core.c 216.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
77
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
78

79
#include <asm/switch_to.h>
80
#include <asm/tlb.h>
81
#include <asm/irq_regs.h>
82
#include <asm/mutex.h>
G
Glauber Costa 已提交
83 84 85
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
86

87
#include "sched.h"
88
#include "../workqueue_internal.h"
89
#include "../smpboot.h"
90

91
#define CREATE_TRACE_POINTS
92
#include <trace/events/sched.h>
93

94 95
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96

97
static void update_rq_clock_task(struct rq *rq, s64 delta);
98

99
void update_rq_clock(struct rq *rq)
100
{
101
	s64 delta;
102

103 104 105
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106
		return;
107

108
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 110
	if (delta < 0)
		return;
111 112
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
113 114
}

I
Ingo Molnar 已提交
115 116 117
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
118 119 120 121

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
122
const_debug unsigned int sysctl_sched_features =
123
#include "features.h"
P
Peter Zijlstra 已提交
124 125 126 127
	0;

#undef SCHED_FEAT

128 129 130 131 132 133
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

134 135 136 137 138 139 140 141
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
142
/*
P
Peter Zijlstra 已提交
143
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
144 145
 * default: 1s
 */
P
Peter Zijlstra 已提交
146
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
147

148
__read_mostly int scheduler_running;
149

P
Peter Zijlstra 已提交
150 151 152 153 154
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
155

156 157 158
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
159
/*
160
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
161
 */
A
Alexey Dobriyan 已提交
162
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
163 164
	__acquires(rq->lock)
{
165
	struct rq *rq;
L
Linus Torvalds 已提交
166 167 168

	local_irq_disable();
	rq = this_rq();
169
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
170 171 172 173

	return rq;
}

174 175 176
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
177
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 179 180 181 182 183 184 185 186 187
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188
			rf->cookie = lockdep_pin_lock(&rq->lock);
189 190 191 192 193 194 195 196 197 198 199 200
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
201
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 203 204 205 206 207
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
208
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228
			rf->cookie = lockdep_pin_lock(&rq->lock);
229 230 231
			return rq;
		}
		raw_spin_unlock(&rq->lock);
232
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 234 235 236 237 238

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

260
	raw_spin_lock(&rq->lock);
261
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
262
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
264 265 266 267

	return HRTIMER_NORESTART;
}

268
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
269

270
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
271 272 273
{
	struct hrtimer *timer = &rq->hrtick_timer;

274
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
275 276
}

277 278 279 280
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
281
{
282
	struct rq *rq = arg;
283

284
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	raw_spin_unlock(&rq->lock);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
511
		return;
512
	resched_curr(rq);
513
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
514
}
515

516
#ifdef CONFIG_SMP
517
#ifdef CONFIG_NO_HZ_COMMON
518 519 520 521 522 523 524 525
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
526
int get_nohz_timer_target(void)
527
{
528
	int i, cpu = smp_processor_id();
529 530
	struct sched_domain *sd;

531
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 533
		return cpu;

534
	rcu_read_lock();
535
	for_each_domain(cpu, sd) {
536
		for_each_cpu(i, sched_domain_span(sd)) {
537 538 539 540
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 542 543 544
				cpu = i;
				goto unlock;
			}
		}
545
	}
546 547 548

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
549 550
unlock:
	rcu_read_unlock();
551 552
	return cpu;
}
553 554 555 556 557 558 559 560 561 562
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
563
static void wake_up_idle_cpu(int cpu)
564 565 566 567 568 569
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

570
	if (set_nr_and_not_polling(rq->idle))
571
		smp_send_reschedule(cpu);
572 573
	else
		trace_sched_wake_idle_without_ipi(cpu);
574 575
}

576
static bool wake_up_full_nohz_cpu(int cpu)
577
{
578 579 580 581 582 583
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
584 585
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
586
	if (tick_nohz_full_cpu(cpu)) {
587 588
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
589
			tick_nohz_full_kick_cpu(cpu);
590 591 592 593 594 595
		return true;
	}

	return false;
}

596 597 598 599 600
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
601 602
void wake_up_nohz_cpu(int cpu)
{
603
	if (!wake_up_full_nohz_cpu(cpu))
604 605 606
		wake_up_idle_cpu(cpu);
}

607
static inline bool got_nohz_idle_kick(void)
608
{
609
	int cpu = smp_processor_id();
610 611 612 613 614 615 616 617 618 619 620 621 622

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
623 624
}

625
#else /* CONFIG_NO_HZ_COMMON */
626

627
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
628
{
629
	return false;
P
Peter Zijlstra 已提交
630 631
}

632
#endif /* CONFIG_NO_HZ_COMMON */
633

634
#ifdef CONFIG_NO_HZ_FULL
635
bool sched_can_stop_tick(struct rq *rq)
636
{
637 638 639 640 641 642
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

643
	/*
644 645
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
646
	 */
647 648 649 650 651
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
652 653
	}

654 655 656 657 658 659 660 661 662 663 664 665 666 667
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
668
		return false;
669

670
	return true;
671 672
}
#endif /* CONFIG_NO_HZ_FULL */
673

674
void sched_avg_update(struct rq *rq)
675
{
676 677
	s64 period = sched_avg_period();

678
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 680 681 682 683 684
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
685 686 687
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
688 689
}

690
#endif /* CONFIG_SMP */
691

692 693
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694
/*
695 696 697 698
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
699
 */
700
int walk_tg_tree_from(struct task_group *from,
701
			     tg_visitor down, tg_visitor up, void *data)
702 703
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
704
	int ret;
705

706 707
	parent = from;

708
down:
P
Peter Zijlstra 已提交
709 710
	ret = (*down)(parent, data);
	if (ret)
711
		goto out;
712 713 714 715 716 717 718
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
719
	ret = (*up)(parent, data);
720 721
	if (ret || parent == from)
		goto out;
722 723 724 725 726

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
727
out:
P
Peter Zijlstra 已提交
728
	return ret;
729 730
}

731
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
732
{
733
	return 0;
P
Peter Zijlstra 已提交
734
}
735 736
#endif

737 738
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
739 740 741
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
742 743 744
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
745
	if (idle_policy(p->policy)) {
746
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
747
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
748 749
		return;
	}
750

751 752
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
753 754
}

755
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756
{
757
	update_rq_clock(rq);
758 759
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
760
	p->sched_class->enqueue_task(rq, p, flags);
761 762
}

763
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764
{
765
	update_rq_clock(rq);
766 767
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
768
	p->sched_class->dequeue_task(rq, p, flags);
769 770
}

771
void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 773 774 775
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

776
	enqueue_task(rq, p, flags);
777 778
}

779
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 781 782 783
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

784
	dequeue_task(rq, p, flags);
785 786
}

787
static void update_rq_clock_task(struct rq *rq, s64 delta)
788
{
789 790 791 792 793 794 795 796
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
797
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
819 820
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821
	if (static_key_false((&paravirt_steal_rq_enabled))) {
822 823 824 825 826 827 828 829 830 831 832
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

833 834
	rq->clock_task += delta;

835
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 838
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

871
/*
I
Ingo Molnar 已提交
872
 * __normal_prio - return the priority that is based on the static prio
873 874 875
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
876
	return p->static_prio;
877 878
}

879 880 881 882 883 884 885
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
886
static inline int normal_prio(struct task_struct *p)
887 888 889
{
	int prio;

890 891 892
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
893 894 895 896 897 898 899 900 901 902 903 904 905
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
906
static int effective_prio(struct task_struct *p)
907 908 909 910 911 912 913 914 915 916 917 918
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
919 920 921
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
922 923
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
924
 */
925
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
926 927 928 929
{
	return cpu_curr(task_cpu(p)) == p;
}

930
/*
931 932 933 934 935
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
936
 */
937 938
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
939
				       int oldprio)
940 941 942
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
943
			prev_class->switched_from(rq, p);
944

P
Peter Zijlstra 已提交
945
		p->sched_class->switched_to(rq, p);
946
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
947
		p->sched_class->prio_changed(rq, p, oldprio);
948 949
}

950
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 952 953 954 955 956 957 958 959 960
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
961
				resched_curr(rq);
962 963 964 965 966 967 968 969 970
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
971
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972
		rq_clock_skip_update(rq, true);
973 974
}

L
Linus Torvalds 已提交
975
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
995
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
996 997 998 999
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
1000
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006 1007 1008
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1009
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1029
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1030 1031
{
	if (unlikely(!cpu_active(dest_cpu)))
1032
		return rq;
P
Peter Zijlstra 已提交
1033 1034 1035

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036
		return rq;
P
Peter Zijlstra 已提交
1037

1038 1039 1040
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1051 1052
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1065 1066 1067 1068 1069 1070 1071 1072

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1073 1074 1075 1076 1077 1078
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
			rq = __migrate_task(rq, p, arg->dest_cpu);
		else
			p->wake_cpu = arg->dest_cpu;
	}
1079 1080 1081
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1082 1083 1084 1085
	local_irq_enable();
	return 0;
}

1086 1087 1088 1089 1090
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1091 1092 1093 1094 1095
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1096 1097
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1098 1099 1100
	struct rq *rq = task_rq(p);
	bool queued, running;

1101
	lockdep_assert_held(&p->pi_lock);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1112
		dequeue_task(rq, p, DEQUEUE_SAVE);
1113 1114 1115 1116
	}
	if (running)
		put_prev_task(rq, p);

1117
	p->sched_class->set_cpus_allowed(p, new_mask);
1118 1119

	if (queued)
1120
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1121
	if (running)
1122
		set_curr_task(rq, p);
1123 1124
}

P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1134 1135
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1136
{
1137
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1138
	unsigned int dest_cpu;
1139 1140
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1141 1142
	int ret = 0;

1143
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148 1149 1150 1151
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1152 1153 1154 1155 1156 1157 1158 1159 1160
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1161 1162 1163
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1164
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1181 1182 1183 1184
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1185
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1186 1187 1188
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1189
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1190 1191 1192
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1193 1194 1195 1196 1197
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1198
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1199
		rq = move_queued_task(rq, p, dest_cpu);
1200
		lockdep_repin_lock(&rq->lock, rf.cookie);
1201
	}
P
Peter Zijlstra 已提交
1202
out:
1203
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1204 1205 1206

	return ret;
}
1207 1208 1209 1210 1211

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1212 1213
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1214
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1215
{
1216 1217 1218 1219 1220
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1221
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1222
			!p->on_rq);
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1233
#ifdef CONFIG_LOCKDEP
1234 1235 1236 1237 1238
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1239
	 * see task_group().
1240 1241 1242 1243
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1244 1245 1246
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1247 1248
#endif

1249
	trace_sched_migrate_task(p, new_cpu);
1250

1251
	if (task_cpu(p) != new_cpu) {
1252
		if (p->sched_class->migrate_task_rq)
1253
			p->sched_class->migrate_task_rq(p);
1254
		p->se.nr_migrations++;
1255
		perf_event_task_migrate(p);
1256
	}
I
Ingo Molnar 已提交
1257 1258

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1259 1260
}

1261 1262
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1263
	if (task_on_rq_queued(p)) {
1264 1265 1266 1267 1268
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1269
		p->on_rq = TASK_ON_RQ_MIGRATING;
1270 1271 1272
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1273
		p->on_rq = TASK_ON_RQ_QUEUED;
1274 1275 1276 1277 1278
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
L
Leo Yan 已提交
1279
		 * previous cpu our target instead of where it really is.
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1296 1297 1298
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1299 1300 1301
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1302 1303
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1304
	double_rq_lock(src_rq, dst_rq);
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1325 1326
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1349 1350 1351 1352
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1362
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 1364 1365 1366 1367 1368
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1369 1370 1371
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1372 1373 1374 1375 1376 1377 1378
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1385
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1386
{
1387
	int running, queued;
1388
	struct rq_flags rf;
R
Roland McGrath 已提交
1389
	unsigned long ncsw;
1390
	struct rq *rq;
L
Linus Torvalds 已提交
1391

1392 1393 1394 1395 1396 1397 1398 1399
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1412 1413 1414
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1415
			cpu_relax();
R
Roland McGrath 已提交
1416
		}
1417

1418 1419 1420 1421 1422
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1423
		rq = task_rq_lock(p, &rf);
1424
		trace_sched_wait_task(p);
1425
		running = task_running(rq, p);
1426
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1427
		ncsw = 0;
1428
		if (!match_state || p->state == match_state)
1429
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430
		task_rq_unlock(rq, p, &rf);
1431

R
Roland McGrath 已提交
1432 1433 1434 1435 1436 1437
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1448

1449 1450 1451 1452 1453
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1454
		 * So if it was still runnable (but just not actively
1455 1456 1457
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1458
		if (unlikely(queued)) {
1459 1460 1461 1462
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 1464
			continue;
		}
1465

1466 1467 1468 1469 1470 1471 1472
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1473 1474

	return ncsw;
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1484
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1490
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1500
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1501

1502
/*
1503
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1523
 */
1524 1525
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1526 1527
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1528 1529
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1546
	}
1547

1548 1549
	for (;;) {
		/* Any allowed, online CPU? */
1550
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 1552 1553
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1554 1555 1556
				continue;
			goto out;
		}
1557

1558
		/* No more Mr. Nice Guy. */
1559 1560
		switch (state) {
		case cpuset:
1561 1562 1563 1564 1565 1566
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1586
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 1588
					task_pid_nr(p), p->comm, cpu);
		}
1589 1590 1591 1592 1593
	}

	return dest_cpu;
}

1594
/*
1595
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596
 */
1597
static inline
1598
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599
{
1600 1601
	lockdep_assert_held(&p->pi_lock);

1602
	if (tsk_nr_cpus_allowed(p) > 1)
1603
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 1605
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1617
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1618
		     !cpu_online(cpu)))
1619
		cpu = select_fallback_rq(task_cpu(p), p);
1620 1621

	return cpu;
1622
}
1623 1624 1625 1626 1627 1628

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1629 1630 1631 1632 1633 1634 1635 1636 1637

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1638
#endif /* CONFIG_SMP */
1639

P
Peter Zijlstra 已提交
1640
static void
1641
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1642
{
1643
	struct rq *rq;
1644

1645 1646 1647 1648
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1649

1650 1651
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1652 1653
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1654 1655 1656
	} else {
		struct sched_domain *sd;

1657
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658
		rcu_read_lock();
1659
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1660
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1662 1663 1664
				break;
			}
		}
1665
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1666
	}
1667 1668

	if (wake_flags & WF_MIGRATED)
1669
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1670 1671
#endif /* CONFIG_SMP */

1672 1673
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1674 1675

	if (wake_flags & WF_SYNC)
1676
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1677 1678
}

1679
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1680
{
T
Tejun Heo 已提交
1681
	activate_task(rq, p, en_flags);
1682
	p->on_rq = TASK_ON_RQ_QUEUED;
1683 1684 1685 1686

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1687 1688
}

1689 1690 1691
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1692 1693
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1694 1695 1696
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1697 1698
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1699
#ifdef CONFIG_SMP
1700 1701
	if (p->sched_class->task_woken) {
		/*
1702 1703
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1704
		 */
1705
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1706
		p->sched_class->task_woken(rq, p);
1707
		lockdep_repin_lock(&rq->lock, cookie);
1708
	}
T
Tejun Heo 已提交
1709

1710
	if (rq->idle_stamp) {
1711
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1712
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1713

1714 1715 1716
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1717
			rq->avg_idle = max;
1718

T
Tejun Heo 已提交
1719 1720 1721 1722 1723
		rq->idle_stamp = 0;
	}
#endif
}

1724
static void
1725 1726
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1727
{
1728 1729
	int en_flags = ENQUEUE_WAKEUP;

1730 1731
	lockdep_assert_held(&rq->lock);

1732 1733 1734
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1735 1736

	if (wake_flags & WF_MIGRATED)
1737
		en_flags |= ENQUEUE_MIGRATED;
1738 1739
#endif

1740
	ttwu_activate(rq, p, en_flags);
1741
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1752
	struct rq_flags rf;
1753 1754 1755
	struct rq *rq;
	int ret = 0;

1756
	rq = __task_rq_lock(p, &rf);
1757
	if (task_on_rq_queued(p)) {
1758 1759
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1760
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761 1762
		ret = 1;
	}
1763
	__task_rq_unlock(rq, &rf);
1764 1765 1766 1767

	return ret;
}

1768
#ifdef CONFIG_SMP
1769
void sched_ttwu_pending(void)
1770 1771
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1772
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1773
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1774
	struct task_struct *p;
1775
	unsigned long flags;
1776

1777 1778 1779 1780
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1781
	cookie = lockdep_pin_lock(&rq->lock);
1782

P
Peter Zijlstra 已提交
1783
	while (llist) {
P
Peter Zijlstra 已提交
1784 1785
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1786 1787
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1788 1789 1790 1791 1792

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1793 1794
	}

1795
	lockdep_unpin_lock(&rq->lock, cookie);
1796
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1797 1798 1799 1800
}

void scheduler_ipi(void)
{
1801 1802 1803 1804 1805
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1806
	preempt_fold_need_resched();
1807

1808
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1825
	sched_ttwu_pending();
1826 1827 1828 1829

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1830
	if (unlikely(got_nohz_idle_kick())) {
1831
		this_rq()->idle_balance = 1;
1832
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1833
	}
1834
	irq_exit();
1835 1836
}

P
Peter Zijlstra 已提交
1837
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838
{
1839 1840
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1841 1842
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1843 1844 1845 1846 1847 1848
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1849
}
1850

1851 1852 1853 1854 1855
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1856 1857 1858 1859
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1870 1871 1872

out:
	rcu_read_unlock();
1873 1874
}

1875
bool cpus_share_cache(int this_cpu, int that_cpu)
1876 1877 1878
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1879
#endif /* CONFIG_SMP */
1880

1881
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882 1883
{
	struct rq *rq = cpu_rq(cpu);
1884
	struct pin_cookie cookie;
1885

1886
#if defined(CONFIG_SMP)
1887
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1889
		ttwu_queue_remote(p, cpu, wake_flags);
1890 1891 1892 1893
		return;
	}
#endif

1894
	raw_spin_lock(&rq->lock);
1895
	cookie = lockdep_pin_lock(&rq->lock);
1896
	ttwu_do_activate(rq, p, wake_flags, cookie);
1897
	lockdep_unpin_lock(&rq->lock, cookie);
1898
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1951
 *   2) smp_cond_load_acquire(!X->on_cpu)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1962
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1988
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 1990 1991
 *
 */

T
Tejun Heo 已提交
1992
/**
L
Linus Torvalds 已提交
1993
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1994
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1995
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1996
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
2004
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
2005
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2006
 */
2007 2008
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2009 2010
{
	unsigned long flags;
2011
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2012

2013 2014 2015 2016 2017 2018 2019
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2020
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2021
	if (!(p->state & state))
L
Linus Torvalds 已提交
2022 2023
		goto out;

2024 2025
	trace_sched_waking(p);

2026
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2027 2028
	cpu = task_cpu(p);

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2051 2052
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2053 2054

#ifdef CONFIG_SMP
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2074
	/*
2075 2076
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2077 2078 2079 2080 2081
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2082
	 */
2083
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2084

2085
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2086
	p->state = TASK_WAKING;
2087

2088
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2089 2090
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2091
		set_task_cpu(p, cpu);
2092
	}
L
Linus Torvalds 已提交
2093 2094
#endif /* CONFIG_SMP */

2095
	ttwu_queue(p, cpu, wake_flags);
2096
stat:
2097
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2098
out:
2099
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2100 2101 2102 2103

	return success;
}

T
Tejun Heo 已提交
2104 2105 2106
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2107
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2108
 *
2109
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2110
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2111
 * the current task.
T
Tejun Heo 已提交
2112
 */
2113
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2114 2115 2116
{
	struct rq *rq = task_rq(p);

2117 2118 2119 2120
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2121 2122
	lockdep_assert_held(&rq->lock);

2123
	if (!raw_spin_trylock(&p->pi_lock)) {
2124 2125 2126 2127 2128 2129
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2130
		lockdep_unpin_lock(&rq->lock, cookie);
2131 2132 2133
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2134
		lockdep_repin_lock(&rq->lock, cookie);
2135 2136
	}

T
Tejun Heo 已提交
2137
	if (!(p->state & TASK_NORMAL))
2138
		goto out;
T
Tejun Heo 已提交
2139

2140 2141
	trace_sched_waking(p);

2142
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2143 2144
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2145
	ttwu_do_wakeup(rq, p, 0, cookie);
2146
	ttwu_stat(p, smp_processor_id(), 0);
2147 2148
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2149 2150
}

2151 2152 2153 2154 2155
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2156 2157 2158
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2159 2160 2161 2162
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2163
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2164
{
2165
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2166 2167 2168
}
EXPORT_SYMBOL(wake_up_process);

2169
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2170 2171 2172 2173
{
	return try_to_wake_up(p, state, 0);
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2186 2187 2188

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2189 2190
}

L
Linus Torvalds 已提交
2191 2192 2193
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2194 2195 2196
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2197
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2198
{
P
Peter Zijlstra 已提交
2199 2200 2201
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2202 2203
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2204
	p->se.prev_sum_exec_runtime	= 0;
2205
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2206
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2207
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2208

2209 2210 2211 2212
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2213
#ifdef CONFIG_SCHEDSTATS
2214
	/* Even if schedstat is disabled, there should not be garbage */
2215
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2216
#endif
N
Nick Piggin 已提交
2217

2218
	RB_CLEAR_NODE(&p->dl.rb_node);
2219
	init_dl_task_timer(&p->dl);
2220
	__dl_clear_params(p);
2221

P
Peter Zijlstra 已提交
2222
	INIT_LIST_HEAD(&p->rt.run_list);
2223 2224 2225 2226
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2227

2228 2229 2230
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2231 2232 2233

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2234
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2235 2236 2237
		p->mm->numa_scan_seq = 0;
	}

2238 2239 2240 2241 2242
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2243 2244
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2245
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2246
	p->numa_work.next = &p->numa_work;
2247
	p->numa_faults = NULL;
2248 2249
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2250 2251

	p->numa_group = NULL;
2252
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2253 2254
}

2255 2256
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2257
#ifdef CONFIG_NUMA_BALANCING
2258

2259 2260 2261
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2262
		static_branch_enable(&sched_numa_balancing);
2263
	else
2264
		static_branch_disable(&sched_numa_balancing);
2265
}
2266 2267 2268 2269 2270 2271 2272

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2273
	int state = static_branch_likely(&sched_numa_balancing);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2289

2290 2291
#ifdef CONFIG_SCHEDSTATS

2292
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2293
static bool __initdata __sched_schedstats = false;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2317 2318 2319 2320 2321
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2322
	if (!strcmp(str, "enable")) {
2323
		__sched_schedstats = true;
2324 2325
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2326
		__sched_schedstats = false;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2337 2338 2339 2340 2341
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2362 2363 2364 2365
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2366 2367 2368 2369

/*
 * fork()/clone()-time setup:
 */
2370
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2371
{
2372
	unsigned long flags;
I
Ingo Molnar 已提交
2373 2374
	int cpu = get_cpu();

2375
	__sched_fork(clone_flags, p);
2376
	/*
2377
	 * We mark the process as NEW here. This guarantees that
2378 2379 2380
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2381
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2382

2383 2384 2385 2386 2387
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2388 2389 2390 2391
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2392
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2393
			p->policy = SCHED_NORMAL;
2394
			p->static_prio = NICE_TO_PRIO(0);
2395 2396 2397 2398 2399 2400
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2401

2402 2403 2404 2405 2406 2407
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2408

2409 2410 2411 2412 2413 2414
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2415
		p->sched_class = &fair_sched_class;
2416
	}
2417

2418
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2419

2420 2421 2422 2423 2424 2425 2426
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2427
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2428 2429 2430 2431 2432 2433 2434
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2435
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2436

2437
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2438
	if (likely(sched_info_on()))
2439
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2440
#endif
P
Peter Zijlstra 已提交
2441 2442
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2443
#endif
2444
	init_task_preempt_count(p);
2445
#ifdef CONFIG_SMP
2446
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2447
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2448
#endif
2449

N
Nick Piggin 已提交
2450
	put_cpu();
2451
	return 0;
L
Linus Torvalds 已提交
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2473 2474
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2475 2476 2477
	return &cpu_rq(i)->rd->dl_bw;
}

2478
static inline int dl_bw_cpus(int i)
2479
{
2480 2481 2482
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2483 2484
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2485 2486 2487 2488
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2489 2490 2491 2492 2493 2494 2495
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2496
static inline int dl_bw_cpus(int i)
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2509 2510 2511
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2512 2513 2514 2515 2516 2517
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2518
	u64 period = attr->sched_period ?: attr->sched_deadline;
2519 2520
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2521
	int cpus, err = -1;
2522

2523 2524
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2525 2526 2527 2528 2529 2530 2531 2532
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2533
	cpus = dl_bw_cpus(task_cpu(p));
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559 2560
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2561
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2562
{
2563
	struct rq_flags rf;
I
Ingo Molnar 已提交
2564
	struct rq *rq;
2565

2566
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2567
	p->state = TASK_RUNNING;
2568 2569 2570 2571 2572
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2573 2574 2575
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2576
	 */
2577
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2578
#endif
2579
	rq = __task_rq_lock(p, &rf);
2580
	post_init_entity_util_avg(&p->se);
2581

P
Peter Zijlstra 已提交
2582
	activate_task(rq, p, 0);
2583
	p->on_rq = TASK_ON_RQ_QUEUED;
2584
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2585
	check_preempt_curr(rq, p, WF_FORK);
2586
#ifdef CONFIG_SMP
2587 2588 2589 2590 2591
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2592
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2593
		p->sched_class->task_woken(rq, p);
2594
		lockdep_repin_lock(&rq->lock, rf.cookie);
2595
	}
2596
#endif
2597
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2598 2599
}

2600 2601
#ifdef CONFIG_PREEMPT_NOTIFIERS

2602 2603
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2616
/**
2617
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2618
 * @notifier: notifier struct to register
2619 2620 2621
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2622 2623 2624
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2625 2626 2627 2628 2629 2630
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2631
 * @notifier: notifier struct to unregister
2632
 *
2633
 * This is *not* safe to call from within a preemption notifier.
2634 2635 2636 2637 2638 2639 2640
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2641
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642 2643 2644
{
	struct preempt_notifier *notifier;

2645
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2646 2647 2648
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2649 2650 2651 2652 2653 2654
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2655
static void
2656 2657
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2658 2659 2660
{
	struct preempt_notifier *notifier;

2661
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2662 2663 2664
		notifier->ops->sched_out(notifier, next);
}

2665 2666 2667 2668 2669 2670 2671 2672
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2673
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2674

2675
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 2677 2678
{
}

2679
static inline void
2680 2681 2682 2683 2684
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2685
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2686

2687 2688 2689
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2690
 * @prev: the current task that is being switched out
2691 2692 2693 2694 2695 2696 2697 2698 2699
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2700 2701 2702
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2703
{
2704
	sched_info_switch(rq, prev, next);
2705
	perf_event_task_sched_out(prev, next);
2706
	fire_sched_out_preempt_notifiers(prev, next);
2707 2708 2709 2710
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2711 2712 2713 2714
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2715 2716 2717 2718
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2719 2720
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2721
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2722 2723
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2724 2725 2726 2727 2728
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2729
 */
2730
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2731 2732
	__releases(rq->lock)
{
2733
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2734
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2735
	long prev_state;
L
Linus Torvalds 已提交
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2748 2749 2750 2751
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2752

L
Linus Torvalds 已提交
2753 2754 2755 2756
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2757
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2758 2759
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2760 2761 2762 2763 2764
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2765
	 */
O
Oleg Nesterov 已提交
2766
	prev_state = prev->state;
2767
	vtime_task_switch(prev);
2768
	perf_event_task_sched_in(prev, current);
2769
	finish_lock_switch(rq, prev);
2770
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2771

2772
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2773 2774
	if (mm)
		mmdrop(mm);
2775
	if (unlikely(prev_state == TASK_DEAD)) {
2776 2777 2778
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2779 2780 2781
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2782
		 */
2783
		kprobe_flush_task(prev);
2784 2785 2786 2787

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2788
		put_task_struct(prev);
2789
	}
2790

2791
	tick_nohz_task_switch();
2792
	return rq;
L
Linus Torvalds 已提交
2793 2794
}

2795 2796 2797
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2798
static void __balance_callback(struct rq *rq)
2799
{
2800 2801 2802
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2803

2804 2805 2806 2807 2808 2809 2810 2811
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2812

2813
		func(rq);
2814
	}
2815 2816 2817 2818 2819 2820 2821
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2822 2823 2824
}

#else
2825

2826
static inline void balance_callback(struct rq *rq)
2827
{
L
Linus Torvalds 已提交
2828 2829
}

2830 2831
#endif

L
Linus Torvalds 已提交
2832 2833 2834 2835
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2836
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2837 2838
	__releases(rq->lock)
{
2839
	struct rq *rq;
2840

2841 2842 2843 2844 2845 2846 2847 2848 2849
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2850
	rq = finish_task_switch(prev);
2851
	balance_callback(rq);
2852
	preempt_enable();
2853

L
Linus Torvalds 已提交
2854
	if (current->set_child_tid)
2855
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2856 2857 2858
}

/*
2859
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2860
 */
2861
static __always_inline struct rq *
2862
context_switch(struct rq *rq, struct task_struct *prev,
2863
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2864
{
I
Ingo Molnar 已提交
2865
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2866

2867
	prepare_task_switch(rq, prev, next);
2868

I
Ingo Molnar 已提交
2869 2870
	mm = next->mm;
	oldmm = prev->active_mm;
2871 2872 2873 2874 2875
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2876
	arch_start_context_switch(prev);
2877

2878
	if (!mm) {
L
Linus Torvalds 已提交
2879 2880 2881 2882
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2883
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2884

2885
	if (!prev->mm) {
L
Linus Torvalds 已提交
2886 2887 2888
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2889 2890 2891 2892 2893 2894
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2895
	lockdep_unpin_lock(&rq->lock, cookie);
2896
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2897 2898 2899

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2900
	barrier();
2901 2902

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2903 2904 2905
}

/*
2906
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2907 2908
 *
 * externally visible scheduler statistics: current number of runnable
2909
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2919
}
L
Linus Torvalds 已提交
2920

2921 2922
/*
 * Check if only the current task is running on the cpu.
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2933 2934 2935
 */
bool single_task_running(void)
{
2936
	return raw_rq()->nr_running == 1;
2937 2938 2939
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2940
unsigned long long nr_context_switches(void)
2941
{
2942 2943
	int i;
	unsigned long long sum = 0;
2944

2945
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2946
		sum += cpu_rq(i)->nr_switches;
2947

L
Linus Torvalds 已提交
2948 2949
	return sum;
}
2950

L
Linus Torvalds 已提交
2951 2952 2953
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2954

2955
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2956
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2957

L
Linus Torvalds 已提交
2958 2959
	return sum;
}
2960

2961
unsigned long nr_iowait_cpu(int cpu)
2962
{
2963
	struct rq *this = cpu_rq(cpu);
2964 2965
	return atomic_read(&this->nr_iowait);
}
2966

2967 2968
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2969 2970 2971
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2972 2973
}

I
Ingo Molnar 已提交
2974
#ifdef CONFIG_SMP
2975

2976
/*
P
Peter Zijlstra 已提交
2977 2978
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2979
 */
P
Peter Zijlstra 已提交
2980
void sched_exec(void)
2981
{
P
Peter Zijlstra 已提交
2982
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2983
	unsigned long flags;
2984
	int dest_cpu;
2985

2986
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2987
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 2989
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2990

2991
	if (likely(cpu_active(dest_cpu))) {
2992
		struct migration_arg arg = { p, dest_cpu };
2993

2994 2995
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2996 2997
		return;
	}
2998
unlock:
2999
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3000
}
I
Ingo Molnar 已提交
3001

L
Linus Torvalds 已提交
3002 3003 3004
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3005
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3006 3007

EXPORT_PER_CPU_SYMBOL(kstat);
3008
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3027 3028 3029 3030 3031 3032 3033
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3034
	struct rq_flags rf;
3035
	struct rq *rq;
3036
	u64 ns;
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
3047 3048
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3049
	 */
3050
	if (!p->on_cpu || !task_on_rq_queued(p))
3051 3052 3053
		return p->se.sum_exec_runtime;
#endif

3054
	rq = task_rq_lock(p, &rf);
3055 3056 3057 3058 3059 3060
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3061
		prefetch_curr_exec_start(p);
3062 3063 3064 3065
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3066
	task_rq_unlock(rq, p, &rf);
3067 3068 3069

	return ns;
}
3070

3071 3072 3073 3074 3075 3076 3077 3078
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3079
	struct task_struct *curr = rq->curr;
3080 3081

	sched_clock_tick();
I
Ingo Molnar 已提交
3082

3083
	raw_spin_lock(&rq->lock);
3084
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3085
	curr->sched_class->task_tick(rq, curr, 0);
3086
	cpu_load_update_active(rq);
3087
	calc_global_load_tick(rq);
3088
	raw_spin_unlock(&rq->lock);
3089

3090
	perf_event_task_tick();
3091

3092
#ifdef CONFIG_SMP
3093
	rq->idle_balance = idle_cpu(cpu);
3094
	trigger_load_balance(rq);
3095
#endif
3096
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3110 3111
 *
 * Return: Maximum deferment in nanoseconds.
3112 3113 3114 3115
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3116
	unsigned long next, now = READ_ONCE(jiffies);
3117 3118 3119 3120 3121 3122

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3123
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3124
}
3125
#endif
L
Linus Torvalds 已提交
3126

3127 3128
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3143

3144
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3145
{
3146
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3147 3148 3149
	/*
	 * Underflow?
	 */
3150 3151
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3152
#endif
3153
	__preempt_count_add(val);
3154
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3155 3156 3157
	/*
	 * Spinlock count overflowing soon?
	 */
3158 3159
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3160
#endif
3161
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3162
}
3163
EXPORT_SYMBOL(preempt_count_add);
3164
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3165

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3176
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3177
{
3178
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3179 3180 3181
	/*
	 * Underflow?
	 */
3182
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3183
		return;
L
Linus Torvalds 已提交
3184 3185 3186
	/*
	 * Is the spinlock portion underflowing?
	 */
3187 3188 3189
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3190
#endif
3191

3192
	preempt_latency_stop(val);
3193
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3194
}
3195
EXPORT_SYMBOL(preempt_count_sub);
3196
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3197

3198 3199 3200
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3201 3202 3203
#endif

/*
I
Ingo Molnar 已提交
3204
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3205
 */
I
Ingo Molnar 已提交
3206
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3207
{
3208 3209 3210
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3211 3212 3213
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3214 3215
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3216

I
Ingo Molnar 已提交
3217
	debug_show_held_locks(prev);
3218
	print_modules();
I
Ingo Molnar 已提交
3219 3220
	if (irqs_disabled())
		print_irqtrace_events(prev);
3221 3222
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3223
		pr_err("Preemption disabled at:");
3224
		print_ip_sym(preempt_disable_ip);
3225 3226
		pr_cont("\n");
	}
3227 3228 3229
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3230
	dump_stack();
3231
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3232
}
L
Linus Torvalds 已提交
3233

I
Ingo Molnar 已提交
3234 3235 3236 3237 3238
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3239
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3240 3241
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3242
#endif
3243

3244
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3245
		__schedule_bug(prev);
3246 3247
		preempt_count_set(PREEMPT_DISABLED);
	}
3248
	rcu_sleep_check();
I
Ingo Molnar 已提交
3249

L
Linus Torvalds 已提交
3250 3251
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3252
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3253 3254 3255 3256 3257 3258
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3259
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3260
{
3261
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3262
	struct task_struct *p;
L
Linus Torvalds 已提交
3263 3264

	/*
I
Ingo Molnar 已提交
3265 3266
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3267
	 */
3268
	if (likely(prev->sched_class == class &&
3269
		   rq->nr_running == rq->cfs.h_nr_running)) {
3270
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3271 3272 3273 3274 3275
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3276
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3277 3278

		return p;
L
Linus Torvalds 已提交
3279 3280
	}

3281
again:
3282
	for_each_class(class) {
3283
		p = class->pick_next_task(rq, prev, cookie);
3284 3285 3286
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3287
			return p;
3288
		}
I
Ingo Molnar 已提交
3289
	}
3290 3291

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3292
}
L
Linus Torvalds 已提交
3293

I
Ingo Molnar 已提交
3294
/*
3295
 * __schedule() is the main scheduler function.
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3330
 *
3331
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3332
 */
3333
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3334 3335
{
	struct task_struct *prev, *next;
3336
	unsigned long *switch_count;
3337
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3338
	struct rq *rq;
3339
	int cpu;
I
Ingo Molnar 已提交
3340 3341 3342 3343 3344 3345

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3346

3347
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3348
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3349

3350 3351 3352
	local_irq_disable();
	rcu_note_context_switch();

3353 3354 3355 3356 3357 3358
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3359
	raw_spin_lock(&rq->lock);
3360
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3361

3362 3363
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3364
	switch_count = &prev->nivcsw;
3365
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3366
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3367
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3368
		} else {
3369 3370 3371
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3372
			/*
3373 3374 3375
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3376 3377 3378 3379
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3380
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3381
				if (to_wakeup)
3382
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3383 3384
			}
		}
I
Ingo Molnar 已提交
3385
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3386 3387
	}

3388
	if (task_on_rq_queued(prev))
3389 3390
		update_rq_clock(rq);

3391
	next = pick_next_task(rq, prev, cookie);
3392
	clear_tsk_need_resched(prev);
3393
	clear_preempt_need_resched();
3394
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3395 3396 3397 3398 3399 3400

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3401
		trace_sched_switch(preempt, prev, next);
3402
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3403
	} else {
3404
		lockdep_unpin_lock(&rq->lock, cookie);
3405
		raw_spin_unlock_irq(&rq->lock);
3406
	}
L
Linus Torvalds 已提交
3407

3408
	balance_callback(rq);
L
Linus Torvalds 已提交
3409
}
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

	/* causes final put_task_struct in finish_task_switch(). */
	__set_current_state(TASK_DEAD);
	current->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
	__schedule(false);
	BUG();
	/* Avoid "noreturn function does return".  */
	for (;;)
		cpu_relax();	/* For when BUG is null */
}

3438 3439
static inline void sched_submit_work(struct task_struct *tsk)
{
3440
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3441 3442 3443 3444 3445 3446 3447 3448 3449
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3450
asmlinkage __visible void __sched schedule(void)
3451
{
3452 3453 3454
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3455
	do {
3456
		preempt_disable();
3457
		__schedule(false);
3458
		sched_preempt_enable_no_resched();
3459
	} while (need_resched());
3460
}
L
Linus Torvalds 已提交
3461 3462
EXPORT_SYMBOL(schedule);

3463
#ifdef CONFIG_CONTEXT_TRACKING
3464
asmlinkage __visible void __sched schedule_user(void)
3465 3466 3467 3468 3469 3470
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3471 3472
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3473
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3474
	 * too frequently to make sense yet.
3475
	 */
3476
	enum ctx_state prev_state = exception_enter();
3477
	schedule();
3478
	exception_exit(prev_state);
3479 3480 3481
}
#endif

3482 3483 3484 3485 3486 3487 3488
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3489
	sched_preempt_enable_no_resched();
3490 3491 3492 3493
	schedule();
	preempt_disable();
}

3494
static void __sched notrace preempt_schedule_common(void)
3495 3496
{
	do {
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3510
		preempt_disable_notrace();
3511
		preempt_latency_start(1);
3512
		__schedule(true);
3513
		preempt_latency_stop(1);
3514
		preempt_enable_no_resched_notrace();
3515 3516 3517 3518 3519 3520 3521 3522

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3523 3524
#ifdef CONFIG_PREEMPT
/*
3525
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3526
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3527 3528
 * occur there and call schedule directly.
 */
3529
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3530 3531 3532
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3533
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3534
	 */
3535
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3536 3537
		return;

3538
	preempt_schedule_common();
L
Linus Torvalds 已提交
3539
}
3540
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3541
EXPORT_SYMBOL(preempt_schedule);
3542 3543

/**
3544
 * preempt_schedule_notrace - preempt_schedule called by tracing
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3557
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3558 3559 3560 3561 3562 3563 3564
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3578
		preempt_disable_notrace();
3579
		preempt_latency_start(1);
3580 3581 3582 3583 3584 3585
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3586
		__schedule(true);
3587 3588
		exception_exit(prev_ctx);

3589
		preempt_latency_stop(1);
3590
		preempt_enable_no_resched_notrace();
3591 3592
	} while (need_resched());
}
3593
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3594

3595
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3596 3597

/*
3598
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3599 3600 3601 3602
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3603
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3604
{
3605
	enum ctx_state prev_state;
3606

3607
	/* Catch callers which need to be fixed */
3608
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3609

3610 3611
	prev_state = exception_enter();

3612
	do {
3613
		preempt_disable();
3614
		local_irq_enable();
3615
		__schedule(true);
3616
		local_irq_disable();
3617
		sched_preempt_enable_no_resched();
3618
	} while (need_resched());
3619 3620

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3621 3622
}

P
Peter Zijlstra 已提交
3623
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3624
			  void *key)
L
Linus Torvalds 已提交
3625
{
P
Peter Zijlstra 已提交
3626
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3627 3628 3629
}
EXPORT_SYMBOL(default_wake_function);

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3640 3641
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3642
 */
3643
void rt_mutex_setprio(struct task_struct *p, int prio)
3644
{
3645
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3646
	const struct sched_class *prev_class;
3647 3648
	struct rq_flags rf;
	struct rq *rq;
3649

3650
	BUG_ON(prio > MAX_PRIO);
3651

3652
	rq = __task_rq_lock(p, &rf);
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3672
	trace_sched_pi_setprio(p, prio);
3673
	oldprio = p->prio;
3674 3675 3676 3677

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3678
	prev_class = p->sched_class;
3679
	queued = task_on_rq_queued(p);
3680
	running = task_current(rq, p);
3681
	if (queued)
3682
		dequeue_task(rq, p, queue_flag);
3683
	if (running)
3684
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3685

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3696 3697 3698
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3699
			p->dl.dl_boosted = 1;
3700
			queue_flag |= ENQUEUE_REPLENISH;
3701 3702
		} else
			p->dl.dl_boosted = 0;
3703
		p->sched_class = &dl_sched_class;
3704 3705 3706 3707
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3708
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3709
		p->sched_class = &rt_sched_class;
3710 3711 3712
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3713 3714
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3715
		p->sched_class = &fair_sched_class;
3716
	}
I
Ingo Molnar 已提交
3717

3718 3719
	p->prio = prio;

3720
	if (queued)
3721
		enqueue_task(rq, p, queue_flag);
3722
	if (running)
3723
		set_curr_task(rq, p);
3724

P
Peter Zijlstra 已提交
3725
	check_class_changed(rq, p, prev_class, oldprio);
3726
out_unlock:
3727
	preempt_disable(); /* avoid rq from going away on us */
3728
	__task_rq_unlock(rq, &rf);
3729 3730 3731

	balance_callback(rq);
	preempt_enable();
3732 3733
}
#endif
3734

3735
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3736
{
P
Peter Zijlstra 已提交
3737 3738
	bool queued, running;
	int old_prio, delta;
3739
	struct rq_flags rf;
3740
	struct rq *rq;
L
Linus Torvalds 已提交
3741

3742
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3743 3744 3745 3746 3747
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3748
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3749 3750 3751 3752
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3753
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3754
	 */
3755
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3756 3757 3758
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3759
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3760
	running = task_current(rq, p);
3761
	if (queued)
3762
		dequeue_task(rq, p, DEQUEUE_SAVE);
P
Peter Zijlstra 已提交
3763 3764
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3765 3766

	p->static_prio = NICE_TO_PRIO(nice);
3767
	set_load_weight(p);
3768 3769 3770
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3771

3772
	if (queued) {
3773
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3774
		/*
3775 3776
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3777
		 */
3778
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3779
			resched_curr(rq);
L
Linus Torvalds 已提交
3780
	}
P
Peter Zijlstra 已提交
3781 3782
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3783
out_unlock:
3784
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3785 3786 3787
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3788 3789 3790 3791 3792
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3793
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3794
{
3795
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3796
	int nice_rlim = nice_to_rlimit(nice);
3797

3798
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3799 3800 3801
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3811
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3812
{
3813
	long nice, retval;
L
Linus Torvalds 已提交
3814 3815 3816 3817 3818 3819

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3820
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3821
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3822

3823
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3824 3825 3826
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3841
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3842 3843 3844
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3845
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3846 3847 3848 3849 3850 3851 3852
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3853 3854
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3855 3856 3857
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3877 3878
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3879
 */
3880
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3881 3882 3883 3884 3885 3886 3887
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3888 3889
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3890
 */
A
Alexey Dobriyan 已提交
3891
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3892
{
3893
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3911
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3912
	dl_se->flags = attr->sched_flags;
3913
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3934 3935
}

3936 3937 3938 3939 3940 3941
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3942 3943
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3944
{
3945 3946
	int policy = attr->sched_policy;

3947
	if (policy == SETPARAM_POLICY)
3948 3949
		policy = p->policy;

L
Linus Torvalds 已提交
3950
	p->policy = policy;
3951

3952 3953
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3954
	else if (fair_policy(policy))
3955 3956
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3957 3958 3959 3960 3961 3962
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3963
	p->normal_prio = normal_prio(p);
3964 3965
	set_load_weight(p);
}
3966

3967 3968
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3969
			   const struct sched_attr *attr, bool keep_boost)
3970 3971
{
	__setscheduler_params(p, attr);
3972

3973
	/*
3974 3975
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3976
	 */
3977 3978 3979 3980
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3981

3982 3983 3984
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3985 3986 3987
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3988
}
3989 3990 3991 3992 3993 3994 3995 3996 3997

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3998
	attr->sched_period = dl_se->dl_period;
3999 4000 4001 4002 4003 4004
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4005
 * than the runtime, as well as the period of being zero or
4006
 * greater than deadline. Furthermore, we have to be sure that
4007 4008 4009 4010
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4011 4012 4013 4014
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4041 4042
}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4053 4054
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4055 4056 4057 4058
	rcu_read_unlock();
	return match;
}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4073 4074
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4075
				bool user, bool pi)
L
Linus Torvalds 已提交
4076
{
4077 4078
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4079
	int retval, oldprio, oldpolicy = -1, queued, running;
4080
	int new_effective_prio, policy = attr->sched_policy;
4081
	const struct sched_class *prev_class;
4082
	struct rq_flags rf;
4083
	int reset_on_fork;
4084
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4085
	struct rq *rq;
L
Linus Torvalds 已提交
4086

4087 4088
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4089 4090
recheck:
	/* double check policy once rq lock held */
4091 4092
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4093
		policy = oldpolicy = p->policy;
4094
	} else {
4095
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4096

4097
		if (!valid_policy(policy))
4098 4099 4100
			return -EINVAL;
	}

4101 4102 4103
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4104 4105
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4106 4107
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4108
	 */
4109
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4110
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4111
		return -EINVAL;
4112 4113
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4114 4115
		return -EINVAL;

4116 4117 4118
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4119
	if (user && !capable(CAP_SYS_NICE)) {
4120
		if (fair_policy(policy)) {
4121
			if (attr->sched_nice < task_nice(p) &&
4122
			    !can_nice(p, attr->sched_nice))
4123 4124 4125
				return -EPERM;
		}

4126
		if (rt_policy(policy)) {
4127 4128
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4129 4130 4131 4132 4133 4134

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4135 4136
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4137 4138
				return -EPERM;
		}
4139

4140 4141 4142 4143 4144 4145 4146 4147 4148
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4149
		/*
4150 4151
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4152
		 */
4153
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4154
			if (!can_nice(p, task_nice(p)))
4155 4156
				return -EPERM;
		}
4157

4158
		/* can't change other user's priorities */
4159
		if (!check_same_owner(p))
4160
			return -EPERM;
4161 4162 4163 4164

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4165
	}
L
Linus Torvalds 已提交
4166

4167
	if (user) {
4168
		retval = security_task_setscheduler(p);
4169 4170 4171 4172
		if (retval)
			return retval;
	}

4173 4174 4175
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4176
	 *
L
Lucas De Marchi 已提交
4177
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4178 4179
	 * runqueue lock must be held.
	 */
4180
	rq = task_rq_lock(p, &rf);
4181

4182 4183 4184 4185
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4186
		task_rq_unlock(rq, p, &rf);
4187 4188 4189
		return -EINVAL;
	}

4190
	/*
4191 4192
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4193
	 */
4194
	if (unlikely(policy == p->policy)) {
4195
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4196 4197 4198
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4199
		if (dl_policy(policy) && dl_param_changed(p, attr))
4200
			goto change;
4201

4202
		p->sched_reset_on_fork = reset_on_fork;
4203
		task_rq_unlock(rq, p, &rf);
4204 4205
		return 0;
	}
4206
change:
4207

4208
	if (user) {
4209
#ifdef CONFIG_RT_GROUP_SCHED
4210 4211 4212 4213 4214
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4215 4216
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4217
			task_rq_unlock(rq, p, &rf);
4218 4219 4220
			return -EPERM;
		}
#endif
4221 4222 4223 4224 4225 4226 4227 4228 4229
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4230 4231
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4232
				task_rq_unlock(rq, p, &rf);
4233 4234 4235 4236 4237
				return -EPERM;
			}
		}
#endif
	}
4238

L
Linus Torvalds 已提交
4239 4240 4241
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4242
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4243 4244
		goto recheck;
	}
4245 4246 4247 4248 4249 4250

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4251
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4252
		task_rq_unlock(rq, p, &rf);
4253 4254 4255
		return -EBUSY;
	}

4256 4257 4258
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4259 4260 4261 4262 4263 4264 4265 4266 4267
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4268 4269
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4270 4271
	}

4272
	queued = task_on_rq_queued(p);
4273
	running = task_current(rq, p);
4274
	if (queued)
4275
		dequeue_task(rq, p, queue_flags);
4276
	if (running)
4277
		put_prev_task(rq, p);
4278

4279
	prev_class = p->sched_class;
4280
	__setscheduler(rq, p, attr, pi);
4281

4282
	if (queued) {
4283 4284 4285 4286
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4287 4288
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4289

4290
		enqueue_task(rq, p, queue_flags);
4291
	}
4292
	if (running)
4293
		set_curr_task(rq, p);
4294

P
Peter Zijlstra 已提交
4295
	check_class_changed(rq, p, prev_class, oldprio);
4296
	preempt_disable(); /* avoid rq from going away on us */
4297
	task_rq_unlock(rq, p, &rf);
4298

4299 4300
	if (pi)
		rt_mutex_adjust_pi(p);
4301

4302 4303 4304 4305 4306
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4307

L
Linus Torvalds 已提交
4308 4309
	return 0;
}
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4320 4321
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4322 4323 4324 4325 4326
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4327
	return __sched_setscheduler(p, &attr, check, true);
4328
}
4329 4330 4331 4332 4333 4334
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4335 4336
 * Return: 0 on success. An error code otherwise.
 *
4337 4338 4339
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4340
		       const struct sched_param *param)
4341
{
4342
	return _sched_setscheduler(p, policy, param, true);
4343
}
L
Linus Torvalds 已提交
4344 4345
EXPORT_SYMBOL_GPL(sched_setscheduler);

4346 4347
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4348
	return __sched_setscheduler(p, attr, true, true);
4349 4350 4351
}
EXPORT_SYMBOL_GPL(sched_setattr);

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4362 4363
 *
 * Return: 0 on success. An error code otherwise.
4364 4365
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4366
			       const struct sched_param *param)
4367
{
4368
	return _sched_setscheduler(p, policy, param, false);
4369
}
4370
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4371

I
Ingo Molnar 已提交
4372 4373
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4374 4375 4376
{
	struct sched_param lparam;
	struct task_struct *p;
4377
	int retval;
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4383 4384 4385

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4386
	p = find_process_by_pid(pid);
4387 4388 4389
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4390

L
Linus Torvalds 已提交
4391 4392 4393
	return retval;
}

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4456
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4457

4458
	return 0;
4459 4460 4461

err_size:
	put_user(sizeof(*attr), &uattr->size);
4462
	return -E2BIG;
4463 4464
}

L
Linus Torvalds 已提交
4465 4466 4467 4468 4469
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4470 4471
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4472
 */
4473 4474
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4475
{
4476 4477 4478 4479
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4480 4481 4482 4483 4484 4485 4486
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4487 4488
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4489
 */
4490
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4491
{
4492
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4493 4494
}

4495 4496 4497
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4498
 * @uattr: structure containing the extended parameters.
4499
 * @flags: for future extension.
4500
 */
4501 4502
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4503 4504 4505 4506 4507
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4508
	if (!uattr || pid < 0 || flags)
4509 4510
		return -EINVAL;

4511 4512 4513
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4514

4515
	if ((int)attr.sched_policy < 0)
4516
		return -EINVAL;
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4528 4529 4530
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4531 4532 4533
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4534
 */
4535
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4536
{
4537
	struct task_struct *p;
4538
	int retval;
L
Linus Torvalds 已提交
4539 4540

	if (pid < 0)
4541
		return -EINVAL;
L
Linus Torvalds 已提交
4542 4543

	retval = -ESRCH;
4544
	rcu_read_lock();
L
Linus Torvalds 已提交
4545 4546 4547 4548
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4549 4550
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4551
	}
4552
	rcu_read_unlock();
L
Linus Torvalds 已提交
4553 4554 4555 4556
	return retval;
}

/**
4557
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4558 4559
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4560 4561 4562
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4563
 */
4564
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4565
{
4566
	struct sched_param lp = { .sched_priority = 0 };
4567
	struct task_struct *p;
4568
	int retval;
L
Linus Torvalds 已提交
4569 4570

	if (!param || pid < 0)
4571
		return -EINVAL;
L
Linus Torvalds 已提交
4572

4573
	rcu_read_lock();
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4583 4584
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4585
	rcu_read_unlock();
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4595
	rcu_read_unlock();
L
Linus Torvalds 已提交
4596 4597 4598
	return retval;
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4622
				return -EFBIG;
4623 4624 4625 4626 4627
		}

		attr->size = usize;
	}

4628
	ret = copy_to_user(uattr, attr, attr->size);
4629 4630 4631
	if (ret)
		return -EFAULT;

4632
	return 0;
4633 4634 4635
}

/**
4636
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4637
 * @pid: the pid in question.
J
Juri Lelli 已提交
4638
 * @uattr: structure containing the extended parameters.
4639
 * @size: sizeof(attr) for fwd/bwd comp.
4640
 * @flags: for future extension.
4641
 */
4642 4643
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4644 4645 4646 4647 4648 4649 4650 4651
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4652
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4666 4667
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4668 4669 4670
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4671 4672
		attr.sched_priority = p->rt_priority;
	else
4673
		attr.sched_nice = task_nice(p);
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4685
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4686
{
4687
	cpumask_var_t cpus_allowed, new_mask;
4688 4689
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4690

4691
	rcu_read_lock();
L
Linus Torvalds 已提交
4692 4693 4694

	p = find_process_by_pid(pid);
	if (!p) {
4695
		rcu_read_unlock();
L
Linus Torvalds 已提交
4696 4697 4698
		return -ESRCH;
	}

4699
	/* Prevent p going away */
L
Linus Torvalds 已提交
4700
	get_task_struct(p);
4701
	rcu_read_unlock();
L
Linus Torvalds 已提交
4702

4703 4704 4705 4706
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4707 4708 4709 4710 4711 4712 4713 4714
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4715
	retval = -EPERM;
E
Eric W. Biederman 已提交
4716 4717 4718 4719
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4720
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4721 4722 4723
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4724

4725
	retval = security_task_setscheduler(p);
4726
	if (retval)
4727
		goto out_free_new_mask;
4728

4729 4730 4731 4732

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4733 4734 4735 4736 4737 4738 4739
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4740 4741 4742
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4743
			retval = -EBUSY;
4744
			rcu_read_unlock();
4745
			goto out_free_new_mask;
4746
		}
4747
		rcu_read_unlock();
4748 4749
	}
#endif
P
Peter Zijlstra 已提交
4750
again:
4751
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4752

P
Paul Menage 已提交
4753
	if (!retval) {
4754 4755
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4756 4757 4758 4759 4760
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4761
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4762 4763 4764
			goto again;
		}
	}
4765
out_free_new_mask:
4766 4767 4768 4769
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4775
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4776
{
4777 4778 4779 4780 4781
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4782 4783 4784 4785 4786 4787 4788 4789
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4790 4791
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4792
 */
4793 4794
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4795
{
4796
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4797 4798
	int retval;

4799 4800
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4801

4802 4803 4804 4805 4806
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4807 4808
}

4809
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4810
{
4811
	struct task_struct *p;
4812
	unsigned long flags;
L
Linus Torvalds 已提交
4813 4814
	int retval;

4815
	rcu_read_lock();
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820 4821

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4822 4823 4824 4825
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4826
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4827
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4828
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4829 4830

out_unlock:
4831
	rcu_read_unlock();
L
Linus Torvalds 已提交
4832

4833
	return retval;
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4841
 *
4842 4843
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4844
 */
4845 4846
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4847 4848
{
	int ret;
4849
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4850

A
Anton Blanchard 已提交
4851
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4852 4853
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4854 4855
		return -EINVAL;

4856 4857
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4858

4859 4860
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4861
		size_t retlen = min_t(size_t, len, cpumask_size());
4862 4863

		if (copy_to_user(user_mask_ptr, mask, retlen))
4864 4865
			ret = -EFAULT;
		else
4866
			ret = retlen;
4867 4868
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4869

4870
	return ret;
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4876 4877
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4878 4879
 *
 * Return: 0.
L
Linus Torvalds 已提交
4880
 */
4881
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4882
{
4883
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4884

4885
	schedstat_inc(rq->yld_count);
4886
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4893
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4894
	do_raw_spin_unlock(&rq->lock);
4895
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4896 4897 4898 4899 4900 4901

	schedule();

	return 0;
}

4902
#ifndef CONFIG_PREEMPT
4903
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4904
{
4905
	if (should_resched(0)) {
4906
		preempt_schedule_common();
L
Linus Torvalds 已提交
4907 4908 4909 4910
		return 1;
	}
	return 0;
}
4911
EXPORT_SYMBOL(_cond_resched);
4912
#endif
L
Linus Torvalds 已提交
4913 4914

/*
4915
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4916 4917
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4918
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4919 4920 4921
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4922
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4923
{
4924
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4925 4926
	int ret = 0;

4927 4928
	lockdep_assert_held(lock);

4929
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4930
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4931
		if (resched)
4932
			preempt_schedule_common();
N
Nick Piggin 已提交
4933 4934
		else
			cpu_relax();
J
Jan Kara 已提交
4935
		ret = 1;
L
Linus Torvalds 已提交
4936 4937
		spin_lock(lock);
	}
J
Jan Kara 已提交
4938
	return ret;
L
Linus Torvalds 已提交
4939
}
4940
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4941

4942
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4943 4944 4945
{
	BUG_ON(!in_softirq());

4946
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4947
		local_bh_enable();
4948
		preempt_schedule_common();
L
Linus Torvalds 已提交
4949 4950 4951 4952 4953
		local_bh_disable();
		return 1;
	}
	return 0;
}
4954
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4955 4956 4957 4958

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4985 4986 4987 4988
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4989 4990
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4991 4992 4993 4994
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4995
 * Return:
4996 4997 4998
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4999
 */
5000
int __sched yield_to(struct task_struct *p, bool preempt)
5001 5002 5003 5004
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5005
	int yielded = 0;
5006 5007 5008 5009 5010 5011

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5012 5013 5014 5015 5016 5017 5018 5019 5020
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5021
	double_rq_lock(rq, p_rq);
5022
	if (task_rq(p) != p_rq) {
5023 5024 5025 5026 5027
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5028
		goto out_unlock;
5029 5030

	if (curr->sched_class != p->sched_class)
5031
		goto out_unlock;
5032 5033

	if (task_running(p_rq, p) || p->state)
5034
		goto out_unlock;
5035 5036

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5037
	if (yielded) {
5038
		schedstat_inc(rq->yld_count);
5039 5040 5041 5042 5043
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5044
			resched_curr(p_rq);
5045
	}
5046

5047
out_unlock:
5048
	double_rq_unlock(rq, p_rq);
5049
out_irq:
5050 5051
	local_irq_restore(flags);

5052
	if (yielded > 0)
5053 5054 5055 5056 5057 5058
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5059
/*
I
Ingo Molnar 已提交
5060
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5061 5062 5063 5064
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5065 5066
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
5067 5068
	long ret;

5069
	current->in_iowait = 1;
5070
	blk_schedule_flush_plug(current);
5071

5072
	delayacct_blkio_start();
5073
	rq = raw_rq();
L
Linus Torvalds 已提交
5074 5075
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
5076
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
5077
	atomic_dec(&rq->nr_iowait);
5078
	delayacct_blkio_end();
5079

L
Linus Torvalds 已提交
5080 5081
	return ret;
}
5082
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5088 5089 5090
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5091
 */
5092
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5093 5094 5095 5096 5097 5098 5099 5100
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5101
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5102
	case SCHED_NORMAL:
5103
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5104
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5115 5116 5117
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5118
 */
5119
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5120 5121 5122 5123 5124 5125 5126 5127
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5128
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5129
	case SCHED_NORMAL:
5130
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5131
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5144 5145 5146
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5147
 */
5148
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5149
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5150
{
5151
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5152
	unsigned int time_slice;
5153 5154
	struct rq_flags rf;
	struct timespec t;
5155
	struct rq *rq;
5156
	int retval;
L
Linus Torvalds 已提交
5157 5158

	if (pid < 0)
5159
		return -EINVAL;
L
Linus Torvalds 已提交
5160 5161

	retval = -ESRCH;
5162
	rcu_read_lock();
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5171
	rq = task_rq_lock(p, &rf);
5172 5173 5174
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5175
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5176

5177
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5178
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5179 5180
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5181

L
Linus Torvalds 已提交
5182
out_unlock:
5183
	rcu_read_unlock();
L
Linus Torvalds 已提交
5184 5185 5186
	return retval;
}

5187
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5188

5189
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5190 5191
{
	unsigned long free = 0;
5192
	int ppid;
5193
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5194

5195 5196
	if (state)
		state = __ffs(state) + 1;
5197
	printk(KERN_INFO "%-15.15s %c", p->comm,
5198
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5199
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5200
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5201
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5202
	else
P
Peter Zijlstra 已提交
5203
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5204 5205
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5206
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5207
	else
P
Peter Zijlstra 已提交
5208
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5209 5210
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5211
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5212
#endif
5213
	ppid = 0;
5214
	rcu_read_lock();
5215 5216
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5217
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5218
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5219
		task_pid_nr(p), ppid,
5220
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5221

5222
	print_worker_info(KERN_INFO, p);
5223
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5224 5225
}

I
Ingo Molnar 已提交
5226
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5227
{
5228
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5229

5230
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5231 5232
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5233
#else
P
Peter Zijlstra 已提交
5234 5235
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5236
#endif
5237
	rcu_read_lock();
5238
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5239 5240
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5241
		 * console might take a lot of time:
5242 5243 5244
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5245 5246
		 */
		touch_nmi_watchdog();
5247
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5248
		if (!state_filter || (p->state & state_filter))
5249
			sched_show_task(p);
5250
	}
L
Linus Torvalds 已提交
5251

I
Ingo Molnar 已提交
5252
#ifdef CONFIG_SCHED_DEBUG
5253 5254
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5255
#endif
5256
	rcu_read_unlock();
I
Ingo Molnar 已提交
5257 5258 5259
	/*
	 * Only show locks if all tasks are dumped:
	 */
5260
	if (!state_filter)
I
Ingo Molnar 已提交
5261
		debug_show_all_locks();
L
Linus Torvalds 已提交
5262 5263
}

5264
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5265
{
I
Ingo Molnar 已提交
5266
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5267 5268
}

5269 5270 5271 5272 5273 5274 5275 5276
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5277
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5278
{
5279
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5280 5281
	unsigned long flags;

5282 5283
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5284

5285
	__sched_fork(0, idle);
5286
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5287 5288
	idle->se.exec_start = sched_clock();

5289 5290
	kasan_unpoison_task_stack(idle);

5291 5292 5293 5294 5295 5296 5297 5298 5299
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5311
	__set_task_cpu(idle, cpu);
5312
	rcu_read_unlock();
L
Linus Torvalds 已提交
5313 5314

	rq->curr = rq->idle = idle;
5315
	idle->on_rq = TASK_ON_RQ_QUEUED;
5316
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5317
	idle->on_cpu = 1;
5318
#endif
5319 5320
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5321 5322

	/* Set the preempt count _outside_ the spinlocks! */
5323
	init_idle_preempt_count(idle, cpu);
5324

I
Ingo Molnar 已提交
5325 5326 5327 5328
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5329
	ftrace_graph_init_idle_task(idle, cpu);
5330
	vtime_init_idle(idle, cpu);
5331
#ifdef CONFIG_SMP
5332 5333
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5334 5335
}

5336 5337 5338 5339 5340 5341 5342
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5343 5344 5345
	if (!cpumask_weight(cur))
		return ret;

5346
	rcu_read_lock_sched();
5347 5348 5349 5350 5351 5352 5353 5354
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5355
	rcu_read_unlock_sched();
5356 5357 5358 5359

	return ret;
}

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5384
		struct dl_bw *dl_b;
5385 5386 5387 5388
		bool overflow;
		int cpus;
		unsigned long flags;

5389 5390
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5406
		rcu_read_unlock_sched();
5407 5408 5409 5410 5411 5412 5413

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5414 5415
#ifdef CONFIG_SMP

5416 5417
static bool sched_smp_initialized __read_mostly;

5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5433
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5434 5435
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5436 5437 5438 5439 5440 5441 5442

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5443
	bool queued, running;
5444 5445
	struct rq_flags rf;
	struct rq *rq;
5446

5447
	rq = task_rq_lock(p, &rf);
5448
	queued = task_on_rq_queued(p);
5449 5450
	running = task_current(rq, p);

5451
	if (queued)
5452
		dequeue_task(rq, p, DEQUEUE_SAVE);
5453
	if (running)
5454
		put_prev_task(rq, p);
5455 5456 5457

	p->numa_preferred_nid = nid;

5458
	if (queued)
5459
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5460
	if (running)
5461
		set_curr_task(rq, p);
5462
	task_rq_unlock(rq, p, &rf);
5463
}
P
Peter Zijlstra 已提交
5464
#endif /* CONFIG_NUMA_BALANCING */
5465

L
Linus Torvalds 已提交
5466
#ifdef CONFIG_HOTPLUG_CPU
5467
/*
5468 5469
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5470
 */
5471
void idle_task_exit(void)
L
Linus Torvalds 已提交
5472
{
5473
	struct mm_struct *mm = current->active_mm;
5474

5475
	BUG_ON(cpu_online(smp_processor_id()));
5476

5477
	if (mm != &init_mm) {
5478
		switch_mm_irqs_off(mm, &init_mm, current);
5479 5480
		finish_arch_post_lock_switch();
	}
5481
	mmdrop(mm);
L
Linus Torvalds 已提交
5482 5483 5484
}

/*
5485 5486
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5487 5488 5489
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5490 5491
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5492
 */
5493
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5494
{
5495
	long delta = calc_load_fold_active(rq, 1);
5496 5497
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5498 5499
}

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5516
/*
5517 5518 5519 5520 5521 5522
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5523
 */
5524
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5525
{
5526
	struct rq *rq = dead_rq;
5527
	struct task_struct *next, *stop = rq->stop;
5528
	struct pin_cookie cookie;
5529
	int dest_cpu;
L
Linus Torvalds 已提交
5530 5531

	/*
5532 5533 5534 5535 5536 5537 5538
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5539
	 */
5540
	rq->stop = NULL;
5541

5542 5543 5544 5545 5546 5547 5548
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5549
	for (;;) {
5550 5551 5552 5553 5554
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5555
			break;
5556

5557
		/*
W
Wanpeng Li 已提交
5558
		 * pick_next_task assumes pinned rq->lock.
5559
		 */
5560 5561
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5562
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5563
		next->sched_class->put_prev_task(rq, next);
5564

W
Wanpeng Li 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5574
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5589
		/* Find suitable destination for @next, with force if needed. */
5590
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5591

5592 5593 5594 5595 5596 5597
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5598
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5599
	}
5600

5601
	rq->stop = stop;
5602
}
L
Linus Torvalds 已提交
5603 5604
#endif /* CONFIG_HOTPLUG_CPU */

5605 5606 5607 5608 5609
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5610
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5630
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5631 5632 5633 5634
		rq->online = 0;
	}
}

5635
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5636
{
5637
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5638

5639 5640 5641
	rq->age_stamp = sched_clock_cpu(cpu);
}

5642 5643
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5644
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5645

5646
static __read_mostly int sched_debug_enabled;
5647

5648
static int __init sched_debug_setup(char *str)
5649
{
5650
	sched_debug_enabled = 1;
5651 5652 5653

	return 0;
}
5654 5655 5656 5657 5658 5659
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5660

5661
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5662
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5663
{
I
Ingo Molnar 已提交
5664
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5665

5666
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5667 5668 5669 5670

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5671
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5672
		if (sd->parent)
P
Peter Zijlstra 已提交
5673 5674
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5675
		return -1;
N
Nick Piggin 已提交
5676 5677
	}

5678 5679
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5680

5681
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5682 5683
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5684
	}
5685
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5686 5687
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5688
	}
L
Linus Torvalds 已提交
5689

I
Ingo Molnar 已提交
5690
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5691
	do {
I
Ingo Molnar 已提交
5692
		if (!group) {
P
Peter Zijlstra 已提交
5693 5694
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5695 5696 5697
			break;
		}

5698
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5699 5700
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5701 5702
			break;
		}
L
Linus Torvalds 已提交
5703

5704 5705
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5706 5707
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5708 5709
			break;
		}
L
Linus Torvalds 已提交
5710

5711
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5712

5713 5714
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5715
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5716 5717
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5718
		}
L
Linus Torvalds 已提交
5719

I
Ingo Molnar 已提交
5720 5721
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5722
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5723

5724
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5725
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5726

5727 5728
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5729 5730
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5731 5732
	return 0;
}
L
Linus Torvalds 已提交
5733

I
Ingo Molnar 已提交
5734 5735 5736
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5737

5738
	if (!sched_debug_enabled)
5739 5740
		return;

I
Ingo Molnar 已提交
5741 5742 5743 5744
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5745

I
Ingo Molnar 已提交
5746 5747 5748
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5749
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5750
			break;
L
Linus Torvalds 已提交
5751 5752
		level++;
		sd = sd->parent;
5753
		if (!sd)
I
Ingo Molnar 已提交
5754 5755
			break;
	}
L
Linus Torvalds 已提交
5756
}
5757
#else /* !CONFIG_SCHED_DEBUG */
5758 5759

# define sched_debug_enabled 0
5760
# define sched_domain_debug(sd, cpu) do { } while (0)
5761 5762 5763 5764
static inline bool sched_debug(void)
{
	return false;
}
5765
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5766

5767
static int sd_degenerate(struct sched_domain *sd)
5768
{
5769
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5770 5771 5772 5773 5774 5775
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5776
			 SD_BALANCE_EXEC |
5777
			 SD_SHARE_CPUCAPACITY |
5778
			 SD_ASYM_CPUCAPACITY |
5779 5780
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5781 5782 5783 5784 5785
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5786
	if (sd->flags & (SD_WAKE_AFFINE))
5787 5788 5789 5790 5791
		return 0;

	return 1;
}

5792 5793
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5794 5795 5796 5797 5798 5799
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5800
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5801 5802 5803 5804 5805 5806 5807
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5808
				SD_BALANCE_EXEC |
5809
				SD_ASYM_CPUCAPACITY |
5810
				SD_SHARE_CPUCAPACITY |
5811
				SD_SHARE_PKG_RESOURCES |
5812 5813
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5814 5815
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5816 5817 5818 5819 5820 5821 5822
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5823
static void free_rootdomain(struct rcu_head *rcu)
5824
{
5825
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5826

5827
	cpupri_cleanup(&rd->cpupri);
5828
	cpudl_cleanup(&rd->cpudl);
5829
	free_cpumask_var(rd->dlo_mask);
5830 5831 5832 5833 5834 5835
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5836 5837
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5838
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5839 5840
	unsigned long flags;

5841
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5842 5843

	if (rq->rd) {
I
Ingo Molnar 已提交
5844
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5845

5846
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5847
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5848

5849
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5850

I
Ingo Molnar 已提交
5851
		/*
5852
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5853 5854 5855 5856 5857
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5858 5859 5860 5861 5862
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5863
	cpumask_set_cpu(rq->cpu, rd->span);
5864
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5865
		set_rq_online(rq);
G
Gregory Haskins 已提交
5866

5867
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5868 5869

	if (old_rd)
5870
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5871 5872
}

5873
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5874 5875 5876
{
	memset(rd, 0, sizeof(*rd));

5877
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5878
		goto out;
5879
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5880
		goto free_span;
5881
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5882
		goto free_online;
5883
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5884
		goto free_dlo_mask;
5885

5886
	init_dl_bw(&rd->dl_bw);
5887 5888
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5889

5890
	if (cpupri_init(&rd->cpupri) != 0)
5891
		goto free_rto_mask;
5892
	return 0;
5893

5894 5895
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5896 5897
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5898 5899 5900 5901
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5902
out:
5903
	return -ENOMEM;
G
Gregory Haskins 已提交
5904 5905
}

5906 5907 5908 5909 5910 5911
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5912 5913
static void init_defrootdomain(void)
{
5914
	init_rootdomain(&def_root_domain);
5915

G
Gregory Haskins 已提交
5916 5917 5918
	atomic_set(&def_root_domain.refcount, 1);
}

5919
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5920 5921 5922 5923 5924 5925 5926
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5927
	if (init_rootdomain(rd) != 0) {
5928 5929 5930
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5931 5932 5933 5934

	return rd;
}

5935
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5946 5947
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5948 5949 5950 5951 5952 5953

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5954
static void destroy_sched_domain(struct sched_domain *sd)
5955
{
5956 5957 5958 5959 5960 5961 5962
	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5963
		kfree(sd->groups->sgc);
5964
		kfree(sd->groups);
5965
	}
5966 5967
	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
		kfree(sd->shared);
5968 5969 5970
	kfree(sd);
}

5971
static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5972
{
5973 5974 5975 5976 5977 5978 5979
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);

	while (sd) {
		struct sched_domain *parent = sd->parent;
		destroy_sched_domain(sd);
		sd = parent;
	}
5980 5981
}

5982
static void destroy_sched_domains(struct sched_domain *sd)
5983
{
5984 5985
	if (sd)
		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5986 5987
}

5988 5989 5990 5991 5992 5993 5994
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5995
 * two cpus are in the same cache domain, see cpus_share_cache().
5996 5997
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5998
DEFINE_PER_CPU(int, sd_llc_size);
5999
DEFINE_PER_CPU(int, sd_llc_id);
6000
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6001
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6002
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6003 6004 6005

static void update_top_cache_domain(int cpu)
{
6006
	struct sched_domain_shared *sds = NULL;
6007 6008
	struct sched_domain *sd;
	int id = cpu;
6009
	int size = 1;
6010 6011

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6012
	if (sd) {
6013
		id = cpumask_first(sched_domain_span(sd));
6014
		size = cpumask_weight(sched_domain_span(sd));
6015
		sds = sd->shared;
6016
	}
6017 6018

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6019
	per_cpu(sd_llc_size, cpu) = size;
6020
	per_cpu(sd_llc_id, cpu) = id;
6021
	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6022 6023 6024

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6025 6026 6027

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6028 6029
}

L
Linus Torvalds 已提交
6030
/*
I
Ingo Molnar 已提交
6031
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6032 6033
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6034 6035
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6036
{
6037
	struct rq *rq = cpu_rq(cpu);
6038 6039 6040
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6041
	for (tmp = sd; tmp; ) {
6042 6043 6044
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6045

6046
		if (sd_parent_degenerate(tmp, parent)) {
6047
			tmp->parent = parent->parent;
6048 6049
			if (parent->parent)
				parent->parent->child = tmp;
6050 6051 6052 6053 6054 6055 6056
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6057
			destroy_sched_domain(parent);
6058 6059
		} else
			tmp = tmp->parent;
6060 6061
	}

6062
	if (sd && sd_degenerate(sd)) {
6063
		tmp = sd;
6064
		sd = sd->parent;
6065
		destroy_sched_domain(tmp);
6066 6067 6068
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6069

6070
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6071

G
Gregory Haskins 已提交
6072
	rq_attach_root(rq, rd);
6073
	tmp = rq->sd;
N
Nick Piggin 已提交
6074
	rcu_assign_pointer(rq->sd, sd);
6075
	destroy_sched_domains(tmp);
6076 6077

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6078 6079 6080 6081 6082
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6083 6084
	int ret;

R
Rusty Russell 已提交
6085
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6086 6087 6088 6089 6090
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6091 6092
	return 1;
}
I
Ingo Molnar 已提交
6093
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6094

6095
struct s_data {
6096
	struct sched_domain ** __percpu sd;
6097 6098 6099
	struct root_domain	*rd;
};

6100 6101
enum s_alloc {
	sa_rootdomain,
6102
	sa_sd,
6103
	sa_sd_storage,
6104 6105 6106
	sa_none,
};

P
Peter Zijlstra 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6145 6146 6147 6148 6149 6150 6151
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6152
	struct sched_domain *sibling;
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6163
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6164 6165

		/* See the comment near build_group_mask(). */
6166
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6167 6168
			continue;

6169
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6170
				GFP_KERNEL, cpu_to_node(cpu));
6171 6172 6173 6174 6175

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6176 6177 6178
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6179 6180 6181 6182
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6183 6184
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6185 6186
			build_group_mask(sd, sg);

6187
		/*
6188
		 * Initialize sgc->capacity such that even if we mess up the
6189 6190 6191
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6192
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6193

P
Peter Zijlstra 已提交
6194 6195 6196 6197 6198
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6199
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6200
		    group_balance_cpu(sg) == cpu)
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6220
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6221
{
6222 6223
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6224

6225 6226
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6227

6228
	if (sg) {
6229
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6230 6231
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6232
	}
6233 6234

	return cpu;
6235 6236
}

6237
/*
6238 6239
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6240
 * and ->cpu_capacity to 0.
6241 6242
 *
 * Assumes the sched_domain tree is fully constructed
6243
 */
6244 6245
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6246
{
6247 6248 6249
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6250
	struct cpumask *covered;
6251
	int i;
6252

6253 6254 6255
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6256
	if (cpu != cpumask_first(span))
6257 6258
		return 0;

6259 6260 6261
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6262
	cpumask_clear(covered);
6263

6264 6265
	for_each_cpu(i, span) {
		struct sched_group *sg;
6266
		int group, j;
6267

6268 6269
		if (cpumask_test_cpu(i, covered))
			continue;
6270

6271
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6272
		cpumask_setall(sched_group_mask(sg));
6273

6274 6275 6276
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6277

6278 6279 6280
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6281

6282 6283 6284 6285 6286 6287 6288
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6289 6290

	return 0;
6291
}
6292

6293
/*
6294
 * Initialize sched groups cpu_capacity.
6295
 *
6296
 * cpu_capacity indicates the capacity of sched group, which is used while
6297
 * distributing the load between different sched groups in a sched domain.
6298 6299 6300 6301
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6302
 */
6303
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6304
{
6305
	struct sched_group *sg = sd->groups;
6306

6307
	WARN_ON(!sg);
6308 6309 6310 6311 6312

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6313

P
Peter Zijlstra 已提交
6314
	if (cpu != group_balance_cpu(sg))
6315
		return;
6316

6317
	update_group_capacity(sd, cpu);
6318 6319
}

6320 6321 6322 6323 6324
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6325
static int default_relax_domain_level = -1;
6326
int sched_domain_level_max;
6327 6328 6329

static int __init setup_relax_domain_level(char *str)
{
6330 6331
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6332

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6351
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6352 6353
	} else {
		/* turn on idle balance on this domain */
6354
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6355 6356 6357
	}
}

6358 6359 6360
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6361 6362 6363 6364 6365
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6366 6367
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6368 6369
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6370
	case sa_sd_storage:
6371
		__sdt_free(cpu_map); /* fall through */
6372 6373 6374 6375
	case sa_none:
		break;
	}
}
6376

6377 6378 6379
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6380 6381
	memset(d, 0, sizeof(*d));

6382 6383
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6384 6385 6386
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6387
	d->rd = alloc_rootdomain();
6388
	if (!d->rd)
6389
		return sa_sd;
6390 6391
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6392

6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6405 6406 6407
	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
		*per_cpu_ptr(sdd->sds, cpu) = NULL;

6408
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6409
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6410

6411 6412
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6413 6414
}

6415 6416
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6417
enum numa_topology_type sched_numa_topology_type;
6418
static int *sched_domains_numa_distance;
6419
int sched_max_numa_distance;
6420 6421
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6422
#endif
6423

6424 6425 6426
/*
 * SD_flags allowed in topology descriptions.
 *
6427 6428 6429
 * These flags are purely descriptive of the topology and do not prescribe
 * behaviour. Behaviour is artificial and mapped in the below sd_init()
 * function:
6430
 *
6431 6432 6433 6434
 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
 *   SD_SHARE_PKG_RESOURCES - describes shared caches
 *   SD_NUMA                - describes NUMA topologies
 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6435
 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6436 6437 6438
 *
 * Odd one out, which beside describing the topology has a quirk also
 * prescribes the desired behaviour that goes along with it:
6439
 *
6440
 *   SD_ASYM_PACKING        - describes SMT quirks
6441 6442
 */
#define TOPOLOGY_SD_FLAGS		\
6443
	(SD_SHARE_CPUCAPACITY |		\
6444 6445
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6446
	 SD_ASYM_PACKING |		\
6447
	 SD_ASYM_CPUCAPACITY |		\
6448
	 SD_SHARE_POWERDOMAIN)
6449 6450

static struct sched_domain *
6451
sd_init(struct sched_domain_topology_level *tl,
6452
	const struct cpumask *cpu_map,
6453
	struct sched_domain *child, int cpu)
6454
{
6455 6456 6457
	struct sd_data *sdd = &tl->data;
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	int sd_id, sd_weight, sd_flags = 0;
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6473 6474 6475 6476 6477

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6478
		.imbalance_pct		= 125,
6479 6480 6481 6482

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6483 6484 6485 6486 6487 6488
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6489 6490
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6491
					| 0*SD_BALANCE_WAKE
6492
					| 1*SD_WAKE_AFFINE
6493
					| 0*SD_SHARE_CPUCAPACITY
6494
					| 0*SD_SHARE_PKG_RESOURCES
6495
					| 0*SD_SERIALIZE
6496
					| 0*SD_PREFER_SIBLING
6497 6498
					| 0*SD_NUMA
					| sd_flags
6499
					,
6500

6501 6502
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6503
		.smt_gain		= 0,
6504 6505
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6506
		.child			= child,
6507 6508 6509
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6510 6511
	};

6512 6513 6514
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
	sd_id = cpumask_first(sched_domain_span(sd));

6515
	/*
6516
	 * Convert topological properties into behaviour.
6517
	 */
6518

6519 6520 6521 6522 6523 6524 6525
	if (sd->flags & SD_ASYM_CPUCAPACITY) {
		struct sched_domain *t = sd;

		for_each_lower_domain(t)
			t->flags |= SD_BALANCE_WAKE;
	}

6526
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6527
		sd->flags |= SD_PREFER_SIBLING;
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

6557 6558 6559 6560 6561 6562 6563
	/*
	 * For all levels sharing cache; connect a sched_domain_shared
	 * instance.
	 */
	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
		atomic_inc(&sd->shared->ref);
6564
		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6565 6566 6567
	}

	sd->private = sdd;
6568 6569 6570 6571

	return sd;
}

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6586 6587
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6588 6589 6590 6591 6592 6593

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
6594 6595 6596
	if (WARN_ON_ONCE(sched_smp_initialized))
		return;

6597 6598 6599 6600 6601
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6602 6603 6604 6605 6606
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6628
bool find_numa_distance(int distance)
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6668
	if (sched_domains_numa_levels <= 1) {
6669
		sched_numa_topology_type = NUMA_DIRECT;
6670 6671
		return;
	}
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6740
		}
6741 6742 6743 6744 6745 6746

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6747
	}
6748 6749 6750 6751

	if (!level)
		return;

6752 6753 6754 6755
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6756
	 * The sched_domains_numa_distance[] array includes the actual distance
6757 6758 6759
	 * numbers.
	 */

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6786
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6787 6788 6789 6790 6791
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6792
			for_each_node(k) {
6793
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6794 6795 6796 6797 6798 6799 6800
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6801 6802 6803
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6804
	tl = kzalloc((i + level + 1) *
6805 6806 6807 6808 6809 6810 6811
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6812 6813
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6814 6815 6816 6817 6818 6819 6820

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6821
			.sd_flags = cpu_numa_flags,
6822 6823
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6824
			SD_INIT_NAME(NUMA)
6825 6826 6827 6828
		};
	}

	sched_domain_topology = tl;
6829 6830

	sched_domains_numa_levels = level;
6831
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6832 6833

	init_numa_topology_type();
6834
}
6835

6836
static void sched_domains_numa_masks_set(unsigned int cpu)
6837 6838
{
	int node = cpu_to_node(cpu);
6839
	int i, j;
6840 6841 6842 6843 6844 6845 6846 6847 6848

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6849
static void sched_domains_numa_masks_clear(unsigned int cpu)
6850 6851
{
	int i, j;
6852

6853 6854 6855 6856 6857 6858
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6859
#else
6860 6861 6862
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6863 6864
#endif /* CONFIG_NUMA */

6865 6866 6867 6868 6869
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6870
	for_each_sd_topology(tl) {
6871 6872 6873 6874 6875 6876
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

6877 6878 6879 6880
		sdd->sds = alloc_percpu(struct sched_domain_shared *);
		if (!sdd->sds)
			return -ENOMEM;

6881 6882 6883 6884
		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6885 6886
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6887 6888
			return -ENOMEM;

6889 6890
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
6891
			struct sched_domain_shared *sds;
6892
			struct sched_group *sg;
6893
			struct sched_group_capacity *sgc;
6894

P
Peter Zijlstra 已提交
6895
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6896 6897 6898 6899 6900 6901
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

6902 6903 6904 6905 6906 6907 6908
			sds = kzalloc_node(sizeof(struct sched_domain_shared),
					GFP_KERNEL, cpu_to_node(j));
			if (!sds)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sds, j) = sds;

6909 6910 6911 6912 6913
			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6914 6915
			sg->next = sg;

6916
			*per_cpu_ptr(sdd->sg, j) = sg;
6917

6918
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6919
					GFP_KERNEL, cpu_to_node(j));
6920
			if (!sgc)
6921 6922
				return -ENOMEM;

6923
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6935
	for_each_sd_topology(tl) {
6936 6937 6938
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6939 6940 6941 6942 6943 6944 6945 6946 6947
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

6948 6949
			if (sdd->sds)
				kfree(*per_cpu_ptr(sdd->sds, j));
6950 6951
			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6952 6953
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6954 6955
		}
		free_percpu(sdd->sd);
6956
		sdd->sd = NULL;
6957 6958
		free_percpu(sdd->sds);
		sdd->sds = NULL;
6959
		free_percpu(sdd->sg);
6960
		sdd->sg = NULL;
6961 6962
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6963 6964 6965
	}
}

6966
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6967 6968
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6969
{
6970
	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6971

6972 6973 6974
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6975
		child->parent = sd;
P
Peter Zijlstra 已提交
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6990
	}
6991
	set_domain_attribute(sd, attr);
6992 6993 6994 6995

	return sd;
}

6996 6997 6998 6999
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7000 7001
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7002
{
7003
	enum s_alloc alloc_state;
7004
	struct sched_domain *sd;
7005
	struct s_data d;
7006
	struct rq *rq = NULL;
7007
	int i, ret = -ENOMEM;
7008

7009 7010 7011
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7012

7013
	/* Set up domains for cpus specified by the cpu_map. */
7014
	for_each_cpu(i, cpu_map) {
7015 7016
		struct sched_domain_topology_level *tl;

7017
		sd = NULL;
7018
		for_each_sd_topology(tl) {
7019
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7020 7021
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
7022 7023
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7024 7025
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7026
		}
7027 7028 7029 7030 7031 7032
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7033 7034 7035 7036 7037 7038 7039
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7040
		}
7041
	}
7042

7043
	/* Calculate CPU capacity for physical packages and nodes */
7044 7045 7046
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7047

7048 7049
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7050
			init_sched_groups_capacity(i, sd);
7051
		}
7052
	}
7053

L
Linus Torvalds 已提交
7054
	/* Attach the domains */
7055
	rcu_read_lock();
7056
	for_each_cpu(i, cpu_map) {
7057
		rq = cpu_rq(i);
7058
		sd = *per_cpu_ptr(d.sd, i);
7059 7060 7061 7062 7063

		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);

7064
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7065
	}
7066
	rcu_read_unlock();
7067

7068
	if (rq && sched_debug_enabled) {
7069 7070 7071 7072
		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
	}

7073
	ret = 0;
7074
error:
7075
	__free_domain_allocs(&d, alloc_state, cpu_map);
7076
	return ret;
L
Linus Torvalds 已提交
7077
}
P
Paul Jackson 已提交
7078

7079
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7080
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7081 7082
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7083 7084 7085

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7086 7087
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7088
 */
7089
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7090

7091 7092 7093 7094 7095
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7096
int __weak arch_update_cpu_topology(void)
7097
{
7098
	return 0;
7099 7100
}

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7126
/*
I
Ingo Molnar 已提交
7127
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7128 7129
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7130
 */
7131
static int init_sched_domains(const struct cpumask *cpu_map)
7132
{
7133 7134
	int err;

7135
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7136
	ndoms_cur = 1;
7137
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7138
	if (!doms_cur)
7139 7140
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7141
	err = build_sched_domains(doms_cur[0], NULL);
7142
	register_sched_domain_sysctl();
7143 7144

	return err;
7145 7146 7147 7148 7149 7150
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7151
static void detach_destroy_domains(const struct cpumask *cpu_map)
7152 7153 7154
{
	int i;

7155
	rcu_read_lock();
7156
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7157
		cpu_attach_domain(NULL, &def_root_domain, i);
7158
	rcu_read_unlock();
7159 7160
}

7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7177 7178
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7179
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7180 7181 7182
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7183
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7184 7185 7186
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7187 7188 7189
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7190 7191 7192 7193 7194 7195
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7196
 *
7197
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7198 7199
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7200
 *
P
Paul Jackson 已提交
7201 7202
 * Call with hotplug lock held
 */
7203
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7204
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7205
{
7206
	int i, j, n;
7207
	int new_topology;
P
Paul Jackson 已提交
7208

7209
	mutex_lock(&sched_domains_mutex);
7210

7211 7212 7213
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7214 7215 7216
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7217
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7218 7219 7220

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7221
		for (j = 0; j < n && !new_topology; j++) {
7222
			if (cpumask_equal(doms_cur[i], doms_new[j])
7223
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7224 7225 7226
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7227
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7228 7229 7230 7231
match1:
		;
	}

7232
	n = ndoms_cur;
7233
	if (doms_new == NULL) {
7234
		n = 0;
7235
		doms_new = &fallback_doms;
7236
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7237
		WARN_ON_ONCE(dattr_new);
7238 7239
	}

P
Paul Jackson 已提交
7240 7241
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7242
		for (j = 0; j < n && !new_topology; j++) {
7243
			if (cpumask_equal(doms_new[i], doms_cur[j])
7244
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7245 7246 7247
				goto match2;
		}
		/* no match - add a new doms_new */
7248
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7249 7250 7251 7252 7253
match2:
		;
	}

	/* Remember the new sched domains */
7254 7255
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7256
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7257
	doms_cur = doms_new;
7258
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7259
	ndoms_cur = ndoms_new;
7260 7261

	register_sched_domain_sysctl();
7262

7263
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7264 7265
}

7266 7267
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7268
/*
7269 7270 7271
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7272 7273 7274
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7275
 */
7276
static void cpuset_cpu_active(void)
7277
{
7278
	if (cpuhp_tasks_frozen) {
7279 7280 7281 7282 7283 7284 7285 7286 7287
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7288
			return;
7289 7290 7291 7292 7293 7294
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7295
	}
7296
	cpuset_update_active_cpus(true);
7297
}
7298

7299
static int cpuset_cpu_inactive(unsigned int cpu)
7300
{
7301 7302
	unsigned long flags;
	struct dl_bw *dl_b;
7303 7304
	bool overflow;
	int cpus;
7305

7306
	if (!cpuhp_tasks_frozen) {
7307 7308
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7309

7310 7311 7312 7313
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7314

7315
		rcu_read_unlock_sched();
7316

7317
		if (overflow)
7318
			return -EBUSY;
7319
		cpuset_update_active_cpus(false);
7320
	} else {
7321 7322
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7323
	}
7324
	return 0;
7325 7326
}

7327
int sched_cpu_activate(unsigned int cpu)
7328
{
7329 7330 7331
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7332
	set_cpu_active(cpu, true);
7333

7334
	if (sched_smp_initialized) {
7335
		sched_domains_numa_masks_set(cpu);
7336
		cpuset_cpu_active();
7337
	}
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7357
	return 0;
7358 7359
}

7360
int sched_cpu_deactivate(unsigned int cpu)
7361 7362 7363
{
	int ret;

7364
	set_cpu_active(cpu, false);
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7379 7380 7381 7382 7383 7384 7385 7386

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7387
	}
7388 7389
	sched_domains_numa_masks_clear(cpu);
	return 0;
7390 7391
}

7392 7393 7394 7395 7396 7397 7398 7399
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7400 7401 7402
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7403
	sched_rq_cpu_starting(cpu);
7404
	return 0;
7405 7406
}

7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7425
	nohz_balance_exit_idle(cpu);
7426
	hrtick_clear(rq);
7427 7428 7429 7430
	return 0;
}
#endif

P
Peter Zijlstra 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
7447 7448
void __init sched_init_smp(void)
{
7449 7450 7451
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7452
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7453

7454 7455
	sched_init_numa();

7456 7457 7458 7459 7460
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7461
	mutex_lock(&sched_domains_mutex);
7462
	init_sched_domains(cpu_active_mask);
7463 7464 7465
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7466
	mutex_unlock(&sched_domains_mutex);
7467

7468
	/* Move init over to a non-isolated CPU */
7469
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7470
		BUG();
I
Ingo Molnar 已提交
7471
	sched_init_granularity();
7472
	free_cpumask_var(non_isolated_cpus);
7473

7474
	init_sched_rt_class();
7475
	init_sched_dl_class();
P
Peter Zijlstra 已提交
7476 7477 7478

	sched_init_smt();

7479
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7480
}
7481 7482 7483

static int __init migration_init(void)
{
7484
	sched_rq_cpu_starting(smp_processor_id());
7485
	return 0;
L
Linus Torvalds 已提交
7486
}
7487 7488
early_initcall(migration_init);

L
Linus Torvalds 已提交
7489 7490 7491
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7492
	sched_init_granularity();
L
Linus Torvalds 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7503
#ifdef CONFIG_CGROUP_SCHED
7504 7505 7506 7507
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7508
struct task_group root_task_group;
7509
LIST_HEAD(task_groups);
7510 7511 7512

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7513
#endif
P
Peter Zijlstra 已提交
7514

7515
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7516
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
7517

L
Linus Torvalds 已提交
7518 7519
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7520
	int i, j;
7521 7522 7523 7524 7525 7526 7527 7528 7529
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7530
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7531 7532

#ifdef CONFIG_FAIR_GROUP_SCHED
7533
		root_task_group.se = (struct sched_entity **)ptr;
7534 7535
		ptr += nr_cpu_ids * sizeof(void **);

7536
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7537
		ptr += nr_cpu_ids * sizeof(void **);
7538

7539
#endif /* CONFIG_FAIR_GROUP_SCHED */
7540
#ifdef CONFIG_RT_GROUP_SCHED
7541
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7542 7543
		ptr += nr_cpu_ids * sizeof(void **);

7544
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7545 7546
		ptr += nr_cpu_ids * sizeof(void **);

7547
#endif /* CONFIG_RT_GROUP_SCHED */
7548
	}
7549
#ifdef CONFIG_CPUMASK_OFFSTACK
7550 7551 7552
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7553 7554
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7555
	}
7556
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7557

7558 7559 7560
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7561
			global_rt_period(), global_rt_runtime());
7562

G
Gregory Haskins 已提交
7563 7564 7565 7566
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7567
#ifdef CONFIG_RT_GROUP_SCHED
7568
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7569
			global_rt_period(), global_rt_runtime());
7570
#endif /* CONFIG_RT_GROUP_SCHED */
7571

D
Dhaval Giani 已提交
7572
#ifdef CONFIG_CGROUP_SCHED
7573 7574
	task_group_cache = KMEM_CACHE(task_group, 0);

7575 7576
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7577
	INIT_LIST_HEAD(&root_task_group.siblings);
7578
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7579
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7580

7581
	for_each_possible_cpu(i) {
7582
		struct rq *rq;
L
Linus Torvalds 已提交
7583 7584

		rq = cpu_rq(i);
7585
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7586
		rq->nr_running = 0;
7587 7588
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7589
		init_cfs_rq(&rq->cfs);
7590 7591
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7592
#ifdef CONFIG_FAIR_GROUP_SCHED
7593
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7594
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7595
		/*
7596
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7597 7598 7599 7600
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7601
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7602 7603 7604
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7605
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7606 7607 7608
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7609
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7610
		 *
7611 7612
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7613
		 */
7614
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7615
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7616 7617 7618
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7619
#ifdef CONFIG_RT_GROUP_SCHED
7620
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7621
#endif
L
Linus Torvalds 已提交
7622

I
Ingo Molnar 已提交
7623 7624
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7625

L
Linus Torvalds 已提交
7626
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7627
		rq->sd = NULL;
G
Gregory Haskins 已提交
7628
		rq->rd = NULL;
7629
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7630
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7631
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7632
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7633
		rq->push_cpu = 0;
7634
		rq->cpu = i;
7635
		rq->online = 0;
7636 7637
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7638
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7639 7640 7641

		INIT_LIST_HEAD(&rq->cfs_tasks);

7642
		rq_attach_root(rq, &def_root_domain);
7643
#ifdef CONFIG_NO_HZ_COMMON
7644
		rq->last_load_update_tick = jiffies;
7645
		rq->nohz_flags = 0;
7646
#endif
7647 7648 7649
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7650
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7651
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7652 7653 7654
		atomic_set(&rq->nr_iowait, 0);
	}

7655
	set_load_weight(&init_task);
7656

L
Linus Torvalds 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7670 7671 7672

	calc_load_update = jiffies + LOAD_FREQ;

7673
#ifdef CONFIG_SMP
7674
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7675 7676 7677
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7678
	idle_thread_set_boot_cpu();
7679
	set_cpu_rq_start_time(smp_processor_id());
7680 7681
#endif
	init_sched_fair_class();
7682

7683 7684
	init_schedstats();

7685
	scheduler_running = 1;
L
Linus Torvalds 已提交
7686 7687
}

7688
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7689 7690
static inline int preempt_count_equals(int preempt_offset)
{
7691
	int nested = preempt_count() + rcu_preempt_depth();
7692

A
Arnd Bergmann 已提交
7693
	return (nested == preempt_offset);
7694 7695
}

7696
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7697
{
P
Peter Zijlstra 已提交
7698 7699 7700 7701 7702
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7703
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7704 7705 7706 7707
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7708
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7709

7710 7711 7712 7713 7714
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7715 7716
{
	static unsigned long prev_jiffy;	/* ratelimiting */
7717
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
7718

7719
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7720 7721
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7722
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7723 7724 7725 7726 7727
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

7728 7729 7730
	/* Save this before calling printk(), since that will clobber it */
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
7731 7732 7733 7734 7735 7736 7737
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7738

7739 7740 7741
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7742 7743 7744
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7745 7746
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
7747
		pr_err("Preemption disabled at:");
7748
		print_ip_sym(preempt_disable_ip);
7749 7750
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
7751
	dump_stack();
7752
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
7753
}
7754
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7755 7756 7757
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7758
void normalize_rt_tasks(void)
7759
{
7760
	struct task_struct *g, *p;
7761 7762 7763
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7764

7765
	read_lock(&tasklist_lock);
7766
	for_each_process_thread(g, p) {
7767 7768 7769
		/*
		 * Only normalize user tasks:
		 */
7770
		if (p->flags & PF_KTHREAD)
7771 7772
			continue;

7773 7774 7775 7776
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
7777

7778
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7779 7780 7781 7782
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7783
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7784
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7785
			continue;
I
Ingo Molnar 已提交
7786
		}
L
Linus Torvalds 已提交
7787

7788
		__sched_setscheduler(p, &attr, false, false);
7789
	}
7790
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7791 7792 7793
}

#endif /* CONFIG_MAGIC_SYSRQ */
7794

7795
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7796
/*
7797
 * These functions are only useful for the IA64 MCA handling, or kdb.
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7811 7812
 *
 * Return: The current task for @cpu.
7813
 */
7814
struct task_struct *curr_task(int cpu)
7815 7816 7817 7818
{
	return cpu_curr(cpu);
}

7819 7820 7821
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7822 7823 7824 7825 7826 7827
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7828 7829
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7830 7831 7832 7833 7834 7835 7836
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7837
void ia64_set_curr_task(int cpu, struct task_struct *p)
7838 7839 7840 7841 7842
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7843

D
Dhaval Giani 已提交
7844
#ifdef CONFIG_CGROUP_SCHED
7845 7846 7847
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7848
static void sched_free_group(struct task_group *tg)
7849 7850 7851
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7852
	autogroup_free(tg);
7853
	kmem_cache_free(task_group_cache, tg);
7854 7855 7856
}

/* allocate runqueue etc for a new task group */
7857
struct task_group *sched_create_group(struct task_group *parent)
7858 7859 7860
{
	struct task_group *tg;

7861
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7862 7863 7864
	if (!tg)
		return ERR_PTR(-ENOMEM);

7865
	if (!alloc_fair_sched_group(tg, parent))
7866 7867
		goto err;

7868
	if (!alloc_rt_sched_group(tg, parent))
7869 7870
		goto err;

7871 7872 7873
	return tg;

err:
7874
	sched_free_group(tg);
7875 7876 7877 7878 7879 7880 7881
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7882
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7883
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7884 7885 7886 7887 7888

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7889
	list_add_rcu(&tg->siblings, &parent->children);
7890
	spin_unlock_irqrestore(&task_group_lock, flags);
7891 7892

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7893 7894
}

7895
/* rcu callback to free various structures associated with a task group */
7896
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7897 7898
{
	/* now it should be safe to free those cfs_rqs */
7899
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7900 7901
}

7902
void sched_destroy_group(struct task_group *tg)
7903 7904
{
	/* wait for possible concurrent references to cfs_rqs complete */
7905
	call_rcu(&tg->rcu, sched_free_group_rcu);
7906 7907 7908
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7909
{
7910
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7911

7912
	/* end participation in shares distribution */
7913
	unregister_fair_sched_group(tg);
7914 7915

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7916
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7917
	list_del_rcu(&tg->siblings);
7918
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7919 7920
}

7921
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
7922
{
P
Peter Zijlstra 已提交
7923
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7924

7925 7926 7927 7928 7929 7930
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7931 7932 7933 7934
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7935
#ifdef CONFIG_FAIR_GROUP_SCHED
7936 7937
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
7938
	else
P
Peter Zijlstra 已提交
7939
#endif
7940
		set_task_rq(tsk, task_cpu(tsk));
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
7967

7968
	if (queued)
7969
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7970
	if (unlikely(running))
7971
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7972

7973
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7974
}
D
Dhaval Giani 已提交
7975
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7976

7977 7978 7979 7980 7981
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7982

P
Peter Zijlstra 已提交
7983 7984
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7985
{
P
Peter Zijlstra 已提交
7986
	struct task_struct *g, *p;
7987

7988 7989 7990 7991 7992 7993
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7994
	for_each_process_thread(g, p) {
7995
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7996
			return 1;
7997
	}
7998

P
Peter Zijlstra 已提交
7999 8000
	return 0;
}
8001

P
Peter Zijlstra 已提交
8002 8003 8004 8005 8006
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8007

8008
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
8009 8010 8011 8012 8013
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8014

P
Peter Zijlstra 已提交
8015 8016
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8017

P
Peter Zijlstra 已提交
8018 8019 8020
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8021 8022
	}

8023 8024 8025 8026 8027
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8028

8029 8030 8031
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8032 8033
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8034

P
Peter Zijlstra 已提交
8035
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8036

8037 8038 8039 8040 8041
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8042

8043 8044 8045
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8046 8047 8048
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8049

P
Peter Zijlstra 已提交
8050 8051 8052 8053
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8054

P
Peter Zijlstra 已提交
8055
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8056
	}
P
Peter Zijlstra 已提交
8057

P
Peter Zijlstra 已提交
8058 8059 8060 8061
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8062 8063
}

P
Peter Zijlstra 已提交
8064
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8065
{
8066 8067
	int ret;

P
Peter Zijlstra 已提交
8068 8069 8070 8071 8072 8073
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

8074 8075 8076 8077 8078
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8079 8080
}

8081
static int tg_set_rt_bandwidth(struct task_group *tg,
8082
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8083
{
P
Peter Zijlstra 已提交
8084
	int i, err = 0;
P
Peter Zijlstra 已提交
8085

8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
8097
	mutex_lock(&rt_constraints_mutex);
8098
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8099 8100
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8101
		goto unlock;
P
Peter Zijlstra 已提交
8102

8103
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8104 8105
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8106 8107 8108 8109

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8110
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8111
		rt_rq->rt_runtime = rt_runtime;
8112
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8113
	}
8114
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8115
unlock:
8116
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8117 8118 8119
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8120 8121
}

8122
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8123 8124 8125 8126 8127 8128 8129 8130
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8131
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8132 8133
}

8134
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
8135 8136 8137
{
	u64 rt_runtime_us;

8138
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8139 8140
		return -1;

8141
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8142 8143 8144
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8145

8146
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8147 8148 8149
{
	u64 rt_runtime, rt_period;

8150
	rt_period = rt_period_us * NSEC_PER_USEC;
8151 8152
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8153
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8154 8155
}

8156
static long sched_group_rt_period(struct task_group *tg)
8157 8158 8159 8160 8161 8162 8163
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8164
#endif /* CONFIG_RT_GROUP_SCHED */
8165

8166
#ifdef CONFIG_RT_GROUP_SCHED
8167 8168 8169 8170 8171
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8172
	read_lock(&tasklist_lock);
8173
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8174
	read_unlock(&tasklist_lock);
8175 8176 8177 8178
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8179

8180
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8181 8182 8183 8184 8185 8186 8187 8188
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8189
#else /* !CONFIG_RT_GROUP_SCHED */
8190 8191
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8192
	unsigned long flags;
8193
	int i;
8194

8195
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8196 8197 8198
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8199
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8200
		rt_rq->rt_runtime = global_rt_runtime();
8201
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8202
	}
8203
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8204

8205
	return 0;
8206
}
8207
#endif /* CONFIG_RT_GROUP_SCHED */
8208

8209
static int sched_dl_global_validate(void)
8210
{
8211 8212
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8213
	u64 new_bw = to_ratio(period, runtime);
8214
	struct dl_bw *dl_b;
8215
	int cpu, ret = 0;
8216
	unsigned long flags;
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8227
	for_each_possible_cpu(cpu) {
8228 8229
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8230

8231
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8232 8233
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8234
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8235

8236 8237
		rcu_read_unlock_sched();

8238 8239
		if (ret)
			break;
8240 8241
	}

8242
	return ret;
8243 8244
}

8245
static void sched_dl_do_global(void)
8246
{
8247
	u64 new_bw = -1;
8248
	struct dl_bw *dl_b;
8249
	int cpu;
8250
	unsigned long flags;
8251

8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8262 8263
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8264

8265
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8266
		dl_b->bw = new_bw;
8267
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8268 8269

		rcu_read_unlock_sched();
8270
	}
8271 8272 8273 8274 8275 8276 8277
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8278 8279
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8280 8281 8282 8283 8284 8285 8286 8287 8288
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8289 8290
}

8291
int sched_rt_handler(struct ctl_table *table, int write,
8292
		void __user *buffer, size_t *lenp,
8293 8294 8295 8296
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8297
	int ret;
8298 8299 8300 8301 8302

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8303
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8304 8305

	if (!ret && write) {
8306 8307 8308 8309
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8310
		ret = sched_dl_global_validate();
8311 8312 8313
		if (ret)
			goto undo;

8314
		ret = sched_rt_global_constraints();
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8325 8326 8327 8328 8329
	}
	mutex_unlock(&mutex);

	return ret;
}
8330

8331
int sched_rr_handler(struct ctl_table *table, int write,
8332 8333 8334 8335 8336 8337 8338 8339
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8340 8341
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8342
	if (!ret && write) {
8343 8344
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8345 8346 8347 8348 8349
	}
	mutex_unlock(&mutex);
	return ret;
}

8350
#ifdef CONFIG_CGROUP_SCHED
8351

8352
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8353
{
8354
	return css ? container_of(css, struct task_group, css) : NULL;
8355 8356
}

8357 8358
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8359
{
8360 8361
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8362

8363
	if (!parent) {
8364
		/* This is early initialization for the top cgroup */
8365
		return &root_task_group.css;
8366 8367
	}

8368
	tg = sched_create_group(parent);
8369 8370 8371
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8372 8373
	sched_online_group(tg, parent);

8374 8375 8376
	return &tg->css;
}

8377
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8378
{
8379
	struct task_group *tg = css_tg(css);
8380

8381
	sched_offline_group(tg);
8382 8383
}

8384
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8385
{
8386
	struct task_group *tg = css_tg(css);
8387

8388 8389 8390 8391
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8392 8393
}

8394 8395 8396 8397
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8398
static void cpu_cgroup_fork(struct task_struct *task)
8399
{
8400 8401 8402 8403 8404 8405 8406 8407
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8408 8409
}

8410
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8411
{
8412
	struct task_struct *task;
8413
	struct cgroup_subsys_state *css;
8414
	int ret = 0;
8415

8416
	cgroup_taskset_for_each(task, css, tset) {
8417
#ifdef CONFIG_RT_GROUP_SCHED
8418
		if (!sched_rt_can_attach(css_tg(css), task))
8419
			return -EINVAL;
8420
#else
8421 8422 8423
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8424
#endif
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8441
	}
8442
	return ret;
8443
}
8444

8445
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8446
{
8447
	struct task_struct *task;
8448
	struct cgroup_subsys_state *css;
8449

8450
	cgroup_taskset_for_each(task, css, tset)
8451
		sched_move_task(task);
8452 8453
}

8454
#ifdef CONFIG_FAIR_GROUP_SCHED
8455 8456
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8457
{
8458
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8459 8460
}

8461 8462
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8463
{
8464
	struct task_group *tg = css_tg(css);
8465

8466
	return (u64) scale_load_down(tg->shares);
8467
}
8468 8469

#ifdef CONFIG_CFS_BANDWIDTH
8470 8471
static DEFINE_MUTEX(cfs_constraints_mutex);

8472 8473 8474
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8475 8476
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8477 8478
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8479
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8480
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8501 8502 8503 8504 8505
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8506 8507 8508 8509 8510
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8511
	runtime_enabled = quota != RUNTIME_INF;
8512
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8513 8514 8515 8516 8517 8518
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8519 8520 8521
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8522

P
Paul Turner 已提交
8523
	__refill_cfs_bandwidth_runtime(cfs_b);
8524
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8525 8526
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8527 8528
	raw_spin_unlock_irq(&cfs_b->lock);

8529
	for_each_online_cpu(i) {
8530
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8531
		struct rq *rq = cfs_rq->rq;
8532 8533

		raw_spin_lock_irq(&rq->lock);
8534
		cfs_rq->runtime_enabled = runtime_enabled;
8535
		cfs_rq->runtime_remaining = 0;
8536

8537
		if (cfs_rq->throttled)
8538
			unthrottle_cfs_rq(cfs_rq);
8539 8540
		raw_spin_unlock_irq(&rq->lock);
	}
8541 8542
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8543 8544
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8545
	put_online_cpus();
8546

8547
	return ret;
8548 8549 8550 8551 8552 8553
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8554
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8567
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8568 8569
		return -1;

8570
	quota_us = tg->cfs_bandwidth.quota;
8571 8572 8573 8574 8575 8576 8577 8578 8579 8580
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8581
	quota = tg->cfs_bandwidth.quota;
8582 8583 8584 8585 8586 8587 8588 8589

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8590
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8591 8592 8593 8594 8595
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8596 8597
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8598
{
8599
	return tg_get_cfs_quota(css_tg(css));
8600 8601
}

8602 8603
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8604
{
8605
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8606 8607
}

8608 8609
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8610
{
8611
	return tg_get_cfs_period(css_tg(css));
8612 8613
}

8614 8615
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8616
{
8617
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8618 8619
}

8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8652
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8653 8654 8655 8656 8657
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8658
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8659 8660

		quota = normalize_cfs_quota(tg, d);
8661
		parent_quota = parent_b->hierarchical_quota;
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8672
	cfs_b->hierarchical_quota = quota;
8673 8674 8675 8676 8677 8678

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8679
	int ret;
8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8691 8692 8693 8694 8695
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8696
}
8697

8698
static int cpu_stats_show(struct seq_file *sf, void *v)
8699
{
8700
	struct task_group *tg = css_tg(seq_css(sf));
8701
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8702

8703 8704 8705
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8706 8707 8708

	return 0;
}
8709
#endif /* CONFIG_CFS_BANDWIDTH */
8710
#endif /* CONFIG_FAIR_GROUP_SCHED */
8711

8712
#ifdef CONFIG_RT_GROUP_SCHED
8713 8714
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8715
{
8716
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8717 8718
}

8719 8720
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8721
{
8722
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8723
}
8724

8725 8726
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8727
{
8728
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8729 8730
}

8731 8732
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8733
{
8734
	return sched_group_rt_period(css_tg(css));
8735
}
8736
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8737

8738
static struct cftype cpu_files[] = {
8739
#ifdef CONFIG_FAIR_GROUP_SCHED
8740 8741
	{
		.name = "shares",
8742 8743
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8744
	},
8745
#endif
8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8757 8758
	{
		.name = "stat",
8759
		.seq_show = cpu_stats_show,
8760
	},
8761
#endif
8762
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8763
	{
P
Peter Zijlstra 已提交
8764
		.name = "rt_runtime_us",
8765 8766
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8767
	},
8768 8769
	{
		.name = "rt_period_us",
8770 8771
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8772
	},
8773
#endif
8774
	{ }	/* terminate */
8775 8776
};

8777
struct cgroup_subsys cpu_cgrp_subsys = {
8778
	.css_alloc	= cpu_cgroup_css_alloc,
8779
	.css_released	= cpu_cgroup_css_released,
8780
	.css_free	= cpu_cgroup_css_free,
8781
	.fork		= cpu_cgroup_fork,
8782 8783
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8784
	.legacy_cftypes	= cpu_files,
8785
	.early_init	= true,
8786 8787
};

8788
#endif	/* CONFIG_CGROUP_SCHED */
8789

8790 8791 8792 8793 8794
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};