process.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60
#include <asm/livepatch.h>
61
#include <asm/cpu_has_feature.h>
62

63 64
#include <linux/kprobes.h>
#include <linux/kdebug.h>
65

66 67 68 69 70 71 72
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

73 74
extern unsigned long _get_SP(void);

75
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76
static void check_if_tm_restore_required(struct task_struct *tsk)
77 78 79 80 81 82 83 84 85 86
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
87
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
88 89 90 91
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
92
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
93 94
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

95 96 97 98 99 100 101 102 103 104 105 106 107
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
108
{
109 110
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
111

112
	newmsr = oldmsr | bits;
113 114

#ifdef CONFIG_VSX
115
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
116 117
		newmsr |= MSR_VSX;
#endif
118

119 120
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
121
}
122

123
void __msr_check_and_clear(unsigned long bits)
124 125 126 127 128 129 130 131 132 133 134 135 136 137
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
138
EXPORT_SYMBOL(__msr_check_and_clear);
139 140

#ifdef CONFIG_PPC_FPU
141 142
void __giveup_fpu(struct task_struct *tsk)
{
143 144
	unsigned long msr;

145
	save_fpu(tsk);
146 147
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
148 149
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
150
		msr &= ~MSR_VSX;
151
#endif
152
	tsk->thread.regs->msr = msr;
153 154
}

155 156 157 158 159
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
160
	__giveup_fpu(tsk);
161
	msr_check_and_clear(MSR_FP);
162 163 164
}
EXPORT_SYMBOL(giveup_fpu);

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
185
			 * the FP register state on context switch,
186 187 188 189
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
190
			giveup_fpu(tsk);
191 192 193 194
		}
		preempt_enable();
	}
}
195
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
196 197 198 199 200

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

201
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
202

203 204
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
205
		__giveup_fpu(current);
206
	}
207 208
}
EXPORT_SYMBOL(enable_kernel_fp);
209 210 211 212 213 214 215 216 217 218 219

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
220
#endif /* CONFIG_PPC_FPU */
221 222

#ifdef CONFIG_ALTIVEC
223 224
#define loadvec(thr) ((thr).load_vec)

225 226
static void __giveup_altivec(struct task_struct *tsk)
{
227 228
	unsigned long msr;

229
	save_altivec(tsk);
230 231
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
232 233
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
234
		msr &= ~MSR_VSX;
235
#endif
236
	tsk->thread.regs->msr = msr;
237 238
}

239 240 241 242
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

243
	msr_check_and_set(MSR_VEC);
244
	__giveup_altivec(tsk);
245
	msr_check_and_clear(MSR_VEC);
246 247 248
}
EXPORT_SYMBOL(giveup_altivec);

249 250 251 252
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

253
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
254

255 256
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
257
		__giveup_altivec(current);
258
	}
259 260 261 262 263 264 265 266 267 268 269 270 271
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
272
			giveup_altivec(tsk);
273 274 275 276
		}
		preempt_enable();
	}
}
277
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
293 294
#endif /* CONFIG_ALTIVEC */

295
#ifdef CONFIG_VSX
296
static void __giveup_vsx(struct task_struct *tsk)
297 298 299 300 301
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
302 303 304 305 306 307 308 309
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
310
	__giveup_vsx(tsk);
311
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
312
}
313 314 315 316 317 318 319 320

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
321

322 323 324 325
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

326
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
327

328
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
329
		check_if_tm_restore_required(current);
330 331 332 333 334
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
335
	}
336 337 338 339 340 341 342 343 344 345 346 347 348 349
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
350
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
351 352 353 354 355 356 357 358 359 360 361 362

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
363
static inline void save_vsx(struct task_struct *tsk) { }
364 365
#endif /* CONFIG_VSX */

366
#ifdef CONFIG_SPE
367 368 369 370
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

371
	msr_check_and_set(MSR_SPE);
372
	__giveup_spe(tsk);
373
	msr_check_and_clear(MSR_SPE);
374 375
}
EXPORT_SYMBOL(giveup_spe);
376 377 378 379 380

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

381
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
382

383 384
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
385
		__giveup_spe(current);
386
	}
387 388 389 390 391 392 393 394 395
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
396
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397
			giveup_spe(tsk);
398 399 400 401 402 403
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

507 508 509 510 511 512 513 514 515 516 517 518 519
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
520 521 522 523 524 525 526

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

527 528 529 530 531
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
532
		save_all(tsk);
533 534 535 536 537 538 539 540 541 542 543

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

544 545 546 547 548 549
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

550
	current->thread.trap_nr = signal_code;
551 552 553 554 555 556 557 558 559 560 561 562
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
563
void do_break (struct pt_regs *regs, unsigned long address,
564 565 566 567
		    unsigned long error_code)
{
	siginfo_t info;

568
	current->thread.trap_nr = TRAP_HWBKPT;
569 570 571 572
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

573
	if (debugger_break_match(regs))
574 575
		return;

576 577
	/* Clear the breakpoint */
	hw_breakpoint_disable();
578 579 580 581 582 583 584 585

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
586
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
587

588
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
589

590 591 592 593 594 595
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
596
	thread->debug.iac1 = thread->debug.iac2 = 0;
597
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
598
	thread->debug.iac3 = thread->debug.iac4 = 0;
599
#endif
600
	thread->debug.dac1 = thread->debug.dac2 = 0;
601
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
602
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
603
#endif
604
	thread->debug.dbcr0 = 0;
605 606 607 608
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
609
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
610 611 612 613 614
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
615
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
616
#else
617
	thread->debug.dbcr1 = 0;
618 619 620
#endif
}

621
static void prime_debug_regs(struct debug_reg *debug)
622
{
623 624 625 626 627 628 629
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

630 631
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
632
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
633 634
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
635
#endif
636 637
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
638
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639 640
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
641
#endif
642 643
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
644
#ifdef CONFIG_BOOKE
645
	mtspr(SPRN_DBCR2, debug->dbcr2);
646 647 648 649 650 651 652
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
653
void switch_booke_debug_regs(struct debug_reg *new_debug)
654
{
655
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
656 657
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
658
}
659
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
660
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
661
#ifndef CONFIG_HAVE_HW_BREAKPOINT
662 663
static void set_debug_reg_defaults(struct thread_struct *thread)
{
664 665
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
666
	set_breakpoint(&thread->hw_brk);
667
}
668
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
669 670
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

671
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
672 673
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
674
	mtspr(SPRN_DAC1, dabr);
675 676 677
#ifdef CONFIG_PPC_47x
	isync();
#endif
678 679
	return 0;
}
680
#elif defined(CONFIG_PPC_BOOK3S)
681 682
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
683
	mtspr(SPRN_DABR, dabr);
684 685
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
686
	return 0;
687
}
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

708 709
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
710
	unsigned long dawr, dawrx, mrd;
711 712 713 714 715 716 717 718 719

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
720 721 722 723 724 725 726 727
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
728 729 730 731 732 733 734 735

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

736
void __set_breakpoint(struct arch_hw_breakpoint *brk)
737
{
738
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
739

740
	if (cpu_has_feature(CPU_FTR_DAWR))
741 742 743
		set_dawr(brk);
	else
		set_dabr(brk);
744
}
745

746 747 748 749 750 751 752
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

753 754 755
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
756

757 758 759 760 761 762 763 764 765 766 767
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
768

769
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
770 771 772 773 774 775 776 777 778 779 780 781
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
782
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
783 784 785 786 787 788 789 790 791 792
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

793 794 795 796 797 798 799 800 801 802 803 804 805
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
806
	 * benefit of checking for a potential TM bad thing exception.
807 808 809 810
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
850
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
851
	 * ckpt_regs.msr is already set.
852
	 */
853
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
854
		thr->ckpt_regs.msr = thr->regs->msr;
855 856 857 858 859 860 861

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

862
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
863 864 865 866 867 868 869 870 871 872 873 874 875

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

901
static inline void tm_recheckpoint_new_task(struct task_struct *new)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

919 920
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
921
		return;
922
	}
923
	msr = new->thread.ckpt_regs.msr;
924 925 926 927 928 929 930 931 932 933 934 935 936 937
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
938
#ifdef CONFIG_ALTIVEC
939 940 941 942
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
943
#endif
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

983
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
984
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
985 986 987

	restore_math(regs);

988 989 990
	regs->msr |= msr_diff;
}

991 992 993 994
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
995

996 997 998
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
999
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
1021 1022 1023 1024 1025 1026 1027 1028

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally save Load Monitor registers, if enabled */
		if (t->fscr & FSCR_LM) {
			t->lmrr = mfspr(SPRN_LMRR);
			t->lmser = mfspr(SPRN_LMSER);
		}
	}
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1043
		if (new_thread->dscr_inherit)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1058 1059 1060
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1061 1062 1063
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally restore Load Monitor registers, if enabled */
		if (new_thread->fscr & FSCR_LM) {
			if (old_thread->lmrr != new_thread->lmrr)
				mtspr(SPRN_LMRR, new_thread->lmrr);
			if (old_thread->lmser != new_thread->lmser)
				mtspr(SPRN_LMSER, new_thread->lmser);
		}
	}
1074 1075 1076
#endif
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
void flush_tmregs_to_thread(struct task_struct *tsk)
{
	/*
	 * Process self tracing is not yet supported through
	 * ptrace interface. Ptrace generic code should have
	 * prevented this from happening in the first place.
	 * Warn once here with the message, if some how it
	 * is attempted.
	 */
	WARN_ONCE(tsk == current,
		"Not expecting ptrace on self: TM regs may be incorrect\n");

	/*
	 * If task is not current, it should have been flushed
	 * already to it's thread_struct during __switch_to().
	 */
}
#endif

1097 1098 1099 1100 1101
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1102 1103 1104
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1105

1106 1107 1108
	new_thread = &new->thread;
	old_thread = &current->thread;

1109 1110
	WARN_ON(!irqs_disabled());

1111 1112 1113 1114 1115
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1116
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1117 1118 1119 1120 1121 1122
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1123 1124
#endif /* CONFIG_PPC64 */

1125
#ifdef CONFIG_PPC_STD_MMU_64
1126
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1127 1128 1129 1130 1131 1132
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1133
#endif /* CONFIG_PPC_STD_MMU_64 */
1134

A
Anton Blanchard 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1159 1160 1161 1162 1163 1164
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1165 1166 1167

	tm_recheckpoint_new_task(new);

1168 1169 1170 1171 1172 1173 1174
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1175 1176
	restore_sprs(old_thread, new_thread);

1177 1178
	last = _switch(old_thread, new_thread);

1179
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1180 1181
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1182
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1183 1184
		batch->active = 1;
	}
1185 1186 1187

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1188
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1189

1190 1191 1192
	return last;
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1209 1210 1211 1212 1213 1214 1215 1216
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1217
		if (!__kernel_text_address(pc) ||
1218
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1219
			printk(KERN_CONT "XXXXXXXX ");
1220 1221
		} else {
			if (regs->nip == pc)
1222
				printk(KERN_CONT "<%08x> ", instr);
1223
			else
1224
				printk(KERN_CONT "%08x ", instr);
1225 1226 1227 1228 1229 1230 1231 1232
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1233
struct regbit {
1234 1235
	unsigned long bit;
	const char *name;
1236 1237 1238
};

static struct regbit msr_bits[] = {
1239 1240 1241 1242 1243 1244 1245 1246 1247
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1248 1249 1250 1251
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1252
#ifdef CONFIG_BOOKE
1253
	{MSR_DE,	"DE"},
1254 1255 1256 1257
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1258 1259
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1260 1261 1262 1263 1264
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1265 1266 1267
	{0,		NULL}
};

1268
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1269
{
1270
	const char *s = "";
1271 1272 1273

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1274 1275
			printk("%s%s", s, bits->name);
			s = sep;
1276
		}
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1311 1312 1313 1314
	printk(">");
}

#ifdef CONFIG_PPC64
1315
#define REG		"%016lx"
1316 1317 1318
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1319
#define REG		"%08lx"
1320 1321 1322 1323
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1324 1325 1326 1327
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1328 1329
	show_regs_print_info(KERN_DEFAULT);

1330 1331 1332
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1333
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1334
	printk("MSR: "REG" ", regs->msr);
1335
	print_msr_bits(regs->msr);
1336
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1337
	trap = TRAP(regs);
1338
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1339
		printk("CFAR: "REG" ", regs->orig_gpr3);
1340
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1341
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1342
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1343
#else
1344 1345 1346 1347 1348 1349
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1350 1351
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1352
#endif
1353 1354

	for (i = 0;  i < 32;  i++) {
1355
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1356
			printk("\nGPR%02d: ", i);
1357 1358
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1359 1360 1361 1362 1363 1364 1365 1366
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1367 1368
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1369
#endif
1370
	show_stack(current, (unsigned long *) regs->gpr[1]);
1371 1372
	if (!user_mode(regs))
		show_instructions(regs);
1373 1374 1375 1376
}

void flush_thread(void)
{
1377
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1378
	flush_ptrace_hw_breakpoint(current);
1379
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1380
	set_debug_reg_defaults(&current->thread);
1381
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1382 1383 1384 1385 1386 1387 1388 1389
}

void
release_thread(struct task_struct *t)
{
}

/*
1390 1391
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1392
 */
1393
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1394
{
1395
	flush_all_to_thread(src);
1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1405

1406
	*dst = *src;
1407 1408 1409

	clear_task_ebb(dst);

1410
	return 0;
1411 1412
}

1413 1414 1415 1416 1417 1418
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1419 1420 1421
	if (radix_enabled())
		return;

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1433 1434 1435
/*
 * Copy a thread..
 */
1436

1437 1438 1439
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1440
int copy_thread(unsigned long clone_flags, unsigned long usp,
1441
		unsigned long kthread_arg, struct task_struct *p)
1442 1443 1444
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1445 1446
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1447
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1448 1449 1450
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1451 1452 1453 1454

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1455
	if (unlikely(p->flags & PF_KTHREAD)) {
1456
		/* kernel thread */
A
Al Viro 已提交
1457
		memset(childregs, 0, sizeof(struct pt_regs));
1458
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1459 1460 1461
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1462
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1463
		clear_tsk_thread_flag(p, TIF_32BIT);
1464
		childregs->softe = 1;
1465
#endif
1466
		childregs->gpr[15] = kthread_arg;
1467
		p->thread.regs = NULL;	/* no user register state */
1468
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1469
		f = ret_from_kernel_thread;
1470
	} else {
1471
		/* user thread */
1472
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1473 1474
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1475 1476
		if (usp)
			childregs->gpr[1] = usp;
1477
		p->thread.regs = childregs;
A
Al Viro 已提交
1478
		childregs->gpr[3] = 0;  /* Result from fork() */
1479 1480
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1481
			if (!is_32bit_task())
1482 1483 1484 1485 1486
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1487 1488

		f = ret_from_fork;
1489
	}
1490
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1501
	((unsigned long *)sp)[0] = 0;
1502 1503 1504 1505
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1506
#ifdef CONFIG_PPC32
1507 1508
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1509
#endif
1510 1511 1512 1513
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1514 1515 1516 1517 1518
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1519 1520
	setup_ksp_vsid(p, sp);

1521 1522
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1523
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1524
		p->thread.dscr = mfspr(SPRN_DSCR);
1525
	}
1526 1527
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1528
#endif
1529
	kregs->nip = ppc_function_entry(f);
1530 1531 1532 1533 1534 1535
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1536
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1537
{
1538 1539 1540 1541
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1542 1543 1544 1545 1546
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1547 1548
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1549 1550
	}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1561 1562 1563 1564 1565 1566
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1567

1568 1569 1570 1571 1572 1573 1574
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1575 1576 1577
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1578
	regs->msr = MSR_USER;
1579
#else
1580
	if (!is_32bit_task()) {
1581
		unsigned long entry;
1582

1583 1584 1585
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1618 1619 1620
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1621 1622 1623 1624
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1625 1626
	}
#endif
1627 1628 1629
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1630
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1631
	current->thread.fp_save_area = NULL;
1632
#ifdef CONFIG_ALTIVEC
1633 1634
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1635
	current->thread.vr_save_area = NULL;
1636 1637 1638 1639 1640 1641 1642 1643 1644
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1645 1646 1647 1648 1649 1650 1651
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1652
}
1653
EXPORT_SYMBOL(start_thread);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1668
		if (cpu_has_feature(CPU_FTR_SPE)) {
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1682 1683 1684 1685 1686 1687
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1688 1689 1690 1691
#else
		return -EINVAL;
#endif
	}
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1704 1705 1706 1707 1708 1709 1710 1711 1712
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1727
			val = tsk->thread.fpexc_mode;
1728
		} else
1729
			return -EINVAL;
1730 1731 1732 1733 1734 1735 1736 1737
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1817
int validate_sp(unsigned long sp, struct task_struct *p,
1818 1819
		       unsigned long nbytes)
{
A
Al Viro 已提交
1820
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1821 1822 1823 1824 1825

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1826
	return valid_irq_stack(sp, p, nbytes);
1827 1828
}

1829 1830
EXPORT_SYMBOL(validate_sp);

1831 1832 1833 1834 1835 1836 1837 1838 1839
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1840
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1841 1842 1843 1844
		return 0;

	do {
		sp = *(unsigned long *)sp;
1845
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1846 1847
			return 0;
		if (count > 0) {
1848
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1849 1850 1851 1852 1853 1854
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1855

1856
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1857 1858 1859 1860 1861 1862

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1863 1864 1865
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1866
	unsigned long rth = (unsigned long)return_to_handler;
1867
#endif
1868 1869 1870 1871 1872 1873

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1874
			sp = current_stack_pointer();
1875 1876 1877 1878 1879 1880 1881
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1882
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1883 1884 1885 1886
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1887
		ip = stack[STACK_FRAME_LR_SAVE];
1888
		if (!firstframe || ip != lr) {
1889
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1890
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1891
			if ((ip == rth) && curr_frame >= 0) {
1892 1893 1894 1895 1896
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1907 1908
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1909 1910 1911
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1912
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1913
			       regs->trap, (void *)regs->nip, (void *)lr);
1914 1915 1916 1917 1918 1919 1920
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1921
#ifdef CONFIG_PPC64
1922
/* Called with hard IRQs off */
1923
void notrace __ppc64_runlatch_on(void)
1924
{
1925
	struct thread_info *ti = current_thread_info();
1926 1927
	unsigned long ctrl;

1928 1929 1930
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1931

1932
	ti->local_flags |= _TLF_RUNLATCH;
1933 1934
}

1935
/* Called with hard IRQs off */
1936
void notrace __ppc64_runlatch_off(void)
1937
{
1938
	struct thread_info *ti = current_thread_info();
1939 1940
	unsigned long ctrl;

1941
	ti->local_flags &= ~_TLF_RUNLATCH;
1942

1943 1944 1945
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1946
}
1947
#endif /* CONFIG_PPC64 */
1948

1949 1950 1951 1952 1953 1954
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1955 1956 1957 1958 1959 1960 1961

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1962
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1963
	else
D
Daniel Cashman 已提交
1964
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1965 1966 1967 1968 1969 1970

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1971 1972 1973
	unsigned long base = mm->brk;
	unsigned long ret;

1974
#ifdef CONFIG_PPC_STD_MMU_64
1975 1976 1977 1978 1979
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1980 1981
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1982 1983 1984 1985 1986 1987
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1988 1989 1990 1991 1992 1993

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1994