlest_cpu(group, p, cpu);
1570 1571 1572 1573
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1574
		}
1575 1576 1577 1578 1579 1580 1581 1582

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1583
			if (tmp->flags & sd_flag)
1584 1585 1586
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1587 1588
	}

1589
	return new_cpu;
1590 1591 1592
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1623 1624 1625
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1626 1627 1628
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1629
	/*
P
Peter Zijlstra 已提交
1630 1631
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1632
	 */
P
Peter Zijlstra 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1650 1651 1652 1653

	return gran;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1676
	gran = wakeup_gran(curr, se);
1677 1678 1679 1680 1681 1682
	if (vdiff > gran)
		return 1;

	return 0;
}

1683 1684
static void set_last_buddy(struct sched_entity *se)
{
1685 1686 1687 1688
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1689 1690 1691 1692
}

static void set_next_buddy(struct sched_entity *se)
{
1693 1694 1695 1696
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1697 1698
}

1699 1700 1701
/*
 * Preempt the current task with a newly woken task if needed:
 */
1702
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1703 1704
{
	struct task_struct *curr = rq->curr;
1705
	struct sched_entity *se = &curr->se, *pse = &p->se;
1706
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1707
	int sync = wake_flags & WF_SYNC;
1708
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1709

1710 1711
	if (unlikely(rt_prio(p->prio)))
		goto preempt;
1712

P
Peter Zijlstra 已提交
1713 1714 1715
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1716 1717 1718
	if (unlikely(se == pse))
		return;

1719
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1720
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1721

1722 1723 1724 1725 1726 1727 1728
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1729
	/*
1730
	 * Batch and idle tasks do not preempt (their preemption is driven by
1731 1732
	 * the tick):
	 */
1733
	if (unlikely(p->policy != SCHED_NORMAL))
1734
		return;
1735

1736
	/* Idle tasks are by definition preempted by everybody. */
1737 1738
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1739

1740 1741
	if (sched_feat(WAKEUP_SYNC) && sync)
		goto preempt;
1742

1743 1744 1745 1746 1747
	if (sched_feat(WAKEUP_OVERLAP) &&
			se->avg_overlap < sysctl_sched_migration_cost &&
			pse->avg_overlap < sysctl_sched_migration_cost)
		goto preempt;

1748 1749 1750
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1751
	update_curr(cfs_rq);
1752
	find_matching_se(&se, &pse);
1753
	BUG_ON(!pse);
1754 1755
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1756

1757
	return;
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1775 1776
}

1777
static struct task_struct *pick_next_task_fair(struct rq *rq)
1778
{
P
Peter Zijlstra 已提交
1779
	struct task_struct *p;
1780 1781 1782
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1783
	if (!cfs_rq->nr_running)
1784 1785 1786
		return NULL;

	do {
1787
		se = pick_next_entity(cfs_rq);
1788
		set_next_entity(cfs_rq, se);
1789 1790 1791
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1792 1793 1794 1795
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1796 1797 1798 1799 1800
}

/*
 * Account for a descheduled task:
 */
1801
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1802 1803 1804 1805 1806 1807
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1808
		put_prev_entity(cfs_rq, se);
1809 1810 1811
	}
}

1812
#ifdef CONFIG_SMP
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1824
static struct task_struct *
1825
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1826
{
D
Dhaval Giani 已提交
1827 1828
	struct task_struct *p = NULL;
	struct sched_entity *se;
1829

1830 1831 1832
	if (next == &cfs_rq->tasks)
		return NULL;

1833 1834 1835
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1836

1837 1838 1839 1840 1841 1842 1843
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1844
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1845 1846 1847 1848 1849 1850
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1851
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1852 1853
}

1854 1855 1856 1857 1858
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1859
{
1860
	struct rq_iterator cfs_rq_iterator;
1861

1862 1863 1864
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1865

1866 1867 1868
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1869 1870
}

1871
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1872
static unsigned long
1873
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1874
		  unsigned long max_load_move,
1875 1876
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1877 1878
{
	long rem_load_move = max_load_move;
1879 1880
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1881

1882
	rcu_read_lock();
1883
	update_h_load(busiest_cpu);
1884

1885
	list_for_each_entry_rcu(tg, &task_groups, list) {
1886
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1887 1888
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1889
		u64 rem_load, moved_load;
1890

1891 1892 1893
		/*
		 * empty group
		 */
1894
		if (!busiest_cfs_rq->task_weight)
1895 1896
			continue;

S
Srivatsa Vaddagiri 已提交
1897 1898
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1899

1900
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1901
				rem_load, sd, idle, all_pinned, this_best_prio,
1902
				tg->cfs_rq[busiest_cpu]);
1903

1904
		if (!moved_load)
1905 1906
			continue;

1907
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1908
		moved_load = div_u64(moved_load, busiest_weight + 1);
1909

1910 1911
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1912 1913
			break;
	}
1914
	rcu_read_unlock();
1915

P
Peter Williams 已提交
1916
	return max_load_move - rem_load_move;
1917
}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

1965
#endif /* CONFIG_SMP */
1966

1967 1968 1969
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1970
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1971 1972 1973 1974 1975 1976
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1977
		entity_tick(cfs_rq, se, queued);
1978 1979 1980 1981
	}
}

/*
P
Peter Zijlstra 已提交
1982 1983 1984
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
1985
 */
P
Peter Zijlstra 已提交
1986
static void task_fork_fair(struct task_struct *p)
1987
{
P
Peter Zijlstra 已提交
1988
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
1989
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1990
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
1991 1992 1993
	struct rq *rq = this_rq();
	unsigned long flags;

1994
	raw_spin_lock_irqsave(&rq->lock, flags);
1995

P
Peter Zijlstra 已提交
1996 1997
	if (unlikely(task_cpu(p) != this_cpu))
		__set_task_cpu(p, this_cpu);
1998

1999
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2000

2001 2002
	if (curr)
		se->vruntime = curr->vruntime;
2003
	place_entity(cfs_rq, se, 1);
2004

P
Peter Zijlstra 已提交
2005
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
2006
		/*
2007 2008 2009
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
2010
		swap(curr->vruntime, se->vruntime);
2011
		resched_task(rq->curr);
2012
	}
2013

2014 2015
	se->vruntime -= cfs_rq->min_vruntime;

2016
	raw_spin_unlock_irqrestore(&rq->lock, flags);
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
2035
		check_preempt_curr(rq, p, 0);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
2052
		check_preempt_curr(rq, p, 0);
2053 2054
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
2068
#ifdef CONFIG_FAIR_GROUP_SCHED
2069
static void moved_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
2070 2071 2072 2073
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
2074 2075
	if (!on_rq)
		place_entity(cfs_rq, &p->se, 1);
P
Peter Zijlstra 已提交
2076 2077 2078
}
#endif

2079
unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

2094 2095 2096
/*
 * All the scheduling class methods:
 */
2097 2098
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
2099 2100 2101 2102
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
2103
	.check_preempt_curr	= check_preempt_wakeup,
2104 2105 2106 2107

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

2108
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2109 2110
	.select_task_rq		= select_task_rq_fair,

2111
	.load_balance		= load_balance_fair,
2112
	.move_one_task		= move_one_task_fair,
2113 2114
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
2115 2116

	.task_waking		= task_waking_fair,
2117
#endif
2118

2119
	.set_curr_task          = set_curr_task_fair,
2120
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
2121
	.task_fork		= task_fork_fair,
2122 2123 2124

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
2125

2126 2127
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
2128 2129 2130
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
2131 2132 2133
};

#ifdef CONFIG_SCHED_DEBUG
2134
static void print_cfs_stats(struct seq_file *m, int cpu)
2135 2136 2137
{
	struct cfs_rq *cfs_rq;

2138
	rcu_read_lock();
2139
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2140
		print_cfs_rq(m, cpu, cfs_rq);
2141
	rcu_read_unlock();
2142 2143
}
#endif