imx-sdma.c 55.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// SPDX-License-Identifier: GPL-2.0+
//
// drivers/dma/imx-sdma.c
//
// This file contains a driver for the Freescale Smart DMA engine
//
// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 13

#include <linux/init.h>
14
#include <linux/iopoll.h>
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/bitops.h>
18 19 20
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
21
#include <linux/delay.h>
22 23 24 25 26 27 28 29 30
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
31
#include <linux/of.h>
32
#include <linux/of_address.h>
33
#include <linux/of_device.h>
34
#include <linux/of_dma.h>
35 36

#include <asm/irq.h>
37 38
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
39 40 41
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42

43
#include "dmaengine.h"
44
#include "virt-dma.h"
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
73 74
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

175 176 177 178 179 180 181 182
#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
				 BIT(DMA_MEM_TO_DEV) | \
				 BIT(DMA_DEV_TO_DEV))

183 184 185 186
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
187
#define SDMA_BD_MAX_CNT	0xffff
188 189
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
190
	u32 command :  8; /* command mostly used for channel 0 */
191 192 193 194 195 196 197 198 199 200 201 202 203 204
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
205 206 207
 * @current_bd_ptr:	current buffer descriptor processed
 * @base_bd_ptr:	first element of buffer descriptor array
 * @unused:		padding. The SDMA engine expects an array of 128 byte
208 209 210 211 212 213 214 215 216 217 218 219
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
220
 * @unused1:	unused
221 222
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
223
 * @unused0:	unused
224 225
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
226
 * @unused2:	unused
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
264 265 266 267 268 269 270 271
 * @scratch0:		1st word of dedicated ram for context switch
 * @scratch1:		2nd word of dedicated ram for context switch
 * @scratch2:		3rd word of dedicated ram for context switch
 * @scratch3:		4th word of dedicated ram for context switch
 * @scratch4:		5th word of dedicated ram for context switch
 * @scratch5:		6th word of dedicated ram for context switch
 * @scratch6:		7th word of dedicated ram for context switch
 * @scratch7:		8th word of dedicated ram for context switch
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));


struct sdma_engine;

303 304
/**
 * struct sdma_desc - descriptor structor for one transfer
305 306 307 308 309 310 311 312 313 314
 * @vd:			descriptor for virt dma
 * @num_bd:		number of descriptors currently handling
 * @bd_phys:		physical address of bd
 * @buf_tail:		ID of the buffer that was processed
 * @buf_ptail:		ID of the previous buffer that was processed
 * @period_len:		period length, used in cyclic.
 * @chn_real_count:	the real count updated from bd->mode.count
 * @chn_count:		the transfer count set
 * @sdmac:		sdma_channel pointer
 * @bd:			pointer of allocate bd
315 316
 */
struct sdma_desc {
317
	struct virt_dma_desc	vd;
318 319 320 321 322 323 324 325 326 327 328
	unsigned int		num_bd;
	dma_addr_t		bd_phys;
	unsigned int		buf_tail;
	unsigned int		buf_ptail;
	unsigned int		period_len;
	unsigned int		chn_real_count;
	unsigned int		chn_count;
	struct sdma_channel	*sdmac;
	struct sdma_buffer_descriptor *bd;
};

329 330 331
/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
332 333 334 335 336 337 338 339 340 341 342 343
 * @vc:			virt_dma base structure
 * @desc:		sdma description including vd and other special member
 * @sdma:		pointer to the SDMA engine for this channel
 * @channel:		the channel number, matches dmaengine chan_id + 1
 * @direction:		transfer type. Needed for setting SDMA script
 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
 * @event_id0:		aka dma request line
 * @event_id1:		for channels that use 2 events
 * @word_size:		peripheral access size
 * @pc_from_device:	script address for those device_2_memory
 * @pc_to_device:	script address for those memory_2_device
 * @device_to_device:	script address for those device_2_device
344
 * @pc_to_pc:		script address for those memory_2_memory
345 346 347 348 349 350 351 352 353 354 355 356
 * @flags:		loop mode or not
 * @per_address:	peripheral source or destination address in common case
 *                      destination address in p_2_p case
 * @per_address2:	peripheral source address in p_2_p case
 * @event_mask:		event mask used in p_2_p script
 * @watermark_level:	value for gReg[7], some script will extend it from
 *			basic watermark such as p_2_p
 * @shp_addr:		value for gReg[6]
 * @per_addr:		value for gReg[2]
 * @status:		status of dma channel
 * @data:		specific sdma interface structure
 * @bd_pool:		dma_pool for bd
357 358
 */
struct sdma_channel {
359
	struct virt_dma_chan		vc;
360
	struct sdma_desc		*desc;
361 362
	struct sdma_engine		*sdma;
	unsigned int			channel;
363
	enum dma_transfer_direction		direction;
364 365 366 367 368
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			pc_from_device, pc_to_device;
369
	unsigned int			device_to_device;
370
	unsigned int                    pc_to_pc;
371
	unsigned long			flags;
372
	dma_addr_t			per_address, per_address2;
373 374
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
375 376
	u32				shp_addr, per_addr;
	enum dma_status			status;
377
	struct imx_dma_data		data;
378 379
};

380
#define IMX_DMA_SG_LOOP		BIT(0)
381 382 383 384 385 386 387 388 389 390 391

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
392 393 394 395 396 397 398 399 400
 * @magic:		"SDMA"
 * @version_major:	increased whenever layout of struct
 *			sdma_script_start_addrs changes.
 * @version_minor:	firmware minor version (for binary compatible changes)
 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs:	Number of script addresses in this image
 * @ram_code_start:	offset of SDMA ram image in this firmware image
 * @ram_code_size:	size of SDMA ram image
 * @script_addrs:	Stores the start address of the SDMA scripts
401 402 403 404 405 406 407 408 409 410 411 412
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

413 414 415
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
416
	struct sdma_script_start_addrs	*script_addrs;
417 418
};

419 420
struct sdma_engine {
	struct device			*dev;
421
	struct device_dma_parameters	dma_parms;
422 423 424 425 426 427
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
428 429
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
430
	spinlock_t			channel_0_lock;
431
	u32				script_number;
432
	struct sdma_script_start_addrs	*script_addrs;
433
	const struct sdma_driver_data	*drvdata;
434 435
	u32				spba_start_addr;
	u32				spba_end_addr;
436
	unsigned int			irq;
437 438
	dma_addr_t			bd0_phys;
	struct sdma_buffer_descriptor	*bd0;
439 440
};

441
static struct sdma_driver_data sdma_imx31 = {
442 443 444 445
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

462
static struct sdma_driver_data sdma_imx25 = {
463 464 465 466 467
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

468
static struct sdma_driver_data sdma_imx35 = {
469 470
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
471 472
};

473 474 475 476 477 478 479 480 481 482 483 484 485
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

486
static struct sdma_driver_data sdma_imx51 = {
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

506
static struct sdma_driver_data sdma_imx53 = {
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

525
static struct sdma_driver_data sdma_imx6q = {
526 527 528 529 530
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static struct sdma_script_start_addrs sdma_script_imx7d = {
	.ap_2_ap_addr = 644,
	.uart_2_mcu_addr = 819,
	.mcu_2_app_addr = 749,
	.uartsh_2_mcu_addr = 1034,
	.mcu_2_shp_addr = 962,
	.app_2_mcu_addr = 685,
	.shp_2_mcu_addr = 893,
	.spdif_2_mcu_addr = 1102,
	.mcu_2_spdif_addr = 1136,
};

static struct sdma_driver_data sdma_imx7d = {
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx7d,
};

549
static const struct platform_device_id sdma_devtypes[] = {
550
	{
551 552 553
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
554
		.name = "imx31-sdma",
555
		.driver_data = (unsigned long)&sdma_imx31,
556 557
	}, {
		.name = "imx35-sdma",
558
		.driver_data = (unsigned long)&sdma_imx35,
559 560 561 562 563 564 565 566 567
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
568 569 570
	}, {
		.name = "imx7d-sdma",
		.driver_data = (unsigned long)&sdma_imx7d,
571 572 573 574 575 576
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

577
static const struct of_device_id sdma_dt_ids[] = {
578 579 580
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
581
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
582
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
583
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
584
	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
585 586 587 588
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

589 590 591
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
592 593 594 595
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
596
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
597 598 599 600 601 602 603 604
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
605
	unsigned long evt, mcu, dsp;
606 607 608 609

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

610 611 612
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
613 614

	if (dsp_override)
615
		__clear_bit(channel, &dsp);
616
	else
617
		__set_bit(channel, &dsp);
618 619

	if (event_override)
620
		__clear_bit(channel, &evt);
621
	else
622
		__set_bit(channel, &evt);
623 624

	if (mcu_override)
625
		__clear_bit(channel, &mcu);
626
	else
627
		__set_bit(channel, &mcu);
628

629 630 631
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
632 633 634 635

	return 0;
}

636 637
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
638
	writel(BIT(channel), sdma->regs + SDMA_H_START);
639 640
}

641
/*
642
 * sdma_run_channel0 - run a channel and wait till it's done
643
 */
644
static int sdma_run_channel0(struct sdma_engine *sdma)
645 646
{
	int ret;
647
	u32 reg;
648

649
	sdma_enable_channel(sdma, 0);
650

651 652 653
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
654
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
655

656 657 658 659
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

660
	return ret;
661 662 663 664 665
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
666
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
667 668 669
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
670
	unsigned long flags;
671

672 673 674
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
675
	if (!buf_virt) {
676
		return -ENOMEM;
677
	}
678

679 680
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

681 682 683 684 685 686 687 688
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

689
	ret = sdma_run_channel0(sdma);
690

691
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
692

693
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
694

695 696 697 698 699 700 701
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
702
	unsigned long val;
703 704
	u32 chnenbl = chnenbl_ofs(sdma, event);

705
	val = readl_relaxed(sdma->regs + chnenbl);
706
	__set_bit(channel, &val);
707
	writel_relaxed(val, sdma->regs + chnenbl);
708 709 710 711 712 713 714
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
715
	unsigned long val;
716

717
	val = readl_relaxed(sdma->regs + chnenbl);
718
	__clear_bit(channel, &val);
719
	writel_relaxed(val, sdma->regs + chnenbl);
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct sdma_desc, vd.tx);
}

static void sdma_start_desc(struct sdma_channel *sdmac)
{
	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
	struct sdma_desc *desc;
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (!vd) {
		sdmac->desc = NULL;
		return;
	}
	sdmac->desc = desc = to_sdma_desc(&vd->tx);
	/*
	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
V
Vinod Koul 已提交
741
	 * the desc allocated will never be freed in vchan_dma_desc_free_list
742 743 744 745 746 747 748 749 750
	 */
	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
		list_del(&vd->node);

	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
	sdma_enable_channel(sdma, sdmac->channel);
}

751
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
752 753
{
	struct sdma_buffer_descriptor *bd;
754 755
	int error = 0;
	enum dma_status	old_status = sdmac->status;
756 757 758 759 760

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
761
	while (sdmac->desc) {
762 763 764
		struct sdma_desc *desc = sdmac->desc;

		bd = &desc->bd[desc->buf_tail];
765 766 767 768

		if (bd->mode.status & BD_DONE)
			break;

769 770
		if (bd->mode.status & BD_RROR) {
			bd->mode.status &= ~BD_RROR;
771
			sdmac->status = DMA_ERROR;
772 773
			error = -EIO;
		}
774

775 776 777 778 779
	       /*
		* We use bd->mode.count to calculate the residue, since contains
		* the number of bytes present in the current buffer descriptor.
		*/

780
		desc->chn_real_count = bd->mode.count;
781
		bd->mode.status |= BD_DONE;
782 783 784
		bd->mode.count = desc->period_len;
		desc->buf_ptail = desc->buf_tail;
		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
785 786 787 788 789 790 791

		/*
		 * The callback is called from the interrupt context in order
		 * to reduce latency and to avoid the risk of altering the
		 * SDMA transaction status by the time the client tasklet is
		 * executed.
		 */
792 793 794
		spin_unlock(&sdmac->vc.lock);
		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
		spin_lock(&sdmac->vc.lock);
795

796 797
		if (error)
			sdmac->status = old_status;
798 799 800
	}
}

801
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
802
{
803
	struct sdma_channel *sdmac = (struct sdma_channel *) data;
804 805 806
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

807
	sdmac->desc->chn_real_count = 0;
808 809 810 811
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
812 813
	for (i = 0; i < sdmac->desc->num_bd; i++) {
		bd = &sdmac->desc->bd[i];
814 815 816

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
817
		 sdmac->desc->chn_real_count += bd->mode.count;
818 819 820 821 822
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
823
		sdmac->status = DMA_COMPLETE;
824 825 826 827 828
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
829
	unsigned long stat;
830

831 832
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
833 834
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
835 836 837 838

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];
839 840 841 842 843 844 845 846 847 848 849 850 851
		struct sdma_desc *desc;

		spin_lock(&sdmac->vc.lock);
		desc = sdmac->desc;
		if (desc) {
			if (sdmac->flags & IMX_DMA_SG_LOOP) {
				sdma_update_channel_loop(sdmac);
			} else {
				mxc_sdma_handle_channel_normal(sdmac);
				vchan_cookie_complete(&desc->vd);
				sdma_start_desc(sdmac);
			}
		}
852

853
		spin_unlock(&sdmac->vc.lock);
854
		__clear_bit(channel, &stat);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
872
	int per_2_per = 0, emi_2_emi = 0;
873 874 875

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
876
	sdmac->device_to_device = 0;
877
	sdmac->pc_to_pc = 0;
878 879 880

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
881
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
906
	case IMX_DMATYPE_SAI:
907 908 909
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
910 911 912 913
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
914 915 916 917 918 919 920 921 922 923 924 925 926 927
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
928 929 930 931 932
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
953
	sdmac->device_to_device = per_2_per;
954
	sdmac->pc_to_pc = emi_2_emi;
955 956 957 958 959 960 961 962
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
963
	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
964
	int ret;
965
	unsigned long flags;
966

967
	if (sdmac->direction == DMA_DEV_TO_MEM)
968
		load_address = sdmac->pc_from_device;
969 970
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
971 972
	else if (sdmac->direction == DMA_MEM_TO_MEM)
		load_address = sdmac->pc_to_pc;
973
	else
974 975 976 977 978 979
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
980
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
981 982
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
983 984
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
985

986
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
987

988 989 990 991 992 993
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
994 995
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
996 997 998 999 1000 1001 1002 1003 1004
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1005
	ret = sdma_run_channel0(sdma);
1006

1007
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1008

1009 1010 1011
	return ret;
}

1012 1013
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
1014
	return container_of(chan, struct sdma_channel, vc.chan);
1015 1016 1017
}

static int sdma_disable_channel(struct dma_chan *chan)
1018
{
1019
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1020 1021 1022
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

1023
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1024
	sdmac->status = DMA_ERROR;
1025 1026

	return 0;
1027 1028
}

1029 1030
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
1031 1032 1033 1034
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

1035
	sdma_disable_channel(chan);
1036 1037 1038 1039 1040
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vchan_get_all_descriptors(&sdmac->vc, &head);
	sdmac->desc = NULL;
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
	vchan_dma_desc_free_list(&sdmac->vc, &head);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/*
	 * According to NXP R&D team a delay of one BD SDMA cost time
	 * (maximum is 1ms) should be added after disable of the channel
	 * bit, to ensure SDMA core has really been stopped after SDMA
	 * clients call .device_terminate_all.
	 */
	mdelay(1);

	return 0;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

1093
static int sdma_config_channel(struct dma_chan *chan)
1094
{
1095
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1096 1097
	int ret;

1098
	sdma_disable_channel(chan);
1099

1100 1101
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
1102 1103 1104 1105
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
1106
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1107 1108 1109 1110
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

1111 1112 1113 1114 1115 1116
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
1135 1136 1137 1138
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
1139
			__set_bit(sdmac->event_id0, sdmac->event_mask);
1140

1141 1142
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
1143
		sdmac->per_addr = sdmac->per_address2;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1164
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1165 1166 1167 1168

	return 0;
}

1169
static int sdma_request_channel0(struct sdma_engine *sdma)
1170 1171 1172
{
	int ret = -EBUSY;

1173 1174 1175
	sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
					GFP_NOWAIT);
	if (!sdma->bd0) {
1176 1177 1178 1179
		ret = -ENOMEM;
		goto out;
	}

1180 1181
	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1182

1183
	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1184 1185 1186 1187 1188 1189
	return 0;
out:

	return ret;
}

1190 1191

static int sdma_alloc_bd(struct sdma_desc *desc)
1192
{
1193
	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1194
	int ret = 0;
1195

1196 1197
	desc->bd = dma_zalloc_coherent(NULL, bd_size, &desc->bd_phys,
					GFP_ATOMIC);
1198 1199 1200 1201 1202 1203 1204
	if (!desc->bd) {
		ret = -ENOMEM;
		goto out;
	}
out:
	return ret;
}
1205

1206 1207
static void sdma_free_bd(struct sdma_desc *desc)
{
1208 1209 1210
	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);

	dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys);
1211
}
1212

1213 1214 1215 1216 1217 1218
static void sdma_desc_free(struct virt_dma_desc *vd)
{
	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);

	sdma_free_bd(desc);
	kfree(desc);
1219 1220 1221 1222 1223 1224
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
1225
	struct imx_dma_data mem_data;
1226 1227
	int prio, ret;

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * MEMCPY may never setup chan->private by filter function such as
	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
	 * Please note in any other slave case, you have to setup chan->private
	 * with 'struct imx_dma_data' in your own filter function if you want to
	 * request dma channel by dma_request_channel() rather than
	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
	 * to warn you to correct your filter function.
	 */
	if (!data) {
		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
		mem_data.priority = 2;
		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
		mem_data.dma_request = 0;
		mem_data.dma_request2 = 0;
		data = &mem_data;

		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1263
	sdmac->event_id1 = data->dma_request2;
1264

1265 1266 1267 1268 1269 1270
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1271

1272
	ret = sdma_set_channel_priority(sdmac, prio);
1273
	if (ret)
1274
		goto disable_clk_ahb;
1275 1276

	return 0;
1277 1278 1279 1280 1281 1282

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1283 1284 1285 1286 1287 1288 1289
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1290
	sdma_disable_channel_with_delay(chan);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

1302 1303
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
				enum dma_transfer_direction direction, u32 bds)
{
	struct sdma_desc *desc;

	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
	if (!desc)
		goto err_out;

	sdmac->status = DMA_IN_PROGRESS;
	sdmac->direction = direction;
	sdmac->flags = 0;

	desc->chn_count = 0;
	desc->chn_real_count = 0;
	desc->buf_tail = 0;
	desc->buf_ptail = 0;
	desc->sdmac = sdmac;
	desc->num_bd = bds;

	if (sdma_alloc_bd(desc))
		goto err_desc_out;

1329 1330 1331 1332
	/* No slave_config called in MEMCPY case, so do here */
	if (direction == DMA_MEM_TO_MEM)
		sdma_config_ownership(sdmac, false, true, false);

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (sdma_load_context(sdmac))
		goto err_desc_out;

	return desc;

err_desc_out:
	kfree(desc);
err_out:
	return NULL;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static struct dma_async_tx_descriptor *sdma_prep_memcpy(
		struct dma_chan *chan, dma_addr_t dma_dst,
		dma_addr_t dma_src, size_t len, unsigned long flags)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	size_t count;
	int i = 0, param;
	struct sdma_buffer_descriptor *bd;
	struct sdma_desc *desc;

	if (!chan || !len)
		return NULL;

	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
		&dma_src, &dma_dst, len, channel);

	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
					len / SDMA_BD_MAX_CNT + 1);
	if (!desc)
		return NULL;

	do {
		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
		bd = &desc->bd[i];
		bd->buffer_addr = dma_src;
		bd->ext_buffer_addr = dma_dst;
		bd->mode.count = count;
		desc->chn_count += count;
		bd->mode.command = 0;

		dma_src += count;
		dma_dst += count;
		len -= count;
		i++;

		param = BD_DONE | BD_EXTD | BD_CONT;
		/* last bd */
		if (!len) {
			param |= BD_INTR;
			param |= BD_LAST;
			param &= ~BD_CONT;
		}

		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
				i, count, bd->buffer_addr,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	} while (len);

	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
}

1400 1401
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1402
		unsigned int sg_len, enum dma_transfer_direction direction,
1403
		unsigned long flags, void *context)
1404 1405 1406
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
1407
	int i, count;
1408
	int channel = sdmac->channel;
1409
	struct scatterlist *sg;
1410
	struct sdma_desc *desc;
1411

1412
	desc = sdma_transfer_init(sdmac, direction, sg_len);
1413 1414 1415
	if (!desc)
		goto err_out;

1416 1417 1418 1419
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	for_each_sg(sgl, sg, sg_len, i) {
1420
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1421 1422
		int param;

1423
		bd->buffer_addr = sg->dma_address;
1424

1425
		count = sg_dma_len(sg);
1426

1427
		if (count > SDMA_BD_MAX_CNT) {
1428
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1429
					channel, count, SDMA_BD_MAX_CNT);
1430
			goto err_bd_out;
1431 1432 1433
		}

		bd->mode.count = count;
1434
		desc->chn_count += count;
1435

1436
		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1437
			goto err_bd_out;
1438 1439 1440

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1441
			bd->mode.command = 0;
1442
			if (count & 3 || sg->dma_address & 3)
1443
				goto err_bd_out;
1444 1445 1446 1447
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
1448
				goto err_bd_out;
1449 1450 1451 1452 1453
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
1454
			goto err_bd_out;
1455
		}
1456 1457 1458

		param = BD_DONE | BD_EXTD | BD_CONT;

1459
		if (i + 1 == sg_len) {
1460
			param |= BD_INTR;
1461 1462
			param |= BD_LAST;
			param &= ~BD_CONT;
1463 1464
		}

1465 1466
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1467 1468 1469 1470 1471 1472
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

1473 1474 1475 1476
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1477
err_out:
1478
	sdmac->status = DMA_ERROR;
1479 1480 1481 1482 1483
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1484
		size_t period_len, enum dma_transfer_direction direction,
1485
		unsigned long flags)
1486 1487 1488 1489
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1490
	int channel = sdmac->channel;
1491
	int i = 0, buf = 0;
1492
	struct sdma_desc *desc;
1493 1494 1495

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

1496
	desc = sdma_transfer_init(sdmac, direction, num_periods);
1497 1498 1499
	if (!desc)
		goto err_out;

1500
	desc->period_len = period_len;
1501

1502 1503
	sdmac->flags |= IMX_DMA_SG_LOOP;

1504
	if (period_len > SDMA_BD_MAX_CNT) {
1505
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1506
				channel, period_len, SDMA_BD_MAX_CNT);
1507
		goto err_bd_out;
1508 1509 1510
	}

	while (buf < buf_len) {
1511
		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1512 1513 1514 1515 1516 1517 1518
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1519
			goto err_bd_out;
1520 1521 1522 1523 1524 1525 1526 1527 1528
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1529
		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1530
				i, period_len, (u64)dma_addr,
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

1542 1543 1544 1545
	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
	sdma_free_bd(desc);
	kfree(desc);
1546 1547 1548 1549 1550
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1551 1552
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1553 1554 1555
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1556 1557 1558 1559 1560
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1561 1562 1563 1564 1565 1566 1567 1568
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1569 1570 1571 1572 1573 1574 1575 1576
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1577 1578 1579
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1580 1581
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1582 1583
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1584
	struct sdma_desc *desc;
1585
	u32 residue;
1586 1587 1588
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&sdmac->vc.lock, flags);
	vd = vchan_find_desc(&sdmac->vc, cookie);
	if (vd) {
		desc = to_sdma_desc(&vd->tx);
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			residue = (desc->num_bd - desc->buf_ptail) *
				desc->period_len - desc->chn_real_count;
		else
			residue = desc->chn_count - desc->chn_real_count;
	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
	} else {
		residue = 0;
	}
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1609

1610
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1611
			 residue);
1612

1613
	return sdmac->status;
1614 1615 1616 1617
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1618
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1619
	unsigned long flags;
1620

1621 1622 1623 1624
	spin_lock_irqsave(&sdmac->vc.lock, flags);
	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
		sdma_start_desc(sdmac);
	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1625 1626
}

1627
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1628
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1629
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1630
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1631 1632 1633 1634 1635 1636 1637 1638

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1639 1640 1641 1642
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1643
	for (i = 0; i < sdma->script_number; i++)
1644 1645 1646 1647
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1648
static void sdma_load_firmware(const struct firmware *fw, void *context)
1649
{
1650
	struct sdma_engine *sdma = context;
1651 1652 1653 1654
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1655
	if (!fw) {
1656 1657
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1658 1659
		return;
	}
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1670
	switch (header->version_major) {
A
Asaf Vertz 已提交
1671 1672 1673 1674 1675 1676
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1677 1678 1679
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
1680 1681 1682
	case 4:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
		break;
A
Asaf Vertz 已提交
1683 1684 1685
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1686
	}
1687 1688 1689 1690

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1691 1692
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1693 1694 1695
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1696
			addr->ram_code_start_addr);
1697 1698
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1699 1700 1701 1702 1703 1704 1705 1706 1707

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1708 1709
}

1710 1711
#define EVENT_REMAP_CELLS 3

1712
static int sdma_event_remap(struct sdma_engine *sdma)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1728
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1776
static int sdma_get_firmware(struct sdma_engine *sdma,
1777 1778 1779 1780 1781 1782 1783
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1784 1785 1786 1787

	return ret;
}

1788
static int sdma_init(struct sdma_engine *sdma)
1789 1790 1791 1792
{
	int i, ret;
	dma_addr_t ccb_phys;

1793 1794 1795 1796 1797 1798
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1799 1800

	/* Be sure SDMA has not started yet */
1801
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1823
	for (i = 0; i < sdma->drvdata->num_events; i++)
1824
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1825 1826 1827

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1828
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1829

1830
	ret = sdma_request_channel0(sdma);
1831 1832 1833 1834 1835 1836
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1837
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1838 1839 1840

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1841
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1842

1843
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1844 1845 1846 1847

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1848 1849
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1850 1851 1852 1853

	return 0;

err_dma_alloc:
1854
	clk_disable(sdma->clk_ahb);
1855 1856
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1857 1858 1859 1860
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1861 1862
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1863
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1864 1865 1866 1867 1868
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1869 1870
	sdmac->data = *data;
	chan->private = &sdmac->data;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1888 1889 1890 1891 1892 1893 1894 1895
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1896 1897 1898 1899

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1900
static int sdma_probe(struct platform_device *pdev)
1901
{
1902 1903 1904
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1905
	struct device_node *spba_bus;
1906
	const char *fw_name;
1907 1908 1909
	int ret;
	int irq;
	struct resource *iores;
1910
	struct resource spba_res;
J
Jingoo Han 已提交
1911
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1912 1913
	int i;
	struct sdma_engine *sdma;
1914
	s32 *saddr_arr;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1926

1927 1928 1929 1930
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1931
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1932 1933 1934
	if (!sdma)
		return -ENOMEM;

1935
	spin_lock_init(&sdma->channel_0_lock);
1936

1937
	sdma->dev = &pdev->dev;
1938
	sdma->drvdata = drvdata;
1939 1940

	irq = platform_get_irq(pdev, 0);
1941
	if (irq < 0)
1942
		return irq;
1943

1944 1945 1946 1947
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1948

1949
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1950 1951
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1952

1953
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1954 1955
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1956

1957 1958 1959 1960 1961 1962 1963
	ret = clk_prepare(sdma->clk_ipg);
	if (ret)
		return ret;

	ret = clk_prepare(sdma->clk_ahb);
	if (ret)
		goto err_clk;
1964

1965 1966
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1967
	if (ret)
1968
		goto err_irq;
1969

1970 1971
	sdma->irq = irq;

1972
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1973 1974 1975 1976
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
		goto err_irq;
	}
1977

1978 1979 1980 1981 1982
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1983 1984
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1985
	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
1986

1987 1988 1989 1990 1991 1992 1993 1994
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;

		sdmac->channel = i;
1995
		sdmac->vc.desc_free = sdma_desc_free;
1996 1997 1998 1999 2000 2001
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
2002
			vchan_init(&sdmac->vc, &sdma->dma_device);
2003 2004
	}

2005
	ret = sdma_init(sdma);
2006 2007 2008
	if (ret)
		goto err_init;

2009 2010 2011 2012
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

2013 2014
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2015
	if (pdata && pdata->script_addrs)
2016 2017
		sdma_add_scripts(sdma, pdata->script_addrs);

2018
	if (pdata) {
2019 2020
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
2021
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2022 2023 2024 2025 2026 2027 2028 2029
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
2030
		if (ret)
2031
			dev_warn(&pdev->dev, "failed to get firmware name\n");
2032 2033 2034
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
2035
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2036 2037
		}
	}
2038

2039 2040 2041 2042 2043 2044 2045
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2046
	sdma->dma_device.device_config = sdma_config;
2047
	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
2048 2049 2050
	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2051
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2052
	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2053
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2054
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2055
	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2056

2057 2058
	platform_set_drvdata(pdev, sdma);

2059 2060 2061 2062 2063 2064
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

2065 2066 2067 2068 2069 2070
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
2071 2072 2073 2074 2075 2076 2077 2078

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
2079 2080
	}

2081 2082
	return 0;

2083 2084
err_register:
	dma_async_device_unregister(&sdma->dma_device);
2085 2086
err_init:
	kfree(sdma->script_addrs);
2087 2088 2089 2090
err_irq:
	clk_unprepare(sdma->clk_ahb);
err_clk:
	clk_unprepare(sdma->clk_ipg);
2091
	return ret;
2092 2093
}

2094
static int sdma_remove(struct platform_device *pdev)
2095
{
2096
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2097
	int i;
2098

2099
	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2100 2101
	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
2102 2103
	clk_unprepare(sdma->clk_ahb);
	clk_unprepare(sdma->clk_ipg);
2104 2105 2106 2107
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

2108 2109
		tasklet_kill(&sdmac->vc.task);
		sdma_free_chan_resources(&sdmac->vc.chan);
2110
	}
2111 2112 2113

	platform_set_drvdata(pdev, NULL);
	return 0;
2114 2115 2116 2117 2118
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
2119
		.of_match_table = sdma_dt_ids,
2120
	},
2121
	.id_table	= sdma_devtypes,
2122
	.remove		= sdma_remove,
2123
	.probe		= sdma_probe,
2124 2125
};

2126
module_platform_driver(sdma_driver);
2127 2128 2129

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
2130 2131 2132 2133 2134 2135
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
2136
MODULE_LICENSE("GPL");