entry_64.S 48.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106 107 108 109 110 111 112 113 114 115
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
116
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 118 119 120 121 122
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
123
 * rax  system call number
124 125
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
126 127
 * rdi  arg0
 * rsi  arg1
128
 * rdx  arg2
129
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
130 131
 * r8   arg4
 * r9   arg5
132
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133
 *
L
Linus Torvalds 已提交
134 135
 * Only called from user space.
 *
136
 * When user can change pt_regs->foo always force IRET. That is because
137 138
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
139
 */
L
Linus Torvalds 已提交
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
159 160
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
161 162 163 164 165 166 167 168

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

169 170 171
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
191
	JMP_NOSPEC %rdi
192 193 194 195 196 197 198 199 200 201
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

202
ENTRY(entry_SYSCALL_64)
203
	UNWIND_HINT_EMPTY
204 205 206 207 208
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
209

210
	swapgs
211 212 213 214
	/*
	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
	 * is not required to switch CR3.
	 */
215 216
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
217

218 219
	TRACE_IRQS_OFF

220
	/* Construct struct pt_regs on stack */
221 222 223 224 225
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
226
GLOBAL(entry_SYSCALL_64_after_hwframe)
227 228 229 230 231 232 233 234 235 236 237
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
238
	UNWIND_HINT_REGS extra=0
239

240 241 242 243
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
244 245
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
246 247
	jnz	entry_SYSCALL64_slow_path

248
entry_SYSCALL_64_fastpath:
249 250 251 252 253 254 255
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
256
#if __SYSCALL_MASK == ~0
257
	cmpq	$__NR_syscall_max, %rax
258
#else
259 260
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
261
#endif
262 263
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
264 265 266

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
267 268
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
269
	 */
270 271 272 273
#ifdef CONFIG_RETPOLINE
	movq	sys_call_table(, %rax, 8), %rax
	call	__x86_indirect_thunk_rax
#else
274
	call	*sys_call_table(, %rax, 8)
275
#endif
276 277
.Lentry_SYSCALL_64_after_fastpath_call:

278
	movq	%rax, RAX(%rsp)
279
1:
280 281

	/*
282 283 284
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
285
	 */
286
	DISABLE_INTERRUPTS(CLBR_ANY)
287
	TRACE_IRQS_OFF
288 289
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
290
	jnz	1f
291

292 293
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
294 295
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
296
	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
297
	UNWIND_HINT_EMPTY
298
	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
L
Linus Torvalds 已提交
299

300 301 302 303 304 305
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
306
	TRACE_IRQS_ON
307
	ENABLE_INTERRUPTS(CLBR_ANY)
308
	SAVE_EXTRA_REGS
309
	movq	%rsp, %rdi
310 311
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
312

313 314
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
315
	SAVE_EXTRA_REGS
316
	movq	%rsp, %rdi
317 318 319
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
320
	TRACE_IRQS_IRETQ		/* we're about to change IF */
321 322 323

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
324 325
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
326
	 */
327 328
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
329 330 331

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
332 333 334 335

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
336
	 * the kernel, since userspace controls RSP.
337
	 *
338
	 * If width of "canonical tail" ever becomes variable, this will need
339
	 * to be updated to remain correct on both old and new CPUs.
340
	 *
341 342
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
343
	 */
344 345
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
346

347 348
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
349
	jne	swapgs_restore_regs_and_return_to_usermode
350

351
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
352
	jne	swapgs_restore_regs_and_return_to_usermode
353

354 355
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
356
	jne	swapgs_restore_regs_and_return_to_usermode
357 358

	/*
359 360 361 362 363 364 365 366 367
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
368
	 *
369
	 *           movq	$stuck_here, %rcx
370 371 372 373 374 375
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
376
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
377
	jnz	swapgs_restore_regs_and_return_to_usermode
378 379 380

	/* nothing to check for RSP */

381
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
382
	jne	swapgs_restore_regs_and_return_to_usermode
383 384

	/*
385 386
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
387 388
	 */
syscall_return_via_sysret:
389
	/* rcx and r11 are already restored (see code above) */
390
	UNWIND_HINT_EMPTY
391
	POP_EXTRA_REGS
392
.Lpop_c_regs_except_rcx_r11_and_sysret:
393 394 395 396 397 398 399 400
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
401 402 403 404 405 406

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
407
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
408 409 410 411 412 413 414 415

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
416
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
417

418
	popq	%rdi
419
	popq	%rsp
420
	USERGS_SYSRET64
421
END(entry_SYSCALL_64)
422

423 424 425
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
426 427 428
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
429 430
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
431
	 * IRQs are on.
432 433 434 435
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

436 437 438 439
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
440
	DISABLE_INTERRUPTS(CLBR_ANY)
441
	TRACE_IRQS_OFF
442
	popq	%rax
443
	UNWIND_HINT_REGS extra=0
444
	jmp	entry_SYSCALL64_slow_path
445 446

1:
447
	JMP_NOSPEC %rax				/* Called from C */
448 449 450 451
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
452
	UNWIND_HINT_FUNC
453 454 455 456 457 458 459 460 461 462
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
463

464 465 466 467 468
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
469
	UNWIND_HINT_FUNC
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

501 502 503
/*
 * A newly forked process directly context switches into this address.
 *
504
 * rax: prev task we switched from
505 506
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
507 508
 */
ENTRY(ret_from_fork)
509
	UNWIND_HINT_EMPTY
510
	movq	%rax, %rdi
511
	call	schedule_tail			/* rdi: 'prev' task parameter */
512

513 514
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
515

516
2:
517
	UNWIND_HINT_REGS
518
	movq	%rsp, %rdi
519 520
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
521
	jmp	swapgs_restore_regs_and_return_to_usermode
522 523 524 525

1:
	/* kernel thread */
	movq	%r12, %rdi
526
	CALL_NOSPEC %rbx
527 528 529 530 531 532 533
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
534 535
END(ret_from_fork)

536
/*
537 538
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
539
 */
540
	.align 8
541
ENTRY(irq_entries_start)
542 543
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
544
	UNWIND_HINT_IRET_REGS
545
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
546 547
	jmp	common_interrupt
	.align	8
548
	vector=vector+1
549
    .endr
550 551
END(irq_entries_start)

552 553
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
554 555 556
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
557 558 559
	jz .Lokay_\@
	ud2
.Lokay_\@:
560
	popq %rax
561 562 563 564 565 566 567 568 569 570
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
571
.macro ENTER_IRQ_STACK regs=1 old_rsp
572 573
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
574 575 576 577 578

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

579
	incl	PER_CPU_VAR(irq_count)
580
	jnz	.Lirq_stack_push_old_rsp_\@
581 582 583 584 585 586 587 588 589

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
606
	 */
607 608 609 610 611
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
612

613
.Lirq_stack_push_old_rsp_\@:
614
	pushq	\old_rsp
615 616 617 618

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
619 620 621 622 623
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
624
.macro LEAVE_IRQ_STACK regs=1
625 626 627 628
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

629 630 631 632
	.if \regs
	UNWIND_HINT_REGS
	.endif

633 634 635 636 637 638 639 640
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

641
/*
L
Linus Torvalds 已提交
642 643 644
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
645 646 647
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
648

649
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
650
	.macro interrupt func
651
	cld
652 653 654 655 656 657 658

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

659 660 661
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
662
	ENCODE_FRAME_POINTER
663

664
	testb	$3, CS(%rsp)
665
	jz	1f
666 667

	/*
668 669
	 * IRQ from user mode.
	 *
670 671 672 673 674 675 676 677 678
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

679
	CALL_enter_from_user_mode
680

681
1:
682
	ENTER_IRQ_STACK old_rsp=%rdi
683 684 685
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

686
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
687 688
	.endm

689 690 691 692
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
693 694
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
695
	ASM_CLAC
696
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
697
	interrupt do_IRQ
698
	/* 0(%rsp): old RSP */
699
ret_from_intr:
700
	DISABLE_INTERRUPTS(CLBR_ANY)
701
	TRACE_IRQS_OFF
702

703
	LEAVE_IRQ_STACK
704

705
	testb	$3, CS(%rsp)
706
	jz	retint_kernel
707

708 709 710 711
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
712
	TRACE_IRQS_IRETQ
713

714
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
715 716
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
717
	testb	$3, CS(%rsp)
718 719 720 721
	jnz	1f
	ud2
1:
#endif
722
	POP_EXTRA_REGS
723 724 725 726 727 728 729 730 731 732 733 734 735 736
	popq	%r11
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rcx
	popq	%rdx
	popq	%rsi

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
737
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

754
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
755

756 757 758
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
759 760
	INTERRUPT_RETURN

761

762
/* Returning to kernel space */
763
retint_kernel:
764 765 766
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
767
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
768
	jnc	1f
769
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
770
	jnz	1f
771
	call	preempt_schedule_irq
772
	jmp	0b
773
1:
774
#endif
775 776 777 778
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
779

780 781 782
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
783
	testb	$3, CS(%rsp)
784 785 786 787
	jz	1f
	ud2
1:
#endif
788 789 790
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
791 792 793
	INTERRUPT_RETURN

ENTRY(native_iret)
794
	UNWIND_HINT_IRET_REGS
795 796 797 798
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
799
#ifdef CONFIG_X86_ESPFIX64
800 801
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
802
#endif
803

804
.global native_irq_return_iret
805
native_irq_return_iret:
A
Andy Lutomirski 已提交
806 807 808 809 810 811
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
812
	iretq
I
Ingo Molnar 已提交
813

814
#ifdef CONFIG_X86_ESPFIX64
815
native_irq_return_ldt:
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
838 839 840
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

841
	movq	PER_CPU_VAR(espfix_waddr), %rdi
842 843
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
844
	movq	%rax, (1*8)(%rdi)
845
	movq	(2*8)(%rsp), %rax		/* user CS */
846
	movq	%rax, (2*8)(%rdi)
847
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
848
	movq	%rax, (3*8)(%rdi)
849
	movq	(5*8)(%rsp), %rax		/* user SS */
850
	movq	%rax, (5*8)(%rdi)
851
	movq	(4*8)(%rsp), %rax		/* user RSP */
852
	movq	%rax, (4*8)(%rdi)
853 854 855 856 857 858 859 860 861 862 863 864
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
865
	orq	PER_CPU_VAR(espfix_stack), %rax
866

867
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
868 869 870
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

871
	movq	%rax, %rsp
872
	UNWIND_HINT_IRET_REGS offset=8
873 874 875 876 877 878 879 880 881 882 883 884

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
885
	jmp	native_irq_return_iret
886
#endif
887
END(common_interrupt)
888

L
Linus Torvalds 已提交
889 890
/*
 * APIC interrupts.
891
 */
892
.macro apicinterrupt3 num sym do_sym
893
ENTRY(\sym)
894
	UNWIND_HINT_IRET_REGS
895
	ASM_CLAC
896
	pushq	$~(\num)
897
.Lcommon_\sym:
898
	interrupt \do_sym
899
	jmp	ret_from_intr
900 901
END(\sym)
.endm
L
Linus Torvalds 已提交
902

903
/* Make sure APIC interrupt handlers end up in the irqentry section: */
904 905
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
906

907
.macro apicinterrupt num sym do_sym
908
PUSH_SECTION_IRQENTRY
909
apicinterrupt3 \num \sym \do_sym
910
POP_SECTION_IRQENTRY
911 912
.endm

913
#ifdef CONFIG_SMP
914 915
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
916
#endif
L
Linus Torvalds 已提交
917

N
Nick Piggin 已提交
918
#ifdef CONFIG_X86_UV
919
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
920
#endif
921 922 923

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
924

925
#ifdef CONFIG_HAVE_KVM
926 927
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
928
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
929 930
#endif

931
#ifdef CONFIG_X86_MCE_THRESHOLD
932
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
933 934
#endif

935
#ifdef CONFIG_X86_MCE_AMD
936
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
937 938
#endif

939
#ifdef CONFIG_X86_THERMAL_VECTOR
940
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
941
#endif
942

943
#ifdef CONFIG_SMP
944 945 946
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
947
#endif
L
Linus Torvalds 已提交
948

949 950
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
951

952
#ifdef CONFIG_IRQ_WORK
953
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
954 955
#endif

L
Linus Torvalds 已提交
956 957
/*
 * Exception entry points.
958
 */
959
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
960

961 962 963 964 965 966 967 968 969
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
970 971
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)

989
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
990
ENTRY(\sym)
991
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
992

993 994 995 996 997
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

998
	ASM_CLAC
999

1000
	.if \has_error_code == 0
1001
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1002 1003
	.endif

1004
	ALLOC_PT_GPREGS_ON_STACK
1005

1006
	.if \paranoid < 2
1007
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
1008
	jnz	.Lfrom_usermode_switch_stack_\@
1009
	.endif
1010 1011

	.if \paranoid
1012
	call	paranoid_entry
1013
	.else
1014
	call	error_entry
1015
	.endif
1016
	UNWIND_HINT_REGS
1017
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1018 1019

	.if \paranoid
1020
	.if \shift_ist != -1
1021
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
1022
	.else
1023
	TRACE_IRQS_OFF
1024
	.endif
1025
	.endif
1026

1027
	movq	%rsp, %rdi			/* pt_regs pointer */
1028 1029

	.if \has_error_code
1030 1031
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1032
	.else
1033
	xorl	%esi, %esi			/* no error code */
1034 1035
	.endif

1036
	.if \shift_ist != -1
1037
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1038 1039
	.endif

1040
	call	\do_sym
1041

1042
	.if \shift_ist != -1
1043
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1044 1045
	.endif

1046
	/* these procedures expect "no swapgs" flag in ebx */
1047
	.if \paranoid
1048
	jmp	paranoid_exit
1049
	.else
1050
	jmp	error_exit
1051 1052
	.endif

1053
	.if \paranoid < 2
1054
	/*
1055
	 * Entry from userspace.  Switch stacks and treat it
1056 1057 1058
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1059
.Lfrom_usermode_switch_stack_\@:
1060
	call	error_entry
1061

1062
	movq	%rsp, %rdi			/* pt_regs pointer */
1063 1064

	.if \has_error_code
1065 1066
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1067
	.else
1068
	xorl	%esi, %esi			/* no error code */
1069 1070
	.endif

1071
	call	\do_sym
1072

1073
	jmp	error_exit			/* %ebx: no swapgs flag */
1074
	.endif
1075
END(\sym)
1076
.endm
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1097
ENTRY(native_load_gs_index)
1098
	FRAME_BEGIN
1099
	pushfq
1100
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1101
	SWAPGS
1102
.Lgs_change:
1103
	movl	%edi, %gs
1104
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1105
	SWAPGS
1106
	popfq
1107
	FRAME_END
1108
	ret
1109
ENDPROC(native_load_gs_index)
1110
EXPORT_SYMBOL(native_load_gs_index)
1111

1112
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1113
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1114
	/* running with kernelgs */
1115
bad_gs:
1116
	SWAPGS					/* switch back to user gs */
1117 1118 1119 1120 1121 1122
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1123 1124 1125
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1126
	.previous
1127

1128
/* Call softirq on interrupt stack. Interrupts are off. */
1129
ENTRY(do_softirq_own_stack)
1130 1131
	pushq	%rbp
	mov	%rsp, %rbp
1132
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1133
	call	__do_softirq
1134
	LEAVE_IRQ_STACK regs=0
1135
	leaveq
1136
	ret
1137
ENDPROC(do_softirq_own_stack)
1138

1139
#ifdef CONFIG_XEN
1140
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1141 1142

/*
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1155 1156
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1157 1158 1159 1160
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1161
	UNWIND_HINT_FUNC
1162
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1163
	UNWIND_HINT_REGS
1164 1165

	ENTER_IRQ_STACK old_rsp=%r10
1166
	call	xen_evtchn_do_upcall
1167 1168
	LEAVE_IRQ_STACK

1169
#ifndef CONFIG_PREEMPT
1170
	call	xen_maybe_preempt_hcall
1171
#endif
1172
	jmp	error_exit
1173
END(xen_do_hypervisor_callback)
1174 1175

/*
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1188
ENTRY(xen_failsafe_callback)
1189
	UNWIND_HINT_EMPTY
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1202
	/* All segments match their saved values => Category 2 (Bad IRET). */
1203 1204 1205 1206
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1207
	UNWIND_HINT_IRET_REGS offset=8
1208
	jmp	general_protection
1209
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1210 1211 1212
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1213
	UNWIND_HINT_IRET_REGS
1214
	pushq	$-1 /* orig_ax = -1 => not a system call */
1215 1216 1217
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1218
	ENCODE_FRAME_POINTER
1219
	jmp	error_exit
1220 1221
END(xen_failsafe_callback)

1222
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1223 1224
	xen_hvm_callback_vector xen_evtchn_do_upcall

1225
#endif /* CONFIG_XEN */
1226

1227
#if IS_ENABLED(CONFIG_HYPERV)
1228
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1229 1230 1231
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1232 1233 1234 1235
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1236
#ifdef CONFIG_XEN
1237
idtentry xennmi			do_nmi			has_error_code=0
1238 1239
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1240
#endif
1241 1242

idtentry general_protection	do_general_protection	has_error_code=1
1243
idtentry page_fault		do_page_fault		has_error_code=1
1244

G
Gleb Natapov 已提交
1245
#ifdef CONFIG_KVM_GUEST
1246
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1247
#endif
1248

1249
#ifdef CONFIG_X86_MCE
1250
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1251 1252
#endif

1253 1254 1255 1256 1257 1258
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1259
	UNWIND_HINT_FUNC
1260 1261 1262
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1263
	ENCODE_FRAME_POINTER 8
1264 1265
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1266
	rdmsr
1267 1268
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1269
	SWAPGS
1270
	xorl	%ebx, %ebx
1271 1272 1273 1274 1275

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1276
END(paranoid_entry)
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1287 1288
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1289
 */
1290
ENTRY(paranoid_exit)
1291
	UNWIND_HINT_REGS
1292
	DISABLE_INTERRUPTS(CLBR_ANY)
1293
	TRACE_IRQS_OFF_DEBUG
1294
	testl	%ebx, %ebx			/* swapgs needed? */
1295
	jnz	.Lparanoid_exit_no_swapgs
1296
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1297
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1298
	SWAPGS_UNSAFE_STACK
1299 1300
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1301
	TRACE_IRQS_IRETQ_DEBUG
1302 1303
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1304 1305 1306
END(paranoid_exit)

/*
1307
 * Save all registers in pt_regs, and switch gs if needed.
1308
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1309 1310
 */
ENTRY(error_entry)
1311
	UNWIND_HINT_FUNC
1312
	cld
1313 1314
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1315
	ENCODE_FRAME_POINTER 8
1316
	xorl	%ebx, %ebx
1317
	testb	$3, CS+8(%rsp)
1318
	jz	.Lerror_kernelspace
1319

1320 1321 1322 1323
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1324
	SWAPGS
1325 1326
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1327

1328
.Lerror_entry_from_usermode_after_swapgs:
1329 1330 1331 1332 1333 1334 1335 1336
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1337 1338 1339 1340 1341 1342
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1343
	CALL_enter_from_user_mode
1344
	ret
1345

1346
.Lerror_entry_done:
1347 1348 1349
	TRACE_IRQS_OFF
	ret

1350 1351 1352 1353 1354 1355
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1356
.Lerror_kernelspace:
1357 1358 1359
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1360
	je	.Lerror_bad_iret
1361 1362
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1363
	je	.Lbstep_iret
1364
	cmpq	$.Lgs_change, RIP+8(%rsp)
1365
	jne	.Lerror_entry_done
1366 1367

	/*
1368
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1369
	 * gsbase and proceed.  We'll fix up the exception and land in
1370
	 * .Lgs_change's error handler with kernel gsbase.
1371
	 */
1372
	SWAPGS
1373
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1374
	jmp .Lerror_entry_done
1375

1376
.Lbstep_iret:
1377
	/* Fix truncated RIP */
1378
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1379 1380
	/* fall through */

1381
.Lerror_bad_iret:
1382
	/*
1383 1384
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1385
	 */
A
Andy Lutomirski 已提交
1386
	SWAPGS
1387
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1388 1389 1390 1391 1392 1393

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1394 1395 1396
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1397
	decl	%ebx
1398
	jmp	.Lerror_entry_from_usermode_after_swapgs
1399 1400 1401
END(error_entry)


1402
/*
1403
 * On entry, EBX is a "return to kernel mode" flag:
1404 1405 1406
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1407
ENTRY(error_exit)
1408
	UNWIND_HINT_REGS
1409
	DISABLE_INTERRUPTS(CLBR_ANY)
1410
	TRACE_IRQS_OFF
1411
	testl	%ebx, %ebx
1412 1413
	jnz	retint_kernel
	jmp	retint_user
1414 1415
END(error_exit)

1416 1417 1418
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1419 1420 1421 1422
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1423
 */
1424
ENTRY(nmi)
1425
	UNWIND_HINT_IRET_REGS
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1444 1445 1446
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1447 1448
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1449
	 *    o Modify the "iret" location to jump to the repeat_nmi
1450 1451 1452 1453 1454 1455 1456 1457
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1458 1459 1460 1461 1462
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1463 1464
	 */

1465 1466
	ASM_CLAC

1467
	/* Use %rdx as our temp variable throughout */
1468
	pushq	%rdx
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1479 1480 1481
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1482 1483
	 */

1484
	swapgs
1485
	cld
1486
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1487 1488
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1489
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1490 1491 1492 1493 1494
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1495
	UNWIND_HINT_IRET_REGS
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1512
	UNWIND_HINT_REGS
1513
	ENCODE_FRAME_POINTER
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1525
	/*
1526
	 * Return back to user mode.  We must *not* do the normal exit
1527
	 * work, because we don't want to enable interrupts.
1528
	 */
1529
	jmp	swapgs_restore_regs_and_return_to_usermode
1530

1531
.Lnmi_from_kernel:
1532
	/*
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1573
	/*
1574 1575
	 * Determine whether we're a nested NMI.
	 *
1576 1577 1578 1579 1580 1581
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1582
	 */
1583 1584 1585 1586 1587 1588 1589 1590

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1591

1592
	/*
1593
	 * Now check "NMI executing".  If it's set, then we're nested.
1594 1595
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1596
	 */
1597 1598
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1599 1600

	/*
1601 1602
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1603 1604 1605 1606 1607 1608 1609 1610
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1611
	 */
1612 1613 1614 1615 1616
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1617

1618 1619 1620 1621
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1622 1623 1624 1625 1626 1627 1628

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1629

1630 1631
nested_nmi:
	/*
1632 1633
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1634
	 */
1635
	subq	$8, %rsp
1636 1637 1638
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1639
	pushfq
1640 1641
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1642 1643

	/* Put stack back */
1644
	addq	$(6*8), %rsp
1645 1646

nested_nmi_out:
1647
	popq	%rdx
1648

1649
	/* We are returning to kernel mode, so this cannot result in a fault. */
1650
	iretq
1651 1652

first_nmi:
1653
	/* Restore rdx. */
1654
	movq	(%rsp), %rdx
1655

1656 1657
	/* Make room for "NMI executing". */
	pushq	$0
1658

1659
	/* Leave room for the "iret" frame */
1660
	subq	$(5*8), %rsp
1661

1662
	/* Copy the "original" frame to the "outermost" frame */
1663
	.rept 5
1664
	pushq	11*8(%rsp)
1665
	.endr
1666
	UNWIND_HINT_IRET_REGS
1667

1668 1669
	/* Everything up to here is safe from nested NMIs */

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1681
	iretq			/* continues at repeat_nmi below */
1682
	UNWIND_HINT_IRET_REGS
1683 1684 1685
1:
#endif

1686
repeat_nmi:
1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1695 1696 1697 1698
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1699 1700
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1701
	 */
1702
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1703

1704
	/*
1705 1706 1707
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1708
	 */
1709
	addq	$(10*8), %rsp
1710
	.rept 5
1711
	pushq	-6*8(%rsp)
1712
	.endr
1713
	subq	$(5*8), %rsp
1714
end_repeat_nmi:
1715 1716

	/*
1717 1718 1719
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1720
	 */
1721
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1722 1723
	ALLOC_PT_GPREGS_ON_STACK

1724
	/*
1725
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1726 1727 1728 1729 1730
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1731
	call	paranoid_entry
1732
	UNWIND_HINT_REGS
1733

1734
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1735 1736 1737
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1738

P
Peter Zijlstra 已提交
1739
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1740

1741 1742
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1743 1744 1745
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1746 1747
	POP_EXTRA_REGS
	POP_C_REGS
1748

1749 1750 1751 1752 1753
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1754

1755 1756 1757
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1758 1759 1760 1761 1762
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1763 1764 1765
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1766 1767

	/*
1768 1769 1770 1771
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1772
	 */
1773
	iretq
1774 1775 1776
END(nmi)

ENTRY(ignore_sysret)
1777
	UNWIND_HINT_EMPTY
1778
	mov	$-ENOSYS, %eax
1779 1780
	sysret
END(ignore_sysret)
1781 1782

ENTRY(rewind_stack_do_exit)
1783
	UNWIND_HINT_FUNC
1784 1785 1786 1787
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1788 1789
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1790 1791 1792

	call	do_exit
END(rewind_stack_do_exit)