cppc_acpi.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44
#include <linux/rwsem.h>
#include <linux/wait.h>
45 46

#include <acpi/cppc_acpi.h>
47

48 49 50 51 52 53
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	bool pcc_channel_acquired;
	ktime_t deadline;
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54

55
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
77 78 79 80
	ktime_t last_cmd_cmpl_time;
	ktime_t last_mpar_reset;
	int mpar_count;
	int refcount;
81
};
82

83 84 85 86
/* Array  to represent the PCC channel per subspace id */
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
/* The cpu_pcc_subspace_idx containsper CPU subspace id */
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 88 89 90 91 92 93 94 95 96

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

97
/* pcc mapped address + header size + offset within PCC subspace */
98 99
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
						0x8 + (offs))
100

101
/* Check if a CPC register is in PCC */
102 103 104 105
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

106 107 108 109 110 111 112 113 114 115 116
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
117 118
/*
 * Arbitrary Retries in case the remote processor is slow to respond
119 120
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
121 122 123
 */
#define NUM_RETRIES 500

124 125 126 127 128 129 130 131 132 133 134 135 136 137
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
					struct attribute *attr,	char *buf) \
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

162 163 164 165 166
static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
167
	int ret;
168

169 170 171
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
172 173 174 175 176 177 178 179 180 181

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
182 183 184 185
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
186 187 188 189 190 191 192 193
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

194
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
195
{
196
	int ret = -EIO, status = 0;
197 198 199 200 201
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(),
					  pcc_ss_data->deadline);
202

203
	if (!pcc_ss_data->platform_owns_pcc)
204 205
		return 0;

206 207
	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
208 209 210 211 212
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
213 214
		status = readw_relaxed(&generic_comm_base->status);
		if (status & PCC_CMD_COMPLETE_MASK) {
215
			ret = 0;
216 217
			if (chk_err_bit && (status & PCC_ERROR_MASK))
				ret = -EIO;
218 219 220 221 222 223 224 225 226
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

227
	if (likely(!ret))
228
		pcc_ss_data->platform_owns_pcc = false;
229 230 231
	else
		pr_err("PCC check channel failed. Status=%x\n", status);

232 233 234
	return ret;
}

235 236 237 238
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
239
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240
{
241
	int ret = -EIO, i;
242
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243
	struct acpi_pcct_shared_memory *generic_comm_base =
244
		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
245
	unsigned int time_delta;
246

247 248 249 250 251
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
252 253 254 255 256
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
257 258
		if (pcc_ss_data->pending_pcc_write_cmd)
			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259

260
		ret = check_pcc_chan(pcc_ss_id, false);
261
		if (ret)
262 263
			goto end;
	} else /* CMD_WRITE */
264
		pcc_ss_data->pending_pcc_write_cmd = FALSE;
265

266 267 268 269 270
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
271 272 273 274 275
	if (pcc_ss_data->pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(),
					    pcc_ss_data->last_cmd_cmpl_time);
		if (pcc_ss_data->pcc_mrtt > time_delta)
			udelay(pcc_ss_data->pcc_mrtt - time_delta);
276 277 278 279 280 281 282 283 284 285 286 287 288
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
289 290 291 292 293
	if (pcc_ss_data->pcc_mpar) {
		if (pcc_ss_data->mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(),
						    pcc_ss_data->last_mpar_reset);
			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294
				pr_debug("PCC cmd not sent due to MPAR limit");
295 296
				ret = -EIO;
				goto end;
297
			}
298 299
			pcc_ss_data->last_mpar_reset = ktime_get();
			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
300
		}
301
		pcc_ss_data->mpar_count--;
302 303
	}

304
	/* Write to the shared comm region. */
305
	writew_relaxed(cmd, &generic_comm_base->command);
306 307

	/* Flip CMD COMPLETE bit */
308
	writew_relaxed(0, &generic_comm_base->status);
309

310
	pcc_ss_data->platform_owns_pcc = true;
311

312
	/* Ring doorbell */
313
	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
314
	if (ret < 0) {
315
		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
316
				cmd, ret);
317
		goto end;
318 319
	}

320
	/* wait for completion and check for PCC errro bit */
321
	ret = check_pcc_chan(pcc_ss_id, true);
322

323 324
	if (pcc_ss_data->pcc_mrtt)
		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
325

326 327
	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
328
	else
329
		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
330 331 332 333 334 335 336 337 338

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

339
				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
340 341 342
					desc->write_cmd_status = ret;
			}
		}
343 344
		pcc_ss_data->pcc_write_cnt++;
		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
345 346
	}

347
	return ret;
348 349 350 351
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
352
	if (ret < 0)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
427
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
428 429 430 431 432
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
433
	struct cppc_cpudata *pr, *match_pr;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
454 455 456 457
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
479 480 481 482
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
512 513 514 515
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

546
static int register_pcc_channel(int pcc_ss_idx)
547
{
548
	struct acpi_pcct_hw_reduced *cppc_ss;
549
	u64 usecs_lat;
550

551 552 553
	if (pcc_ss_idx >= 0) {
		pcc_data[pcc_ss_idx]->pcc_channel =
			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
554

555
		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
556 557 558 559 560 561 562 563 564 565
			pr_err("Failed to find PCC communication channel\n");
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
566
		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
567 568 569 570 571 572

		if (!cppc_ss) {
			pr_err("No PCC subspace found for CPPC\n");
			return -ENODEV;
		}

573 574 575 576 577 578
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
579 580 581 582 583 584 585 586
		pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;

		pcc_data[pcc_ss_idx]->pcc_comm_addr =
			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
587 588 589 590 591
			pr_err("Failed to ioremap PCC comm region mem\n");
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
592
		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
593 594 595 596 597
	}

	return 0;
}

598 599 600 601 602 603 604 605 606 607 608 609 610
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

/**
 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 *
 * Check and allocate the cppc_pcc_data memory.
 * In some processor configurations it is possible that same subspace
 * is shared between multiple CPU's. This is seen especially in CPU's
 * with hardware multi-threading support.
 *
 * Return: 0 for success, errno for failure
 */
int pcc_data_alloc(int pcc_ss_id)
{
	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
		return -EINVAL;

	if (pcc_data[pcc_ss_id]) {
		pcc_data[pcc_ss_id]->refcount++;
	} else {
		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
					      GFP_KERNEL);
		if (!pcc_data[pcc_ss_id])
			return -ENOMEM;
		pcc_data[pcc_ss_id]->refcount++;
	}

	return 0;
}
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
697
	struct device *cpu_dev;
698 699
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
700
	int pcc_subspace_id = -1;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}

	/* Only support CPPCv2. Bail otherwise. */
	if (num_ent != CPPC_NUM_ENT) {
		pr_debug("Firmware exports %d entries. Expected: %d\n",
				num_ent, CPPC_NUM_ENT);
		goto out_free;
	}

737 738
	cpc_ptr->num_entries = num_ent;

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}

	if (cpc_rev != CPPC_REV) {
		pr_debug("Firmware exports revision:%d. Expected:%d\n",
				cpc_rev, CPPC_REV);
		goto out_free;
	}

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
773 774 775 776 777
				if (pcc_subspace_id < 0) {
					pcc_subspace_id = gas_t->access_width;
					if (pcc_data_alloc(pcc_subspace_id))
						goto out_free;
				} else if (pcc_subspace_id != gas_t->access_width) {
778 779 780
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
781 782 783 784 785 786 787 788 789 790
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
791 792 793 794 795
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
796 797 798 799 800 801 802 803 804
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
805
	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
806 807 808 809 810 811 812 813
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

814 815 816
	/* Register PCC channel once for all PCC subspace id. */
	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_id);
817 818
		if (ret)
			goto out_free;
819

820 821
		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
822 823 824 825 826
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

827 828
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
829 830
	if (!cpu_dev) {
		ret = -EINVAL;
831
		goto out_free;
832
	}
833

834 835 836
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

837 838
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
839 840
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
841
		goto out_free;
842
	}
843

844 845 846 847
	kfree(output.pointer);
	return 0;

out_free:
848 849 850 851 852 853 854
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
872 873
	unsigned int i;
	void __iomem *addr;
874 875 876 877 878 879 880 881 882 883 884 885
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);

	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
			pcc_data[pcc_ss_id]->refcount--;
			if (!pcc_data[pcc_ss_id]->refcount) {
				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
				pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
				kfree(pcc_data[pcc_ss_id]);
			}
		}
	}
886

887
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
888 889
	if (!cpc_ptr)
		return;
890 891 892 893 894 895 896 897

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

898
	kobject_put(&cpc_ptr->kobj);
899 900 901 902
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 * cpc_read_ffh() - Read FFH register
 * @cpunum:	cpu number to read
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
 * @cpunum:	cpu number to write
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

933 934 935 936 937
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
938

939
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
940
{
941
	int ret_val = 0;
942
	void __iomem *vaddr = 0;
943
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
944 945 946 947 948 949
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
950 951

	*val = 0;
952
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
953
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
954 955
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
956 957
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
958 959 960
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
961

962
	switch (reg->bit_width) {
963
		case 8:
964
			*val = readb_relaxed(vaddr);
965 966
			break;
		case 16:
967
			*val = readw_relaxed(vaddr);
968 969
			break;
		case 32:
970
			*val = readl_relaxed(vaddr);
971 972
			break;
		case 64:
973
			*val = readq_relaxed(vaddr);
974 975 976
			break;
		default:
			pr_debug("Error: Cannot read %u bit width from PCC\n",
977
					reg->bit_width);
978
			ret_val = -EFAULT;
979 980
	}

981
	return ret_val;
982 983
}

984
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
985
{
986
	int ret_val = 0;
987
	void __iomem *vaddr = 0;
988
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
989
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
990

991
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
992
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
993 994
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
995 996
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
997 998 999
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1000

1001
	switch (reg->bit_width) {
1002
		case 8:
1003
			writeb_relaxed(val, vaddr);
1004 1005
			break;
		case 16:
1006
			writew_relaxed(val, vaddr);
1007 1008
			break;
		case 32:
1009
			writel_relaxed(val, vaddr);
1010 1011
			break;
		case 64:
1012
			writeq_relaxed(val, vaddr);
1013 1014 1015
			break;
		default:
			pr_debug("Error: Cannot write %u bit width to PCC\n",
1016
					reg->bit_width);
1017 1018
			ret_val = -EFAULT;
			break;
1019 1020
	}

1021
	return ret_val;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1034 1035 1036
	struct cpc_register_resource *highest_reg, *lowest_reg,
		*lowest_non_linear_reg, *nominal_reg;
	u64 high, low, nom, min_nonlinear;
1037
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1038
	struct cppc_pcc_data *pcc_ss_data;
1039
	int ret = 0, regs_in_pcc = 0;
1040

1041
	if (!cpc_desc || pcc_ss_id < 0) {
1042 1043 1044 1045
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

1046
	pcc_ss_data = pcc_data[pcc_ss_id];
1047 1048
	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1049 1050
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1051 1052

	/* Are any of the regs PCC ?*/
1053
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1054
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1055
		regs_in_pcc = 1;
1056
		down_write(&pcc_ss_data->pcc_lock);
1057
		/* Ring doorbell once to update PCC subspace */
1058
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1059 1060 1061 1062 1063
			ret = -EIO;
			goto out_err;
		}
	}

1064
	cpc_read(cpunum, highest_reg, &high);
1065 1066
	perf_caps->highest_perf = high;

1067
	cpc_read(cpunum, lowest_reg, &low);
1068 1069
	perf_caps->lowest_perf = low;

1070
	cpc_read(cpunum, nominal_reg, &nom);
1071 1072
	perf_caps->nominal_perf = nom;

1073 1074 1075 1076
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1077 1078 1079
		ret = -EFAULT;

out_err:
1080
	if (regs_in_pcc)
1081
		up_write(&pcc_ss_data->pcc_lock);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1096 1097
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
1098
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1099
	struct cppc_pcc_data *pcc_ss_data;
1100
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1101
	int ret = 0, regs_in_pcc = 0;
1102

1103
	if (!cpc_desc || pcc_ss_id < 0) {
1104 1105 1106 1107
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

1108
	pcc_ss_data = pcc_data[pcc_ss_id];
1109 1110
	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1111 1112 1113 1114 1115 1116 1117 1118 1119
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
	 * If refernce perf register is not supported then we should
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120 1121

	/* Are any of the regs PCC ?*/
1122 1123
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1124
		down_write(&pcc_ss_data->pcc_lock);
1125
		regs_in_pcc = 1;
1126
		/* Ring doorbell once to update PCC subspace */
1127
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1128 1129 1130 1131 1132
			ret = -EIO;
			goto out_err;
		}
	}

1133 1134 1135
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1136 1137 1138 1139 1140 1141 1142 1143

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1144
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1145

1146
	if (!delivered || !reference ||	!ref_perf) {
1147 1148 1149 1150 1151 1152
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1153
	perf_fb_ctrs->reference_perf = ref_perf;
1154
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1155
out_err:
1156
	if (regs_in_pcc)
1157
		up_write(&pcc_ss_data->pcc_lock);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
1173 1174
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
1175 1176
	int ret = 0;

1177
	if (!cpc_desc || pcc_ss_id < 0) {
1178 1179 1180 1181
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

1182
	pcc_ss_data = pcc_data[pcc_ss_id];
1183 1184
	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1193 1194 1195
		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
		if (pcc_ss_data->platform_owns_pcc) {
			ret = check_pcc_chan(pcc_ss_id, false);
1196
			if (ret) {
1197
				up_read(&pcc_ss_data->pcc_lock);
1198 1199 1200
				return ret;
			}
		}
1201 1202 1203 1204
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
1205 1206
		pcc_ss_data->pending_pcc_write_cmd = true;
		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1207
		cpc_desc->write_cmd_status = 0;
1208 1209
	}

1210 1211 1212 1213
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1214
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1215

1216
	if (CPC_IN_PCC(desired_reg))
1217
		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1265
		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1266
			/* Update only if there are pending write commands */
1267 1268 1269
			if (pcc_ss_data->pending_pcc_write_cmd)
				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1270 1271
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1272 1273
			wait_event(pcc_ss_data->pcc_write_wait_q,
				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1274 1275 1276

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1277 1278 1279 1280
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;
1306
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1307
	struct cppc_pcc_data *pcc_ss_data;
1308 1309 1310 1311 1312 1313 1314 1315 1316

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1317 1318 1319 1320
	if (pcc_ss_id < 0)
		return CPUFREQ_ETERNAL;

	pcc_ss_data = pcc_data[pcc_ss_id];
1321 1322
	if (pcc_ss_data->pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1323

1324 1325
	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1326 1327 1328 1329

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);