intel_pm.c 212.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69
static void i8xx_disable_fbc(struct drm_device *dev)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

91
static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 93 94
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
95
	struct drm_framebuffer *fb = crtc->primary->fb;
96
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97 98
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
99
	int i;
100
	u32 fbc_ctl;
101

102
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 104 105
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

106 107 108 109 110
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
111 112 113 114 115

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

116 117 118 119 120
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122 123 124
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
125 126

	/* enable it... */
127 128 129
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130 131 132 133 134 135
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

136
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 139
}

140
static bool i8xx_fbc_enabled(struct drm_device *dev)
141 142 143 144 145 146
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

147
static void g4x_enable_fbc(struct drm_crtc *crtc)
148 149 150
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_framebuffer *fb = crtc->primary->fb;
152
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153 154 155
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

156 157 158 159 160
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161 162 163 164 165
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
166
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167

168
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 170
}

171
static void g4x_disable_fbc(struct drm_device *dev)
172 173 174 175 176 177 178 179 180 181 182 183 184 185
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

186
static bool g4x_fbc_enabled(struct drm_device *dev)
187 188 189 190 191 192 193 194 195 196 197 198
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
199 200 201 202

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203

204 205 206 207 208 209 210 211 212 213
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
214

215
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 217
}

218
static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 220 221
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
222
	struct drm_framebuffer *fb = crtc->primary->fb;
223
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224 225 226
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

227
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
229 230 231 232 233 234 235 236
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
237
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
238 239
		break;
	case 1:
240
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
241 242
		break;
	}
243 244 245
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
246 247

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 250 251 252 253 254 255 256 257 258
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

259
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 261
}

262
static void ironlake_disable_fbc(struct drm_device *dev)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

277
static bool ironlake_fbc_enabled(struct drm_device *dev)
278 279 280 281 282 283
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

284
static void gen7_enable_fbc(struct drm_crtc *crtc)
285 286 287
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
288
	struct drm_framebuffer *fb = crtc->primary->fb;
289
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291
	u32 dpfc_ctl;
292

293 294
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
295 296 297 298 299 300 301 302
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
303
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
304 305
		break;
	case 1:
306
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
307 308 309
		break;
	}

310 311
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

312 313 314
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

315
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316

R
Rodrigo Vivi 已提交
317
	if (IS_IVYBRIDGE(dev)) {
318
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
319 320 321
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
322
	} else {
323
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324 325 326
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
327
	}
328

329 330 331 332 333 334
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

335
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 337
}

338 339 340 341 342 343 344 345 346 347
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

R
Rodrigo Vivi 已提交
348 349 350 351 352 353 354 355 356 357
void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

	I915_WRITE(MSG_FBC_REND_STATE, value);
}

358 359 360 361 362 363 364 365 366
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
367
	if (work == dev_priv->fbc.fbc_work) {
368 369 370
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
371
		if (work->crtc->primary->fb == work->fb) {
372
			dev_priv->display.enable_fbc(work->crtc);
373

374
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376
			dev_priv->fbc.y = work->crtc->y;
377 378
		}

379
		dev_priv->fbc.fbc_work = NULL;
380 381 382 383 384 385 386 387
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
388
	if (dev_priv->fbc.fbc_work == NULL)
389 390 391 392 393
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
394
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
395 396
	 * entirely asynchronously.
	 */
397
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398
		/* tasklet was killed before being run, clean up */
399
		kfree(dev_priv->fbc.fbc_work);
400 401 402 403 404 405

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
406
	dev_priv->fbc.fbc_work = NULL;
407 408
}

409
static void intel_enable_fbc(struct drm_crtc *crtc)
410 411 412 413 414 415 416 417 418 419
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

420
	work = kzalloc(sizeof(*work), GFP_KERNEL);
421
	if (work == NULL) {
422
		DRM_ERROR("Failed to allocate FBC work structure\n");
423
		dev_priv->display.enable_fbc(crtc);
424 425 426 427
		return;
	}

	work->crtc = crtc;
428
	work->fb = crtc->primary->fb;
429 430
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

431
	dev_priv->fbc.fbc_work = work;
432 433 434 435 436 437 438 439 440 441 442

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
443 444
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
459
	dev_priv->fbc.plane = -1;
460 461
}

462 463 464 465 466 467 468 469 470 471
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

472 473 474 475 476 477 478 479 480 481
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
482
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
498
	const struct drm_display_mode *adjusted_mode;
499
	unsigned int max_width, max_height;
500

501
	if (!HAS_FBC(dev)) {
502
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503
		return;
504
	}
505

506
	if (!i915.powersave) {
507 508
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
509
		return;
510
	}
511 512 513 514 515 516 517 518 519 520

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
521
	for_each_crtc(dev, tmp_crtc) {
522
		if (intel_crtc_active(tmp_crtc) &&
523
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
524
			if (crtc) {
525 526
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527 528 529 530 531 532
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

533
	if (!crtc || crtc->primary->fb == NULL) {
534 535
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
536 537 538 539
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
540
	fb = crtc->primary->fb;
541
	obj = intel_fb_obj(fb);
542
	adjusted_mode = &intel_crtc->config.adjusted_mode;
543

544
	if (i915.enable_fbc < 0) {
545 546
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
547
		goto out_disable;
548
	}
549
	if (!i915.enable_fbc) {
550 551
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
552 553
		goto out_disable;
	}
554 555
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556 557 558
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
559 560
		goto out_disable;
	}
561

562 563 564 565
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566 567
		max_width = 4096;
		max_height = 2048;
568
	} else {
569 570
		max_width = 2048;
		max_height = 1536;
571
	}
572 573
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
574 575
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576 577
		goto out_disable;
	}
B
Ben Widawsky 已提交
578
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579
	    intel_crtc->plane != PLANE_A) {
580
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
582 583 584 585 586 587 588 589
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
590 591
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592 593
		goto out_disable;
	}
594 595 596 597 598 599
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
600 601 602 603 604

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

605
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
606
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
607 608
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609 610 611
		goto out_disable;
	}

612 613 614 615 616
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
617 618 619
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

650
	intel_enable_fbc(crtc);
651
	dev_priv->fbc.no_fbc_reason = FBC_OK;
652 653 654 655 656 657 658 659
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
660
	i915_gem_stolen_cleanup_compression(dev);
661 662
}

663 664
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
665
	struct drm_i915_private *dev_priv = dev->dev_private;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
704
	struct drm_i915_private *dev_priv = dev->dev_private;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

730
	dev_priv->ips.r_t = dev_priv->mem_freq;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
762
		dev_priv->ips.c_m = 0;
763
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764
		dev_priv->ips.c_m = 1;
765
	} else {
766
		dev_priv->ips.c_m = 2;
767 768 769
	}
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

808
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

832
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833
{
834 835
	struct drm_device *dev = dev_priv->dev;
	u32 val;
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
856

857 858
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
875
static const int pessimal_latency_ns = 5000;
876

877
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

893
static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

910
static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
928 929 930 931 932
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 934
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
935 936 937 938 939
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 941
};
static const struct intel_watermark_params pineview_cursor_wm = {
942 943 944 945 946
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 948
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949 950 951 952 953
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 955
};
static const struct intel_watermark_params g4x_wm_info = {
956 957 958 959 960
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
961 962
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
963 964 965 966 967
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
968 969
};
static const struct intel_watermark_params valleyview_wm_info = {
970 971 972 973 974
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
975 976
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
977 978 979 980 981
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
982 983
};
static const struct intel_watermark_params i965_cursor_wm_info = {
984 985 986 987 988
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
989 990
};
static const struct intel_watermark_params i945_wm_info = {
991 992 993 994 995
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
996 997
};
static const struct intel_watermark_params i915_wm_info = {
998 999 1000 1001 1002
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1003
};
1004
static const struct intel_watermark_params i830_a_wm_info = {
1005 1006 1007 1008 1009
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1010
};
1011 1012 1013 1014 1015 1016 1017
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
1018
static const struct intel_watermark_params i845_wm_info = {
1019 1020 1021 1022 1023
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

1084 1085 1086 1087 1088 1089 1090
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1091
	for_each_crtc(dev, crtc) {
1092
		if (intel_crtc_active(crtc)) {
1093 1094 1095 1096 1097 1098 1099 1100 1101
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1102
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1103
{
1104
	struct drm_device *dev = unused_crtc->dev;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1115
		intel_set_memory_cxsr(dev_priv, false);
1116 1117 1118 1119 1120
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1121
		const struct drm_display_mode *adjusted_mode;
1122
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1123 1124 1125 1126
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1166
		intel_set_memory_cxsr(dev_priv, true);
1167
	} else {
1168
		intel_set_memory_cxsr(dev_priv, false);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1182
	const struct drm_display_mode *adjusted_mode;
1183 1184 1185 1186 1187
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1188
	if (!intel_crtc_active(crtc)) {
1189 1190 1191 1192 1193
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1194
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1195
	clock = adjusted_mode->crtc_clock;
1196
	htotal = adjusted_mode->crtc_htotal;
1197
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1198
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1211
	line_time_us = max(htotal * 1000 / clock, 1);
1212
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1213
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1268
	const struct drm_display_mode *adjusted_mode;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1281
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1282
	clock = adjusted_mode->crtc_clock;
1283
	htotal = adjusted_mode->crtc_htotal;
1284
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1285
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1286

1287
	line_time_us = max(htotal * 1000 / clock, 1);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1299
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1300 1301 1302 1303 1304 1305 1306 1307
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1308 1309 1310 1311
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1312 1313
{
	int entries;
1314
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1315

1316
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1317 1318
		return false;

1319 1320
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1321

1322
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1323 1324 1325
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1326

1327 1328
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1341
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1342
{
1343 1344 1345 1346 1347 1348
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1349

1350 1351 1352 1353 1354 1355 1356 1357
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1358

1359 1360 1361 1362 1363 1364 1365
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1366 1367
	}

1368 1369 1370 1371
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1372

1373 1374 1375 1376 1377 1378 1379
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1380
	}
1381 1382

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1383 1384 1385 1386
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1387
static void valleyview_update_wm(struct drm_crtc *crtc)
1388
{
1389
	struct drm_device *dev = crtc->dev;
1390 1391 1392 1393
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1394
	int ignore_plane_sr, ignore_cursor_sr;
1395
	unsigned int enabled = 0;
1396
	bool cxsr_enabled;
1397

1398
	vlv_update_drain_latency(crtc);
1399

1400
	if (g4x_compute_wm0(dev, PIPE_A,
1401 1402
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1403
			    &planea_wm, &cursora_wm))
1404
		enabled |= 1 << PIPE_A;
1405

1406
	if (g4x_compute_wm0(dev, PIPE_B,
1407 1408
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1409
			    &planeb_wm, &cursorb_wm))
1410
		enabled |= 1 << PIPE_B;
1411 1412 1413 1414 1415 1416

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1417 1418 1419 1420 1421
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1422
			     &ignore_plane_sr, &cursor_sr)) {
1423
		cxsr_enabled = true;
1424
	} else {
1425
		cxsr_enabled = false;
1426
		intel_set_memory_cxsr(dev_priv, false);
1427 1428
		plane_sr = cursor_sr = 0;
	}
1429

1430 1431
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1432 1433 1434 1435 1436 1437 1438 1439
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1440
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1441
	I915_WRITE(DSPFW2,
1442
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1443 1444
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1445 1446
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1447 1448 1449

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
1467 1468
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1469 1470 1471 1472
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
1473 1474
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1475 1476 1477 1478
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
1479 1480
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1562
static void g4x_update_wm(struct drm_crtc *crtc)
1563
{
1564
	struct drm_device *dev = crtc->dev;
1565 1566 1567 1568 1569
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1570
	bool cxsr_enabled;
1571

1572
	if (g4x_compute_wm0(dev, PIPE_A,
1573 1574
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1575
			    &planea_wm, &cursora_wm))
1576
		enabled |= 1 << PIPE_A;
1577

1578
	if (g4x_compute_wm0(dev, PIPE_B,
1579 1580
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1581
			    &planeb_wm, &cursorb_wm))
1582
		enabled |= 1 << PIPE_B;
1583 1584 1585 1586 1587 1588

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1589
			     &plane_sr, &cursor_sr)) {
1590
		cxsr_enabled = true;
1591
	} else {
1592
		cxsr_enabled = false;
1593
		intel_set_memory_cxsr(dev_priv, false);
1594 1595
		plane_sr = cursor_sr = 0;
	}
1596

1597 1598
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1599 1600 1601 1602 1603 1604 1605 1606
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1607
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1608
	I915_WRITE(DSPFW2,
1609
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1610 1611 1612
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1613
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1614
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1615 1616 1617

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1618 1619
}

1620
static void i965_update_wm(struct drm_crtc *unused_crtc)
1621
{
1622
	struct drm_device *dev = unused_crtc->dev;
1623 1624 1625 1626
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1627
	bool cxsr_enabled;
1628 1629 1630 1631 1632 1633

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1634 1635
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1636
		int clock = adjusted_mode->crtc_clock;
1637
		int htotal = adjusted_mode->crtc_htotal;
1638
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1639
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1640 1641 1642
		unsigned long line_time_us;
		int entries;

1643
		line_time_us = max(htotal * 1000 / clock, 1);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1657
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1669
		cxsr_enabled = true;
1670
	} else {
1671
		cxsr_enabled = false;
1672
		/* Turn off self refresh if both pipes are enabled */
1673
		intel_set_memory_cxsr(dev_priv, false);
1674 1675 1676 1677 1678 1679 1680
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1681 1682 1683 1684 1685
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1686 1687
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1688 1689 1690

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1691 1692
}

1693
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1694
{
1695
	struct drm_device *dev = unused_crtc->dev;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1710
		wm_info = &i830_a_wm_info;
1711 1712 1713

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1714
	if (intel_crtc_active(crtc)) {
1715
		const struct drm_display_mode *adjusted_mode;
1716
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1717 1718 1719
		if (IS_GEN2(dev))
			cpp = 4;

1720 1721
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1722
					       wm_info, fifo_size, cpp,
1723
					       pessimal_latency_ns);
1724
		enabled = crtc;
1725
	} else {
1726
		planea_wm = fifo_size - wm_info->guard_size;
1727 1728 1729 1730 1731 1732
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1733 1734 1735

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1736
	if (intel_crtc_active(crtc)) {
1737
		const struct drm_display_mode *adjusted_mode;
1738
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1739 1740 1741
		if (IS_GEN2(dev))
			cpp = 4;

1742 1743
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1744
					       wm_info, fifo_size, cpp,
1745
					       pessimal_latency_ns);
1746 1747 1748 1749
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1750
	} else {
1751
		planeb_wm = fifo_size - wm_info->guard_size;
1752 1753 1754
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1755 1756 1757

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1758
	if (IS_I915GM(dev) && enabled) {
1759
		struct drm_i915_gem_object *obj;
1760

1761
		obj = intel_fb_obj(enabled->primary->fb);
1762 1763

		/* self-refresh seems busted with untiled */
1764
		if (obj->tiling_mode == I915_TILING_NONE)
1765 1766 1767
			enabled = NULL;
	}

1768 1769 1770 1771 1772 1773
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1774
	intel_set_memory_cxsr(dev_priv, false);
1775 1776 1777 1778 1779

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1780 1781
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1782
		int clock = adjusted_mode->crtc_clock;
1783
		int htotal = adjusted_mode->crtc_htotal;
1784
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1785
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1786 1787 1788
		unsigned long line_time_us;
		int entries;

1789
		line_time_us = max(htotal * 1000 / clock, 1);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1820 1821
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1822 1823
}

1824
static void i845_update_wm(struct drm_crtc *unused_crtc)
1825
{
1826
	struct drm_device *dev = unused_crtc->dev;
1827 1828
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1829
	const struct drm_display_mode *adjusted_mode;
1830 1831 1832 1833 1834 1835 1836
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1837 1838
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1839
				       &i845_wm_info,
1840
				       dev_priv->display.get_fifo_size(dev, 0),
1841
				       4, pessimal_latency_ns);
1842 1843 1844 1845 1846 1847 1848 1849
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1850 1851
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1852 1853
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1854
	uint32_t pixel_rate;
1855

1856
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1857 1858 1859 1860

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1861
	if (intel_crtc->config.pch_pfit.enabled) {
1862
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1863
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1864

1865 1866
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1881
/* latency must be in 0.1us units. */
1882
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1883 1884 1885 1886
			       uint32_t latency)
{
	uint64_t ret;

1887 1888 1889
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1890 1891 1892 1893 1894 1895
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1896
/* latency must be in 0.1us units. */
1897
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1898 1899 1900 1901 1902
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1903 1904 1905
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1906 1907 1908 1909 1910 1911
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1912
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1913 1914 1915 1916 1917
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1918
struct ilk_pipe_wm_parameters {
1919 1920 1921
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1922 1923 1924
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1925 1926
};

1927
struct ilk_wm_maximums {
1928 1929 1930 1931 1932 1933
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1934 1935 1936 1937 1938 1939 1940
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1941 1942 1943 1944
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1945
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1946 1947
				   uint32_t mem_value,
				   bool is_lp)
1948
{
1949 1950
	uint32_t method1, method2;

1951
	if (!params->active || !params->pri.enabled)
1952 1953
		return 0;

1954
	method1 = ilk_wm_method1(params->pixel_rate,
1955
				 params->pri.bytes_per_pixel,
1956 1957 1958 1959 1960
				 mem_value);

	if (!is_lp)
		return method1;

1961
	method2 = ilk_wm_method2(params->pixel_rate,
1962
				 params->pipe_htotal,
1963 1964
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1965 1966 1967
				 mem_value);

	return min(method1, method2);
1968 1969
}

1970 1971 1972 1973
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1974
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1975 1976 1977 1978
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1979
	if (!params->active || !params->spr.enabled)
1980 1981
		return 0;

1982
	method1 = ilk_wm_method1(params->pixel_rate,
1983
				 params->spr.bytes_per_pixel,
1984
				 mem_value);
1985
	method2 = ilk_wm_method2(params->pixel_rate,
1986
				 params->pipe_htotal,
1987 1988
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1989 1990 1991 1992
				 mem_value);
	return min(method1, method2);
}

1993 1994 1995 1996
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1997
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1998 1999
				   uint32_t mem_value)
{
2000
	if (!params->active || !params->cur.enabled)
2001 2002
		return 0;

2003
	return ilk_wm_method2(params->pixel_rate,
2004
			      params->pipe_htotal,
2005 2006
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2007 2008 2009
			      mem_value);
}

2010
/* Only for WM_LP. */
2011
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2012
				   uint32_t pri_val)
2013
{
2014
	if (!params->active || !params->pri.enabled)
2015 2016
		return 0;

2017
	return ilk_wm_fbc(pri_val,
2018 2019
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2020 2021
}

2022 2023
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2024 2025 2026
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2027 2028 2029 2030 2031
		return 768;
	else
		return 512;
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2066 2067 2068
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2069
				     const struct intel_wm_config *config,
2070 2071 2072 2073 2074 2075
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2076
	if (is_sprite && !config->sprites_enabled)
2077 2078 2079
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2080
	if (level == 0 || config->num_pipes_active > 1) {
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2092
	if (config->sprites_enabled) {
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2104
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2105 2106 2107 2108
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2109 2110
				      int level,
				      const struct intel_wm_config *config)
2111 2112
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2113
	if (level > 0 && config->num_pipes_active > 1)
2114 2115 2116
		return 64;

	/* otherwise just report max that registers can hold */
2117
	return ilk_cursor_wm_reg_max(dev, level);
2118 2119
}

2120
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2121 2122 2123
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2124
				    struct ilk_wm_maximums *max)
2125
{
2126 2127 2128
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2129
	max->fbc = ilk_fbc_wm_reg_max(dev);
2130 2131
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2142
static bool ilk_validate_wm_level(int level,
2143
				  const struct ilk_wm_maximums *max,
2144
				  struct intel_wm_level *result)
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2183
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2184
				 int level,
2185
				 const struct ilk_pipe_wm_parameters *p,
2186
				 struct intel_wm_level *result)
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2206 2207
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2208 2209
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2210 2211
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2212
	u32 linetime, ips_linetime;
2213

2214 2215
	if (!intel_crtc_active(crtc))
		return 0;
2216

2217 2218 2219
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2220 2221 2222
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2223
					 intel_ddi_get_cdclk_freq(dev_priv));
2224

2225 2226
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2227 2228
}

2229 2230 2231 2232
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2233
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2234 2235 2236 2237 2238
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2239 2240 2241 2242
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2243 2244 2245 2246 2247 2248 2249
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2250 2251 2252 2253 2254 2255 2256
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2257 2258 2259
	}
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2278
int ilk_wm_max_level(const struct drm_device *dev)
2279 2280
{
	/* how many WM levels are we expecting */
2281
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2282
		return 4;
2283
	else if (INTEL_INFO(dev)->gen >= 6)
2284
		return 3;
2285
	else
2286 2287 2288 2289 2290 2291 2292
		return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2350
static void ilk_setup_wm_latency(struct drm_device *dev)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2363 2364 2365 2366

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2367 2368 2369

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2370 2371
}

2372
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2373
				      struct ilk_pipe_wm_parameters *p)
2374
{
2375 2376 2377 2378
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2379

2380 2381
	if (!intel_crtc_active(crtc))
		return;
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2393

2394
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2395 2396
		struct intel_plane *intel_plane = to_intel_plane(plane);

2397
		if (intel_plane->pipe == pipe) {
2398
			p->spr = intel_plane->wm;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2410
	for_each_intel_crtc(dev, intel_crtc) {
2411
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2412

2413 2414
		if (!wm->pipe_enabled)
			continue;
2415

2416 2417 2418
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2419
	}
2420 2421
}

2422 2423
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2424
				  const struct ilk_pipe_wm_parameters *params,
2425 2426 2427
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2428
	const struct drm_i915_private *dev_priv = dev->dev_private;
2429 2430 2431 2432 2433 2434 2435
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2436
	struct ilk_wm_maximums max;
2437

2438 2439 2440 2441
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2442 2443 2444 2445 2446 2447 2448 2449
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2450
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2451

2452
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2453
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2454

2455 2456 2457
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2458
	/* At least LP0 must be valid */
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2492 2493
	ret_wm->enable = true;

2494
	for_each_intel_crtc(dev, intel_crtc) {
2495 2496 2497 2498 2499
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2500

2501 2502 2503 2504 2505
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2506
		if (!wm->enable)
2507
			ret_wm->enable = false;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2520
			 const struct intel_wm_config *config,
2521
			 const struct ilk_wm_maximums *max,
2522 2523 2524
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2525
	int last_enabled_level = max_level;
2526

2527 2528 2529 2530 2531
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2532 2533
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534 2535 2536 2537 2538 2539 2540

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2541 2542 2543 2544 2545
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2546 2547 2548 2549 2550 2551

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2552 2553
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2554 2555 2556
			wm->fbc_val = 0;
		}
	}
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2571 2572
}

2573 2574 2575 2576 2577 2578
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2579 2580 2581 2582 2583
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2584
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2585 2586 2587 2588 2589
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2590
static void ilk_compute_wm_results(struct drm_device *dev,
2591
				   const struct intel_pipe_wm *merged,
2592
				   enum intel_ddb_partitioning partitioning,
2593
				   struct ilk_wm_values *results)
2594
{
2595 2596
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2597

2598
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2599
	results->partitioning = partitioning;
2600

2601
	/* LP1+ register values */
2602
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2603
		const struct intel_wm_level *r;
2604

2605
		level = ilk_wm_lp_to_level(wm_lp, merged);
2606

2607
		r = &merged->wm[level];
2608

2609 2610 2611 2612 2613
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2614
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2615 2616 2617
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2618 2619 2620
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2621 2622 2623 2624 2625 2626 2627
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2628 2629 2630 2631
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2632 2633 2634 2635 2636
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2637
	}
2638

2639
	/* LP0 register values */
2640
	for_each_intel_crtc(dev, intel_crtc) {
2641 2642 2643 2644 2645 2646 2647 2648
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2649

2650 2651 2652 2653
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2654 2655 2656
	}
}

2657 2658
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2659
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2660 2661
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2662
{
2663 2664
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2665

2666 2667 2668 2669 2670
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2671 2672
	}

2673 2674
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2675 2676 2677
			return r2;
		else
			return r1;
2678
	} else if (level1 > level2) {
2679 2680 2681 2682 2683 2684
		return r1;
	} else {
		return r2;
	}
}

2685 2686 2687 2688 2689 2690 2691 2692
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2693
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2694 2695
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2696 2697 2698 2699 2700
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2701
	for_each_pipe(dev_priv, pipe) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2745 2746
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2747
{
2748
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2749
	bool changed = false;
2750

2751 2752 2753
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2754
		changed = true;
2755 2756 2757 2758
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2759
		changed = true;
2760 2761 2762 2763
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2764
		changed = true;
2765
	}
2766

2767 2768 2769 2770
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2771

2772 2773 2774 2775 2776 2777 2778
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2779 2780
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2781 2782
{
	struct drm_device *dev = dev_priv->dev;
2783
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2784 2785 2786
	unsigned int dirty;
	uint32_t val;

2787
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2788 2789 2790 2791 2792
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2793
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2794
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2795
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2796
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2797
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2798 2799
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2800
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2801
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2802
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2803
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2804
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2805 2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2807
	if (dirty & WM_DIRTY_DDB) {
2808
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2823 2824
	}

2825
	if (dirty & WM_DIRTY_FBC) {
2826 2827 2828 2829 2830 2831 2832 2833
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2834 2835 2836 2837 2838
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2839 2840 2841 2842 2843
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2844

2845
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2846
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2847
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2848
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2849
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2850
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2851 2852

	dev_priv->wm.hw = *results;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2862
static void ilk_update_wm(struct drm_crtc *crtc)
2863
{
2864
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2865
	struct drm_device *dev = crtc->dev;
2866
	struct drm_i915_private *dev_priv = dev->dev_private;
2867 2868 2869
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2870
	enum intel_ddb_partitioning partitioning;
2871
	struct intel_pipe_wm pipe_wm = {};
2872
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2873
	struct intel_wm_config config = {};
2874

2875
	ilk_compute_wm_parameters(crtc, &params);
2876 2877 2878 2879 2880

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2881

2882
	intel_crtc->wm.active = pipe_wm;
2883

2884 2885
	ilk_compute_wm_config(dev, &config);

2886
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2887
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2888 2889

	/* 5/6 split only in single pipe config on IVB+ */
2890 2891
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2892
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2893
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2894

2895
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2896
	} else {
2897
		best_lp_wm = &lp_wm_1_2;
2898 2899
	}

2900
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2901
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2902

2903
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2904

2905
	ilk_write_wm_values(dev_priv, &results);
2906 2907
}

2908 2909 2910 2911 2912
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2913
{
2914
	struct drm_device *dev = plane->dev;
2915
	struct intel_plane *intel_plane = to_intel_plane(plane);
2916

2917 2918 2919
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2920
	intel_plane->wm.vert_pixels = sprite_width;
2921
	intel_plane->wm.bytes_per_pixel = pixel_size;
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2933
	ilk_update_wm(crtc);
2934 2935
}

2936 2937 2938 2939
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2940
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2951
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2952
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2953

2954 2955 2956
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2986
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2987 2988
	struct drm_crtc *crtc;

2989
	for_each_crtc(dev, crtc)
2990 2991 2992 2993 2994 2995 2996
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2997 2998 2999 3000
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3001

3002
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3003 3004 3005 3006 3007
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3008 3009 3010 3011 3012

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3045
void intel_update_watermarks(struct drm_crtc *crtc)
3046
{
3047
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3048 3049

	if (dev_priv->display.update_wm)
3050
		dev_priv->display.update_wm(crtc);
3051 3052
}

3053 3054
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3055 3056 3057
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3058
				    bool enabled, bool scaled)
3059
{
3060
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3061 3062

	if (dev_priv->display.update_sprite_wm)
3063 3064
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3065
						   pixel_size, enabled, scaled);
3066 3067
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3082
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3097
	i915_gem_object_ggtt_unpin(ctx);
3098 3099 3100 3101 3102
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3112 3113 3114 3115 3116
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3117 3118
	assert_spin_locked(&mchdev_lock);

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3136
static void ironlake_enable_drps(struct drm_device *dev)
3137 3138 3139 3140 3141
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3142 3143
	spin_lock_irq(&mchdev_lock);

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3167 3168
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3169

3170 3171 3172
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3189
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3190
		DRM_ERROR("stuck trying to change perf mode\n");
3191
	mdelay(1);
3192 3193 3194

	ironlake_set_drps(dev, fstart);

3195
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3196
		I915_READ(0x112e0);
3197 3198
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3199
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3200 3201

	spin_unlock_irq(&mchdev_lock);
3202 3203
}

3204
static void ironlake_disable_drps(struct drm_device *dev)
3205 3206
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3207 3208 3209 3210 3211
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3212 3213 3214 3215 3216 3217 3218 3219 3220

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3221
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3222
	mdelay(1);
3223 3224
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3225
	mdelay(1);
3226

3227
	spin_unlock_irq(&mchdev_lock);
3228 3229
}

3230 3231 3232 3233 3234
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3235
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3236
{
3237
	u32 limits;
3238

3239 3240 3241 3242 3243 3244
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3245 3246 3247
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3248 3249 3250 3251

	return limits;
}

3252 3253 3254 3255
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

D
Daisy Sun 已提交
3256 3257 3258
	if (dev_priv->rps.is_bdw_sw_turbo)
		return;

3259 3260 3261
	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3262
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3263 3264 3265 3266
			new_power = BETWEEN;
		break;

	case BETWEEN:
3267
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3268
			new_power = LOW_POWER;
3269
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3270 3271 3272 3273
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3274
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3275 3276 3277 3278
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3279
	if (val == dev_priv->rps.min_freq_softlimit)
3280
		new_power = LOW_POWER;
3281
	if (val == dev_priv->rps.max_freq_softlimit)
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3347 3348 3349 3350 3351 3352 3353 3354 3355
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3356 3357 3358
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3359 3360 3361 3362 3363 3364
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3365 3366 3367
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3368 3369 3370
	return ~mask;
}

3371 3372 3373
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3374 3375 3376
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3377

3378
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3379 3380
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3381

C
Chris Wilson 已提交
3382 3383 3384 3385 3386
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3387

3388
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3389 3390 3391 3392 3393 3394 3395
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3396
	}
3397 3398 3399 3400

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3401
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3402
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3403

3404 3405
	POSTING_READ(GEN6_RPNSWREQ);

3406
	dev_priv->rps.cur_freq = val;
3407
	trace_intel_gpu_freq_change(val * 50);
3408 3409
}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3421 3422 3423 3424 3425 3426 3427 3428
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3429 3430 3431 3432
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3433
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3434 3435 3436 3437 3438
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3439
	vlv_force_gfx_clock(dev_priv, true);
3440

3441
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3442 3443

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3444
					dev_priv->rps.min_freq_softlimit);
3445 3446 3447 3448 3449

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3450
	vlv_force_gfx_clock(dev_priv, false);
3451

3452 3453
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3454 3455
}

3456 3457
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3458 3459
	struct drm_device *dev = dev_priv->dev;

3460
	mutex_lock(&dev_priv->rps.hw_lock);
3461
	if (dev_priv->rps.enabled) {
3462 3463 3464
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3465
			vlv_set_rps_idle(dev_priv);
D
Daisy Sun 已提交
3466 3467
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3468
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
D
Daisy Sun 已提交
3469 3470
		}

3471 3472
		dev_priv->rps.last_adj = 0;
	}
3473 3474 3475 3476 3477
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3478 3479
	struct drm_device *dev = dev_priv->dev;

3480
	mutex_lock(&dev_priv->rps.hw_lock);
3481
	if (dev_priv->rps.enabled) {
3482
		if (IS_VALLEYVIEW(dev))
3483
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3484 3485
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3486
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3487 3488
		}

3489 3490
		dev_priv->rps.last_adj = 0;
	}
3491 3492 3493
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3494 3495 3496
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3497

3498
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3499 3500
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3501

3502
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3503 3504
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq,
3505
			 vlv_gpu_freq(dev_priv, val), val);
3506

3507 3508 3509 3510
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

3511 3512
	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3513

3514
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3515

3516
	dev_priv->rps.cur_freq = val;
3517
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3518 3519
}

3520 3521 3522
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daisy Sun 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
		if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
			del_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv-> rps.is_bdw_sw_turbo = false;
	} else {
		I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
		I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
					   ~dev_priv->pm_rps_events);
		/* Complete PM interrupt masking here doesn't race with the rps work
		 * item again unmasking PM interrupts because that is using a different
		 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
		 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
		 * gen8_enable_rps will clean up. */

		spin_lock_irq(&dev_priv->irq_lock);
		dev_priv->rps.pm_iir = 0;
		spin_unlock_irq(&dev_priv->irq_lock);

		I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	}
3543 3544
}

3545
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3546 3547 3548 3549
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3550 3551
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3552 3553 3554 3555 3556
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3557
	spin_lock_irq(&dev_priv->irq_lock);
3558
	dev_priv->rps.pm_iir = 0;
3559
	spin_unlock_irq(&dev_priv->irq_lock);
3560

3561
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3562 3563
}

3564
static void gen6_disable_rps(struct drm_device *dev)
3565 3566 3567 3568
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3569
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3570

3571 3572 3573 3574
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3575 3576
}

3577 3578 3579 3580 3581
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3582 3583

	gen8_disable_rps_interrupts(dev);
3584 3585
}

3586 3587 3588 3589
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3590 3591 3592 3593
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

3594
	I915_WRITE(GEN6_RC_CONTROL, 0);
3595

3596 3597
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

3598
	gen6_disable_rps_interrupts(dev);
3599 3600
}

B
Ben Widawsky 已提交
3601 3602
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3603 3604 3605 3606 3607 3608
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3609 3610 3611 3612
	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3613 3614
}

I
Imre Deak 已提交
3615
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3616
{
3617 3618 3619 3620
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3621 3622 3623 3624
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3625
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	if (enable_rc6 >= 0) {
		int mask;

		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3636 3637
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3638 3639 3640

		return enable_rc6 & mask;
	}
3641

3642 3643 3644
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3645

3646
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3647
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3648 3649

	return INTEL_RC6_ENABLE;
3650 3651
}

I
Imre Deak 已提交
3652 3653 3654 3655 3656
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3657 3658 3659 3660 3661 3662
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3663
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3664 3665 3666 3667
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3668 3669 3670 3671 3672
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3673
	WARN_ON(dev_priv->rps.pm_iir);
3674
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3675
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3676 3677 3678
	spin_unlock_irq(&dev_priv->irq_lock);
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

D
Daisy Sun 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
static void bdw_sw_calculate_freq(struct drm_device *dev,
		struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u64 busy = 0;
	u32 busyness_pct = 0;
	u32 elapsed_time = 0;
	u16 new_freq = 0;

	if (!c || !cur_time || !c0)
		return;

	if (0 == c->last_c0)
		goto out;

	/* Check Evaluation interval */
	elapsed_time = *cur_time - c->last_ts;
	if (elapsed_time < c->eval_interval)
		return;

	mutex_lock(&dev_priv->rps.hw_lock);

	/*
	 * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
	 * Whole busyness_pct calculation should be
	 *     busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
	 *     busyness_pct = (u32)(busy * 100 / elapsed_time);
	 * The final formula is to simplify CPU calculation
	 */
	busy = (u64)(*c0 - c->last_c0) << 12;
	do_div(busy, elapsed_time);
	busyness_pct = (u32)busy;

	if (c->is_up && busyness_pct >= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq + 3;
	if (!c->is_up && busyness_pct <= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq - 1;

	/* Adjust to new frequency busyness and compare with threshold */
	if (0 != new_freq) {
		if (new_freq > dev_priv->rps.max_freq_softlimit)
			new_freq = dev_priv->rps.max_freq_softlimit;
		else if (new_freq < dev_priv->rps.min_freq_softlimit)
			new_freq = dev_priv->rps.min_freq_softlimit;

		gen6_set_rps(dev, new_freq);
	}

	mutex_unlock(&dev_priv->rps.hw_lock);

out:
	c->last_c0 = *c0;
	c->last_ts = *cur_time;
}

static void gen8_set_frequency_RP0(struct work_struct *work)
{
	struct intel_rps_bdw_turbo *p_bdw_turbo =
			container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
	struct intel_gen6_power_mgmt *p_power_mgmt =
			container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
	struct drm_i915_private *dev_priv =
			container_of(p_power_mgmt, struct drm_i915_private, rps);

	mutex_lock(&dev_priv->rps.hw_lock);
	gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void flip_active_timeout_handler(unsigned long var)
{
	struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;

	del_timer(&dev_priv->rps.sw_turbo.flip_timer);
	atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);

	queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
}

void bdw_software_turbo(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
	u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */

	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
			&current_time, &current_c0);
	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
			&current_time, &current_c0);
}

3792 3793 3794
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3795
	struct intel_engine_cs *ring;
3796
	uint32_t rc6_mask = 0, rp_state_cap;
D
Daisy Sun 已提交
3797 3798 3799
	uint32_t threshold_up_pct, threshold_down_pct;
	uint32_t ei_up, ei_down; /* up and down evaluation interval */
	u32 rp_ctl_flag;
3800 3801
	int unused;

D
Daisy Sun 已提交
3802 3803 3804
	/* Use software Turbo for BDW */
	dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);

3805 3806 3807 3808 3809
	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3810
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3811 3812 3813 3814 3815

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3816
	parse_rp_state_cap(dev_priv, rp_state_cap);
3817 3818 3819 3820 3821 3822 3823 3824

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3825 3826 3827 3828
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3829 3830 3831 3832

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3833
	intel_print_rc6_info(dev, rc6_mask);
3834 3835 3836 3837 3838 3839 3840 3841
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3842 3843

	/* 4 Program defaults and thresholds for RPS*/
3844 3845 3846 3847
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
D
Daisy Sun 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	ei_up = 84480; /* 84.48ms */
	ei_down = 448000;
	threshold_up_pct = 90; /* x percent busy */
	threshold_down_pct = 70;

	if (dev_priv->rps.is_bdw_sw_turbo) {
		dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
		dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
		dev_priv->rps.sw_turbo.up.is_up = true;
		dev_priv->rps.sw_turbo.up.last_ts = 0;
		dev_priv->rps.sw_turbo.up.last_c0 = 0;

		dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
		dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
		dev_priv->rps.sw_turbo.down.is_up = false;
		dev_priv->rps.sw_turbo.down.last_ts = 0;
		dev_priv->rps.sw_turbo.down.last_c0 = 0;

		/* Start the timer to track if flip comes*/
		dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */

		init_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
		dev_priv->rps.sw_turbo.flip_timer.data  = (unsigned long) dev_priv;
		dev_priv->rps.sw_turbo.flip_timer.expires =
			usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
		add_timer(&dev_priv->rps.sw_turbo.flip_timer);
		INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);

		atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
	} else {
		/* NB: Docs say 1s, and 1000000 - which aren't equivalent
		 * 1 second timeout*/
		I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));

		/* Docs recommend 900MHz, and 300 MHz respectively */
		I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
			   dev_priv->rps.max_freq_softlimit << 24 |
			   dev_priv->rps.min_freq_softlimit << 16);

		I915_WRITE(GEN6_RP_UP_THRESHOLD,
			FREQ_1_28_US(ei_up * threshold_up_pct / 100));
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
			FREQ_1_28_US(ei_down * threshold_down_pct / 100));
		I915_WRITE(GEN6_RP_UP_EI,
			FREQ_1_28_US(ei_up));
		I915_WRITE(GEN6_RP_DOWN_EI,
			FREQ_1_28_US(ei_down));

		I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	}
3899 3900

	/* 5: Enable RPS */
D
Daisy Sun 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
					GEN6_RP_MEDIA_HW_NORMAL_MODE |
					GEN6_RP_MEDIA_IS_GFX |
					GEN6_RP_UP_BUSY_AVG |
					GEN6_RP_DOWN_IDLE_AVG;
	if (!dev_priv->rps.is_bdw_sw_turbo)
		rp_ctl_flag |= GEN6_RP_ENABLE;

	I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);

	/* 6: Ring frequency + overclocking
	 * (our driver does this later */
3913
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
D
Daisy Sun 已提交
3914 3915
	if (!dev_priv->rps.is_bdw_sw_turbo)
		gen8_enable_rps_interrupts(dev);
3916

3917
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3918 3919
}

3920
static void gen6_enable_rps(struct drm_device *dev)
3921
{
3922
	struct drm_i915_private *dev_priv = dev->dev_private;
3923
	struct intel_engine_cs *ring;
3924
	u32 rp_state_cap;
3925
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3926 3927
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3928
	int i, ret;
3929

3930
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3946
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3947

3948 3949
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3950
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3961 3962
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3963 3964 3965

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3966
	if (IS_IVYBRIDGE(dev))
3967 3968 3969
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3970
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3971 3972
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3973
	/* Check if we are enabling RC6 */
3974 3975 3976 3977
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3978 3979 3980 3981
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3982

3983 3984 3985
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3986

B
Ben Widawsky 已提交
3987
	intel_print_rc6_info(dev, rc6_mask);
3988 3989 3990 3991 3992 3993

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3994 3995
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3996 3997
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3998
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3999
	if (ret)
B
Ben Widawsky 已提交
4000
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4001 4002 4003 4004

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4005
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4006
				 (pcu_mbox & 0xff) * 50);
4007
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4008 4009
	}

4010
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4011
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4012

4013
	gen6_enable_rps_interrupts(dev);
4014

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4029
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4030 4031
}

4032
static void __gen6_update_ring_freq(struct drm_device *dev)
4033
{
4034
	struct drm_i915_private *dev_priv = dev->dev_private;
4035
	int min_freq = 15;
4036 4037
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4038
	int scaling_factor = 180;
4039
	struct cpufreq_policy *policy;
4040

4041
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4052
		max_ia_freq = tsc_khz;
4053
	}
4054 4055 4056 4057

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4058
	min_ring_freq = I915_READ(DCLK) & 0xf;
4059 4060
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4061

4062 4063 4064 4065 4066
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4067
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4068
	     gpu_freq--) {
4069
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4070 4071
		unsigned int ia_freq = 0, ring_freq = 0;

4072 4073 4074 4075
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4076
			ring_freq = mult_frac(gpu_freq, 5, 4);
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4093

B
Ben Widawsky 已提交
4094 4095
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4096 4097 4098
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4099 4100 4101
	}
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4114
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

4144
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4145 4146 4147 4148 4149 4150 4151 4152
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4164
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4165 4166 4167
{
	u32 val, rp0;

4168
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4181
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4182
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4183
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4184 4185 4186 4187 4188
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4189
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4190
{
4191
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4192 4193
}

4194 4195 4196 4197 4198 4199 4200 4201 4202
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4232 4233 4234 4235 4236 4237 4238 4239
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4240 4241
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4242 4243 4244 4245 4246 4247 4248 4249
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4250
								      I915_GTT_OFFSET_NONE,
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4287 4288 4289
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4290
	u32 val;
4291 4292 4293 4294 4295

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4322 4323 4324 4325 4326
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4342 4343
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4344
	struct drm_i915_private *dev_priv = dev->dev_private;
4345
	u32 val;
4346

4347
	cherryview_setup_pctx(dev);
4348 4349 4350

	mutex_lock(&dev_priv->rps.hw_lock);

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4388 4389 4390 4391 4392
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4393 4394 4395 4396 4397
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

4398 4399 4400 4401 4402 4403
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4404 4405 4406 4407 4408 4409 4410 4411
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4412 4413
}

4414 4415 4416 4417 4418
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4419 4420 4421 4422
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4423
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4470 4471 4472 4473 4474 4475 4476 4477
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4478 4479 4480 4481
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4482 4483 4484
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4485
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4506 4507
	gen8_enable_rps_interrupts(dev);

4508 4509 4510
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4511 4512 4513
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4514
	struct intel_engine_cs *ring;
4515
	u32 gtfifodbg, val, rc6_mode = 0;
4516 4517 4518 4519
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4520 4521
	valleyview_check_pctx(dev_priv);

4522
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4523 4524
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4525 4526 4527
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4528 4529
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4530 4531 4532 4533 4534 4535 4536

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4537
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4554
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4555 4556

	/* allows RC6 residency counter to work */
4557
	I915_WRITE(VLV_COUNTER_CONTROL,
4558 4559
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4560 4561
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4562

4563
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4564
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4565 4566 4567

	intel_print_rc6_info(dev, rc6_mode);

4568
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4569

4570
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4571 4572 4573 4574

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4575
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4576
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4577 4578
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4579

4580
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4581 4582
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4583

4584
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4585

4586
	gen6_enable_rps_interrupts(dev);
4587

4588
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4589 4590
}

4591
void ironlake_teardown_rc6(struct drm_device *dev)
4592 4593 4594
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4595
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4596
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4597 4598
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4599 4600
	}

4601
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4602
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4603 4604
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4605 4606 4607
	}
}

4608
static void ironlake_disable_rc6(struct drm_device *dev)
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4630 4631 4632
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4633 4634
		return -ENOMEM;

4635 4636 4637
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4638 4639 4640 4641 4642 4643 4644
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4645
static void ironlake_enable_rc6(struct drm_device *dev)
4646 4647
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4648
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4649
	bool was_interruptible;
4650 4651 4652 4653 4654 4655 4656 4657
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4658 4659
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4660
	ret = ironlake_setup_rc6(dev);
4661
	if (ret)
4662 4663
		return;

4664 4665 4666
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4667 4668 4669 4670
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4671
	ret = intel_ring_begin(ring, 6);
4672 4673
	if (ret) {
		ironlake_teardown_rc6(dev);
4674
		dev_priv->mm.interruptible = was_interruptible;
4675 4676 4677
		return;
	}

4678 4679
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4680
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4681 4682 4683 4684 4685 4686 4687 4688
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4689 4690 4691 4692 4693 4694

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4695 4696
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4697
	if (ret) {
4698
		DRM_ERROR("failed to enable ironlake power savings\n");
4699 4700 4701 4702
		ironlake_teardown_rc6(dev);
		return;
	}

4703
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4704
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4705

4706
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4707 4708
}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4738
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4739 4740 4741 4742 4743 4744
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4745 4746
	assert_spin_locked(&mchdev_lock);

4747
	diff1 = now - dev_priv->ips.last_time1;
4748 4749 4750 4751 4752 4753 4754

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4755
		return dev_priv->ips.chipset_power;
4756 4757 4758 4759 4760 4761 4762 4763

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4764 4765
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4766 4767
		diff += total_count;
	} else {
4768
		diff = total_count - dev_priv->ips.last_count1;
4769 4770 4771
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4772 4773
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4784 4785
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4786

4787
	dev_priv->ips.chipset_power = ret;
4788 4789 4790 4791

	return ret;
}

4792 4793
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4794
	struct drm_device *dev = dev_priv->dev;
4795 4796
	unsigned long val;

4797
	if (INTEL_INFO(dev)->gen != 5)
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4826
	struct drm_device *dev = dev_priv->dev;
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4960
	if (INTEL_INFO(dev)->is_mobile)
4961 4962 4963 4964 4965
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4966
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4967
{
4968
	u64 now, diff, diffms;
4969 4970
	u32 count;

4971
	assert_spin_locked(&mchdev_lock);
4972

4973 4974 4975
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4976 4977 4978 4979 4980 4981 4982

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4983 4984
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4985 4986
		diff += count;
	} else {
4987
		diff = count - dev_priv->ips.last_count2;
4988 4989
	}

4990 4991
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4992 4993 4994 4995

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4996
	dev_priv->ips.gfx_power = diff;
4997 4998
}

4999 5000
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5001 5002 5003
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5004 5005
		return;

5006
	spin_lock_irq(&mchdev_lock);
5007 5008 5009

	__i915_update_gfx_val(dev_priv);

5010
	spin_unlock_irq(&mchdev_lock);
5011 5012
}

5013
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5014 5015 5016 5017
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5018 5019
	assert_spin_locked(&mchdev_lock);

5020
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5040
	corr2 = (corr * dev_priv->ips.corr);
5041 5042 5043 5044

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5045
	__i915_update_gfx_val(dev_priv);
5046

5047
	return dev_priv->ips.gfx_power + state2;
5048 5049
}

5050 5051
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5052
	struct drm_device *dev = dev_priv->dev;
5053 5054
	unsigned long val;

5055
	if (INTEL_INFO(dev)->gen != 5)
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5078
	spin_lock_irq(&mchdev_lock);
5079 5080 5081 5082
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5083 5084
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5085 5086 5087 5088

	ret = chipset_val + graphics_val;

out_unlock:
5089
	spin_unlock_irq(&mchdev_lock);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5105
	spin_lock_irq(&mchdev_lock);
5106 5107 5108 5109 5110 5111
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5112 5113
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5114 5115

out_unlock:
5116
	spin_unlock_irq(&mchdev_lock);
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5133
	spin_lock_irq(&mchdev_lock);
5134 5135 5136 5137 5138 5139
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5140 5141
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5142 5143

out_unlock:
5144
	spin_unlock_irq(&mchdev_lock);
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5158
	struct intel_engine_cs *ring;
5159
	bool ret = false;
5160
	int i;
5161

5162
	spin_lock_irq(&mchdev_lock);
5163 5164 5165 5166
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5167 5168
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5169 5170

out_unlock:
5171
	spin_unlock_irq(&mchdev_lock);
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5188
	spin_lock_irq(&mchdev_lock);
5189 5190 5191 5192 5193 5194
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5195
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5196

5197
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5198 5199 5200
		ret = false;

out_unlock:
5201
	spin_unlock_irq(&mchdev_lock);
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5229 5230
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5231
	spin_lock_irq(&mchdev_lock);
5232
	i915_mch_dev = dev_priv;
5233
	spin_unlock_irq(&mchdev_lock);
5234 5235 5236 5237 5238 5239

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5240
	spin_lock_irq(&mchdev_lock);
5241
	i915_mch_dev = NULL;
5242
	spin_unlock_irq(&mchdev_lock);
5243
}
5244

5245
static void intel_init_emon(struct drm_device *dev)
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5313
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5314 5315
}

5316 5317
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5318 5319
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5320 5321 5322
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5323
		valleyview_init_gt_powersave(dev);
5324 5325 5326 5327
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5328 5329 5330
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5331
		valleyview_cleanup_gt_powersave(dev);
5332 5333
}

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5347
	WARN_ON(intel_irqs_enabled(dev_priv));
5348 5349 5350 5351

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5352 5353 5354

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5355 5356
}

5357 5358
void intel_disable_gt_powersave(struct drm_device *dev)
{
5359 5360
	struct drm_i915_private *dev_priv = dev->dev_private;

5361
	/* Interrupts should be disabled already to avoid re-arming. */
5362
	WARN_ON(intel_irqs_enabled(dev_priv));
5363

5364
	if (IS_IRONLAKE_M(dev)) {
5365
		ironlake_disable_drps(dev);
5366
		ironlake_disable_rc6(dev);
5367
	} else if (INTEL_INFO(dev)->gen >= 6) {
5368
		intel_suspend_gt_powersave(dev);
5369

5370
		mutex_lock(&dev_priv->rps.hw_lock);
5371 5372 5373
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5374 5375 5376
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5377
		dev_priv->rps.enabled = false;
5378
		mutex_unlock(&dev_priv->rps.hw_lock);
5379
	}
5380 5381
}

5382 5383 5384 5385 5386 5387 5388
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

D
Daisy Sun 已提交
5389 5390
	dev_priv->rps.is_bdw_sw_turbo = false;

5391
	mutex_lock(&dev_priv->rps.hw_lock);
5392

5393 5394 5395
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5396
		valleyview_enable_rps(dev);
5397 5398
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5399
		__gen6_update_ring_freq(dev);
5400 5401
	} else {
		gen6_enable_rps(dev);
5402
		__gen6_update_ring_freq(dev);
5403
	}
5404
	dev_priv->rps.enabled = true;
5405
	mutex_unlock(&dev_priv->rps.hw_lock);
5406 5407

	intel_runtime_pm_put(dev_priv);
5408 5409
}

5410 5411
void intel_enable_gt_powersave(struct drm_device *dev)
{
5412 5413
	struct drm_i915_private *dev_priv = dev->dev_private;

5414
	if (IS_IRONLAKE_M(dev)) {
5415
		mutex_lock(&dev->struct_mutex);
5416 5417 5418
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5419
		mutex_unlock(&dev->struct_mutex);
5420
	} else if (INTEL_INFO(dev)->gen >= 6) {
5421 5422 5423 5424
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5425 5426 5427 5428 5429 5430 5431
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5432
		 */
5433 5434 5435
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5436 5437 5438
	}
}

5439 5440 5441 5442 5443 5444 5445 5446
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5459 5460 5461 5462 5463
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5464
	for_each_pipe(dev_priv, pipe) {
5465 5466 5467
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5468
		intel_flush_primary_plane(dev_priv, pipe);
5469 5470 5471
	}
}

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5486
static void ironlake_init_clock_gating(struct drm_device *dev)
5487 5488
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5489
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5490

5491 5492 5493 5494
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5495 5496 5497
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5515
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5516 5517 5518
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5519 5520

	ilk_init_lp_watermarks(dev);
5521 5522 5523 5524 5525 5526 5527 5528 5529

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5530
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5531 5532 5533 5534 5535 5536 5537 5538
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5539 5540
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5541 5542 5543 5544 5545 5546
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5547

5548
	/* WaDisableRenderCachePipelinedFlush:ilk */
5549 5550
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5551

5552 5553 5554
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5555
	g4x_disable_trickle_feed(dev);
5556

5557 5558 5559 5560 5561 5562 5563
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5564
	uint32_t val;
5565 5566 5567 5568 5569 5570

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5571 5572 5573
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5574 5575
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5576 5577 5578
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5579
	for_each_pipe(dev_priv, pipe) {
5580 5581 5582
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5583
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5584
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5585 5586 5587
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5588 5589
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5590
	/* WADP0ClockGatingDisable */
5591
	for_each_pipe(dev_priv, pipe) {
5592 5593 5594
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5595 5596
}

5597 5598 5599 5600 5601 5602
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5603 5604 5605
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5606 5607
}

5608
static void gen6_init_clock_gating(struct drm_device *dev)
5609 5610
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5611
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5612

5613
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5614 5615 5616 5617 5618

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5619
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5620 5621 5622
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5623
	/* WaSetupGtModeTdRowDispatch:snb */
5624 5625 5626 5627
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5628 5629 5630
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5631 5632 5633
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5634 5635 5636 5637
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5638 5639 5640 5641
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5642
	ilk_init_lp_watermarks(dev);
5643 5644

	I915_WRITE(CACHE_MODE_0,
5645
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5661
	 *
5662 5663
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5664 5665 5666 5667 5668
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5669
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5670 5671
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5672

5673 5674 5675 5676 5677 5678 5679 5680
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5681 5682 5683 5684 5685 5686 5687 5688
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5689 5690
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5691 5692 5693 5694 5695 5696 5697
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5698 5699 5700 5701
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5702

5703
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5704

5705
	cpt_init_clock_gating(dev);
5706 5707

	gen6_check_mch_setup(dev);
5708 5709 5710 5711 5712 5713
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5714
	/*
5715
	 * WaVSThreadDispatchOverride:ivb,vlv
5716 5717 5718 5719
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5720 5721 5722 5723 5724 5725 5726 5727
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5740 5741 5742 5743 5744

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5745 5746
}

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5759
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5760 5761
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5762
	enum pipe pipe;
B
Ben Widawsky 已提交
5763 5764 5765 5766

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5767 5768 5769 5770

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5771

5772 5773
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5774
	I915_WRITE(_3D_CHICKEN3,
5775
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5776

5777

5778
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5779
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5780

5781
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5782 5783 5784
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5785
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5786
	for_each_pipe(dev_priv, pipe) {
5787
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5788
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5789
			   BDW_DPRS_MASK_VBLANK_SRD);
5790
	}
5791

5792 5793 5794 5795 5796
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5797

5798 5799
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5800 5801 5802 5803

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5804

5805
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5806 5807
}

5808 5809 5810 5811
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5812
	ilk_init_lp_watermarks(dev);
5813

5814 5815 5816 5817 5818
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5819
	/* This is required by WaCatErrorRejectionIssue:hsw */
5820 5821 5822 5823
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5824 5825 5826
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5827

5828 5829 5830
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5831 5832 5833 5834
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5835
	/* WaDisable4x2SubspanOptimization:hsw */
5836 5837
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5838

5839 5840 5841
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5842 5843 5844 5845
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5846 5847 5848 5849
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5850
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5851 5852
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5853 5854 5855
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5856

5857
	lpt_init_clock_gating(dev);
5858 5859
}

5860
static void ivybridge_init_clock_gating(struct drm_device *dev)
5861 5862
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5863
	uint32_t snpcr;
5864

5865
	ilk_init_lp_watermarks(dev);
5866

5867
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5868

5869
	/* WaDisableEarlyCull:ivb */
5870 5871 5872
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5873
	/* WaDisableBackToBackFlipFix:ivb */
5874 5875 5876 5877
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5878
	/* WaDisablePSDDualDispatchEnable:ivb */
5879 5880 5881 5882
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5883 5884 5885
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5886
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5887 5888 5889
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5890
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5891 5892 5893
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5894 5895 5896 5897
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5898 5899 5900 5901
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5902 5903
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5904
	}
5905

5906
	/* WaForceL3Serialization:ivb */
5907 5908 5909
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5910
	/*
5911
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5912
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5913 5914
	 */
	I915_WRITE(GEN6_UCGCTL2,
5915
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5916

5917
	/* This is required by WaCatErrorRejectionIssue:ivb */
5918 5919 5920 5921
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5922
	g4x_disable_trickle_feed(dev);
5923 5924

	gen7_setup_fixed_func_scheduler(dev_priv);
5925

5926 5927 5928 5929 5930
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5931

5932
	/* WaDisable4x2SubspanOptimization:ivb */
5933 5934
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5935

5936 5937 5938
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5939 5940 5941 5942
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5943 5944 5945 5946
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5947 5948 5949 5950
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5951

5952 5953
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5954 5955

	gen6_check_mch_setup(dev);
5956 5957
}

5958
static void valleyview_init_clock_gating(struct drm_device *dev)
5959 5960 5961
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5962
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5963

5964
	/* WaDisableEarlyCull:vlv */
5965 5966 5967
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5968
	/* WaDisableBackToBackFlipFix:vlv */
5969 5970 5971 5972
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5973
	/* WaPsdDispatchEnable:vlv */
5974
	/* WaDisablePSDDualDispatchEnable:vlv */
5975
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5976 5977
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5978

5979 5980 5981
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5982
	/* WaForceL3Serialization:vlv */
5983 5984 5985
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5986
	/* WaDisableDopClockGating:vlv */
5987 5988 5989
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5990
	/* This is required by WaCatErrorRejectionIssue:vlv */
5991 5992 5993 5994
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5995 5996
	gen7_setup_fixed_func_scheduler(dev_priv);

5997
	/*
5998
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5999
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6000 6001
	 */
	I915_WRITE(GEN6_UCGCTL2,
6002
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6003

6004 6005 6006 6007 6008
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6009

6010
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6011

6012 6013 6014 6015
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6016 6017
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6018

6019 6020 6021 6022 6023 6024
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6025
	/*
6026
	 * WaDisableVLVClockGating_VBIIssue:vlv
6027 6028 6029
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6030
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6031 6032
}

6033 6034 6035 6036 6037 6038 6039
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6040

6041 6042 6043 6044 6045
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6046 6047 6048 6049

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6050 6051 6052 6053

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6054 6055 6056 6057

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6058

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6070 6071
}

6072
static void g4x_init_clock_gating(struct drm_device *dev)
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6088 6089 6090 6091

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6092

6093 6094 6095
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6096
	g4x_disable_trickle_feed(dev);
6097 6098
}

6099
static void crestline_init_clock_gating(struct drm_device *dev)
6100 6101 6102 6103 6104 6105 6106 6107
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6108 6109
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6110 6111 6112

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6113 6114
}

6115
static void broadwater_init_clock_gating(struct drm_device *dev)
6116 6117 6118 6119 6120 6121 6122 6123 6124
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6125 6126
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6127 6128 6129

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6130 6131
}

6132
static void gen3_init_clock_gating(struct drm_device *dev)
6133 6134 6135 6136 6137 6138 6139
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6140 6141 6142

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6143 6144 6145

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6146 6147

	/* interrupts should cause a wake up from C3 */
6148
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6149 6150 6151

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6152 6153 6154

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6155 6156
}

6157
static void i85x_init_clock_gating(struct drm_device *dev)
6158 6159 6160 6161
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6162 6163 6164 6165

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6166 6167 6168

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6169 6170
}

6171
static void i830_init_clock_gating(struct drm_device *dev)
6172 6173 6174 6175
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6176 6177 6178 6179

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6180 6181 6182 6183 6184 6185 6186 6187 6188
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6189 6190 6191 6192 6193 6194
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

6208 6209 6210 6211 6212
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
6213
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6214 6215 6216 6217 6218 6219
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

6220 6221
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
					  enum intel_display_power_domain domain)
6222 6223
{
	struct i915_power_domains *power_domains;
6224 6225 6226 6227 6228 6229
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;
6230 6231

	power_domains = &dev_priv->power_domains;
6232

6233
	is_enabled = true;
6234

6235 6236 6237
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;
6238

6239
		if (!power_well->hw_enabled) {
6240 6241 6242 6243
			is_enabled = false;
			break;
		}
	}
6244

6245
	return is_enabled;
6246 6247
}

6248
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6249
				 enum intel_display_power_domain domain)
6250
{
6251
	struct i915_power_domains *power_domains;
6252
	bool ret;
6253

6254 6255 6256
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6257
	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6258 6259
	mutex_unlock(&power_domains->lock);

6260
	return ret;
6261 6262
}

6263 6264 6265 6266 6267 6268
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
6269 6270 6271 6272
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

6287 6288
	if (IS_BROADWELL(dev))
		gen8_irq_power_well_post_enable(dev_priv);
6289 6290
}

6291
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6292
			       struct i915_power_well *power_well, bool enable)
6293
{
6294 6295
	bool is_enabled, enable_requested;
	uint32_t tmp;
6296

6297
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6298 6299
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6300

6301 6302
	if (enable) {
		if (!enable_requested)
6303 6304
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
6305

6306 6307 6308
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6309
				      HSW_PWR_WELL_STATE_ENABLED), 20))
6310 6311
				DRM_ERROR("Timeout enabling power well\n");
		}
6312

6313
		hsw_power_well_post_enable(dev_priv);
6314 6315 6316
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6317
			POSTING_READ(HSW_PWR_WELL_DRIVER);
6318
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6319 6320
		}
	}
6321
}
6322

6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

6359 6360
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
6361
{
6362
	enum punit_power_well power_well_id = power_well->data;
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
6461 6462
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
6463
	 */
6464 6465 6466 6467
	if (dev_priv->power_domains.initializing)
		return;

	intel_hpd_init(dev_priv->dev);
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481

	i915_redisable_vga_power_on(dev_priv->dev);
}

static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_set_power_well(dev_priv, power_well, false);
6482 6483

	vlv_power_sequencer_reset(dev_priv);
6484 6485
}

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

6523
	for_each_pipe(dev_priv, pipe)
6524 6525 6526 6527 6528 6529 6530 6531
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV);
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	} else {
		phy = DPIO_PHY1;
		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	}
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

6563 6564
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
		   PHY_COM_LANE_RESET_DEASSERT(phy));
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

6584 6585
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6586 6587 6588 6589

	vlv_set_power_well(dev_priv, power_well, false);
}

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, true);
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, false);
}

6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
static void check_power_well_state(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);

	if (power_well->always_on || !i915.disable_power_well) {
		if (!enabled)
			goto mismatch;

		return;
	}

	if (enabled != (power_well->count > 0))
		goto mismatch;

	return;

mismatch:
	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
		  power_well->name, power_well->always_on, enabled,
		  power_well->count, i915.disable_power_well);
}

6702
void intel_display_power_get(struct drm_i915_private *dev_priv,
6703 6704
			     enum intel_display_power_domain domain)
{
6705
	struct i915_power_domains *power_domains;
6706 6707
	struct i915_power_well *power_well;
	int i;
6708

6709 6710
	intel_runtime_pm_get(dev_priv);

6711 6712 6713
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6714

6715 6716 6717
	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++) {
			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6718
			power_well->ops->enable(dev_priv, power_well);
6719
			power_well->hw_enabled = true;
6720 6721 6722 6723
		}

		check_power_well_state(dev_priv, power_well);
	}
6724

6725 6726
	power_domains->domain_use_count[domain]++;

6727
	mutex_unlock(&power_domains->lock);
6728 6729
}

6730
void intel_display_power_put(struct drm_i915_private *dev_priv,
6731 6732
			     enum intel_display_power_domain domain)
{
6733
	struct i915_power_domains *power_domains;
6734 6735
	struct i915_power_well *power_well;
	int i;
6736

6737 6738 6739
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6740 6741 6742

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
6743

6744 6745 6746
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		WARN_ON(!power_well->count);

6747 6748
		if (!--power_well->count && i915.disable_power_well) {
			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6749
			power_well->hw_enabled = false;
6750
			power_well->ops->disable(dev_priv, power_well);
6751 6752 6753
		}

		check_power_well_state(dev_priv, power_well);
6754
	}
6755

6756
	mutex_unlock(&power_domains->lock);
6757 6758

	intel_runtime_pm_put(dev_priv);
6759 6760
}

6761
static struct i915_power_domains *hsw_pwr;
6762 6763

/* Display audio driver power well request */
6764
int i915_request_power_well(void)
6765
{
6766 6767
	struct drm_i915_private *dev_priv;

6768 6769
	if (!hsw_pwr)
		return -ENODEV;
6770

6771 6772
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6773
	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6774
	return 0;
6775 6776 6777 6778
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
6779
int i915_release_power_well(void)
6780
{
6781 6782
	struct drm_i915_private *dev_priv;

6783 6784
	if (!hsw_pwr)
		return -ENODEV;
6785

6786 6787
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6788
	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6789
	return 0;
6790 6791 6792
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
/*
 * Private interface for the audio driver to get CDCLK in kHz.
 *
 * Caller must request power well using i915_request_power_well() prior to
 * making the call.
 */
int i915_get_cdclk_freq(void)
{
	struct drm_i915_private *dev_priv;

	if (!hsw_pwr)
		return -ENODEV;

	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);

	return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);


6814 6815 6816 6817
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
6818
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
I
Imre Deak 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827
	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_CRT) |			\
P
Paulo Zanoni 已提交
6828
	BIT(POWER_DOMAIN_PLLS) |			\
6829
	BIT(POWER_DOMAIN_INIT))
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_CRT) |		\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
#define CHV_PIPE_A_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_A) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_B_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_B) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_C_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_C) |	\
	BIT(POWER_DOMAIN_INIT))

6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6894 6895 6896 6897 6898 6899 6900 6901 6902
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6903 6904 6905 6906 6907 6908
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};
6909

6910 6911 6912 6913 6914 6915 6916
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

6917 6918 6919 6920 6921 6922 6923
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6924 6925 6926 6927 6928
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
6929
		.ops = &i9xx_always_on_power_well_ops,
6930 6931 6932
	},
};

6933 6934 6935 6936 6937 6938 6939
static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

6940
static struct i915_power_well hsw_power_wells[] = {
6941 6942 6943 6944
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6945
		.ops = &i9xx_always_on_power_well_ops,
6946
	},
6947 6948
	{
		.name = "display",
6949
		.domains = HSW_DISPLAY_POWER_DOMAINS,
6950
		.ops = &hsw_power_well_ops,
6951 6952 6953 6954
	},
};

static struct i915_power_well bdw_power_wells[] = {
6955 6956 6957 6958
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6959
		.ops = &i9xx_always_on_power_well_ops,
6960
	},
6961 6962
	{
		.name = "display",
6963
		.domains = BDW_DISPLAY_POWER_DOMAINS,
6964
		.ops = &hsw_power_well_ops,
6965 6966 6967
	},
};

6968 6969 6970 6971 6972 6973 6974
static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6975 6976 6977 6978 6979 6980 6981
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7038 7039 7040 7041
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7042
		.ops = &vlv_dpio_cmn_power_well_ops,
7043
	},
7044 7045
};

7046 7047 7048 7049 7050 7051 7052
static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
7053 7054 7055 7056 7057 7058 7059
#if 0
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
	{
		.name = "pipe-a",
		.domains = CHV_PIPE_A_POWER_DOMAINS,
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-b",
		.domains = CHV_PIPE_B_POWER_DOMAINS,
		.data = PIPE_B,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-c",
		.domains = CHV_PIPE_C_POWER_DOMAINS,
		.data = PIPE_C,
		.ops = &chv_pipe_power_well_ops,
	},
7078
#endif
7079 7080
	{
		.name = "dpio-common-bc",
7081 7082 7083 7084 7085 7086
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7087 7088 7089 7090 7091
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
7092 7093 7094 7095 7096 7097
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7098 7099 7100
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
#if 0
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
	{
		.name = "dpio-tx-d-01",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
	},
	{
		.name = "dpio-tx-d-23",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
	},
7144
#endif
7145 7146
};

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 enum punit_power_well power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

7162 7163 7164 7165 7166
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

7167
int intel_power_domains_init(struct drm_i915_private *dev_priv)
7168
{
7169
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7170

7171
	mutex_init(&power_domains->lock);
7172

7173 7174 7175 7176
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
7177
	if (IS_HASWELL(dev_priv->dev)) {
7178 7179
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
7180
	} else if (IS_BROADWELL(dev_priv->dev)) {
7181 7182
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
7183 7184
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
7185 7186
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
7187
	} else {
7188
		set_power_wells(power_domains, i9xx_always_on_power_well);
7189
	}
7190 7191 7192 7193

	return 0;
}

7194
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7195 7196 7197 7198
{
	hsw_pwr = NULL;
}

7199
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7200
{
7201 7202
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
7203
	int i;
7204

7205
	mutex_lock(&power_domains->lock);
7206
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7207
		power_well->ops->sync_hw(dev_priv, power_well);
7208 7209 7210
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
7211
	mutex_unlock(&power_domains->lock);
7212 7213
}

7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* nothing to do if common lane is already off */
	if (!cmn->ops->is_enabled(dev_priv, cmn))
		return;

	/* If the display might be already active skip this */
	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

7245
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7246
{
7247
	struct drm_device *dev = dev_priv->dev;
7248 7249 7250
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;
7251 7252 7253 7254 7255 7256 7257

	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

7258
	/* For now, we need the power well to be always enabled. */
7259 7260
	intel_display_set_init_power(dev_priv, true);
	intel_power_domains_resume(dev_priv);
7261
	power_domains->initializing = false;
7262 7263
}

7264 7265
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
7266
	intel_runtime_pm_get(dev_priv);
7267 7268 7269 7270
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
7271
	intel_runtime_pm_put(dev_priv);
7272 7273
}

7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

7320 7321 7322 7323 7324 7325 7326 7327 7328
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!intel_enable_rc6(dev)) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		return;
	}

7329 7330 7331
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
7332 7333

	pm_runtime_put_autosuspend(device);
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

7344 7345 7346
	if (!intel_enable_rc6(dev))
		return;

7347 7348 7349 7350 7351
	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

7352 7353 7354 7355 7356
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7357
	if (HAS_FBC(dev)) {
7358
		if (INTEL_INFO(dev)->gen >= 7) {
7359
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7360 7361 7362 7363 7364
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7365 7366 7367 7368 7369
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
7370
		} else {
7371 7372 7373
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7374 7375 7376

			/* This value was pulled out of someone's hat */
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7377 7378 7379
		}
	}

7380 7381 7382 7383 7384 7385
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7386 7387
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
7388
		ilk_setup_wm_latency(dev);
7389

7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7402
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7403
		else if (IS_GEN6(dev))
7404
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7405
		else if (IS_IVYBRIDGE(dev))
7406
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7407
		else if (IS_HASWELL(dev))
7408
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7409
		else if (INTEL_INFO(dev)->gen == 8)
7410
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7411
	} else if (IS_CHERRYVIEW(dev)) {
7412
		dev_priv->display.update_wm = cherryview_update_wm;
7413
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7414 7415
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7416 7417
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
7418
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7432
			intel_set_memory_cxsr(dev_priv, false);
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7450 7451 7452
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7453
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7454 7455
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7456
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7457 7458 7459 7460 7461 7462 7463 7464
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7465 7466 7467
	}
}

B
Ben Widawsky 已提交
7468 7469
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7470
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7494
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7514

7515
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7516
{
7517
	int div;
7518

7519
	/* 4 x czclk */
7520
	switch (dev_priv->mem_freq) {
7521
	case 800:
7522
		div = 10;
7523 7524
		break;
	case 1066:
7525
		div = 12;
7526 7527
		break;
	case 1333:
7528
		div = 16;
7529 7530 7531 7532 7533
		break;
	default:
		return -1;
	}

7534
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7535 7536
}

7537
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7538
{
7539
	int mul;
7540

7541
	/* 4 x czclk */
7542
	switch (dev_priv->mem_freq) {
7543
	case 800:
7544
		mul = 10;
7545 7546
		break;
	case 1066:
7547
		mul = 12;
7548 7549
		break;
	case 1333:
7550
		mul = 16;
7551 7552 7553 7554 7555
		break;
	default:
		return -1;
	}

7556
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7557 7558
}

7559
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7584
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

7604
	/* CHV needs even values */
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7634
void intel_pm_setup(struct drm_device *dev)
7635 7636 7637
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7638 7639
	mutex_init(&dev_priv->rps.hw_lock);

7640 7641
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7642

7643
	dev_priv->pm.suspended = false;
7644
	dev_priv->pm._irqs_disabled = false;
7645
}