imx-sdma.c 35.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/module.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
36 37
#include <linux/of.h>
#include <linux/of_device.h>
38
#include <linux/module.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#include <asm/irq.h>
#include <mach/sdma.h>
#include <mach/dma.h>
#include <mach/hardware.h>

/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
72 73
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
	u32 command :  8; /* command mostlky used for channel 0 */
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
237
 * @channel		the channel number, matches dmaengine chan_id + 1
238 239 240 241 242 243 244 245 246 247 248 249
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
 * @done		channel completion
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
250
	enum dma_transfer_direction		direction;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
	struct completion		done;
	unsigned int			num_bd;
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
	unsigned long			flags;
	dma_addr_t			per_address;
	u32				event_mask0, event_mask1;
	u32				watermark_level;
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	dma_cookie_t			last_completed;
	enum dma_status			status;
271 272
	unsigned int			chn_count;
	unsigned int			chn_real_count;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
};

#define IMX_DMA_SG_LOOP		(1 << 0)

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

308 309 310 311 312
enum sdma_devtype {
	IMX31_SDMA,	/* runs on i.mx31 */
	IMX35_SDMA,	/* runs on i.mx35 and later */
};

313 314
struct sdma_engine {
	struct device			*dev;
315
	struct device_dma_parameters	dma_parms;
316 317 318
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
319
	enum sdma_devtype		devtype;
320 321 322 323 324
	unsigned int			num_events;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
	struct clk			*clk;
325
	struct mutex			channel_0_lock;
326 327 328
	struct sdma_script_start_addrs	*script_addrs;
};

329 330 331 332 333 334 335 336 337 338 339 340 341
static struct platform_device_id sdma_devtypes[] = {
	{
		.name = "imx31-sdma",
		.driver_data = IMX31_SDMA,
	}, {
		.name = "imx35-sdma",
		.driver_data = IMX35_SDMA,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

342 343 344 345 346 347 348
static const struct of_device_id sdma_dt_ids[] = {
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

349 350 351 352 353 354 355
#define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
356 357
	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
						      SDMA_CHNENBL0_IMX35);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 evt, mcu, dsp;

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

	evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
	mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
	dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);

	if (dsp_override)
		dsp &= ~(1 << channel);
	else
		dsp |= (1 << channel);

	if (event_override)
		evt &= ~(1 << channel);
	else
		evt |= (1 << channel);

	if (mcu_override)
		mcu &= ~(1 << channel);
	else
		mcu |= (1 << channel);

	__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
	__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
	__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);

	return 0;
}

/*
 * sdma_run_channel - run a channel and wait till it's done
 */
static int sdma_run_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret;

	init_completion(&sdmac->done);

	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);

	ret = wait_for_completion_timeout(&sdmac->done, HZ);

	return ret ? 0 : -ETIMEDOUT;
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;

423 424
	mutex_lock(&sdma->channel_0_lock);

425 426 427
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
428 429 430 431
	if (!buf_virt) {
		ret = -ENOMEM;
		goto err_out;
	}
432 433 434 435 436 437 438 439 440 441 442 443 444

	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

	ret = sdma_run_channel(&sdma->channel[0]);

	dma_free_coherent(NULL, size, buf_virt, buf_phys);

445 446 447
err_out:
	mutex_unlock(&sdma->channel_0_lock);

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 val;
	u32 chnenbl = chnenbl_ofs(sdma, event);

	val = __raw_readl(sdma->regs + chnenbl);
	val |= (1 << channel);
	__raw_writel(val, sdma->regs + chnenbl);
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
	u32 val;

	val = __raw_readl(sdma->regs + chnenbl);
	val &= ~(1 << channel);
	__raw_writel(val, sdma->regs + chnenbl);
}

static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

		if (bd->mode.status & BD_RROR)
			sdmac->status = DMA_ERROR;
		else
492
			sdmac->status = DMA_IN_PROGRESS;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

		bd->mode.status |= BD_DONE;
		sdmac->buf_tail++;
		sdmac->buf_tail %= sdmac->num_bd;

		if (sdmac->desc.callback)
			sdmac->desc.callback(sdmac->desc.callback_param);
	}
}

static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

508
	sdmac->chn_real_count = 0;
509 510 511 512 513 514 515 516 517
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
518
		 sdmac->chn_real_count += bd->mode.count;
519 520 521 522 523 524 525
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
		sdmac->status = DMA_SUCCESS;

526
	sdmac->last_completed = sdmac->desc.cookie;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
{
	complete(&sdmac->done);

	/* not interested in channel 0 interrupts */
	if (sdmac->channel == 0)
		return;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
		sdma_handle_channel_loop(sdmac);
	else
		mxc_sdma_handle_channel_normal(sdmac);
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
	u32 stat;

	stat = __raw_readl(sdma->regs + SDMA_H_INTR);
	__raw_writel(stat, sdma->regs + SDMA_H_INTR);

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

		mxc_sdma_handle_channel(sdmac);

		stat &= ~(1 << channel);
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
	int per_2_per = 0, emi_2_emi = 0;

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;

657
	if (sdmac->direction == DMA_DEV_TO_MEM) {
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		load_address = sdmac->pc_from_device;
	} else {
		load_address = sdmac->pc_to_device;
	}

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);

673 674
	mutex_lock(&sdma->channel_0_lock);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
	context->gReg[0] = sdmac->event_mask1;
	context->gReg[1] = sdmac->event_mask0;
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;

	ret = sdma_run_channel(&sdma->channel[0]);

695 696
	mutex_unlock(&sdma->channel_0_lock);

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	return ret;
}

static void sdma_disable_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
	sdmac->status = DMA_ERROR;
}

static int sdma_config_channel(struct sdma_channel *sdmac)
{
	int ret;

	sdma_disable_channel(sdmac);

	sdmac->event_mask0 = 0;
	sdmac->event_mask1 = 0;
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
		if (sdmac->event_id0 > 32)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
			if (sdmac->event_id1 > 31)
				sdmac->watermark_level |= 1 << 31;
			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
			if (sdmac->event_id0 > 31)
				sdmac->watermark_level |= 1 << 30;
		} else {
			sdmac->event_mask0 = 1 << sdmac->event_id0;
			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
		}
		/* Watermark Level */
		sdmac->watermark_level |= sdmac->watermark_level;
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

	__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	memset(sdmac->bd, 0, PAGE_SIZE);

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	clk_enable(sdma->clk);

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);

	init_completion(&sdmac->done);

	sdmac->buf_tail = 0;

	return 0;
out:

	return ret;
}

static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
}

819
static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
820
{
821
	dma_cookie_t cookie = sdmac->chan.cookie;
822 823 824 825

	if (++cookie < 0)
		cookie = 1;

826 827
	sdmac->chan.cookie = cookie;
	sdmac->desc.cookie = cookie;
828 829 830 831 832 833 834 835 836 837 838

	return cookie;
}

static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
839
	unsigned long flags;
840 841 842 843
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	struct sdma_engine *sdma = sdmac->sdma;
	dma_cookie_t cookie;

844
	spin_lock_irqsave(&sdmac->lock, flags);
845 846 847

	cookie = sdma_assign_cookie(sdmac);

848
	sdma_enable_channel(sdma, sdmac->channel);
849

850
	spin_unlock_irqrestore(&sdmac->lock, flags);
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
	ret = sdma_set_channel_priority(sdmac, prio);
	if (ret)
		return ret;

	ret = sdma_request_channel(sdmac);
	if (ret)
		return ret;

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	sdma_disable_channel(sdmac);

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

	clk_disable(sdma->clk);
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
919
		unsigned int sg_len, enum dma_transfer_direction direction,
920 921 922 923 924
		unsigned long flags)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
925
	int channel = sdmac->channel;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

949
	sdmac->chn_count = 0;
950 951 952 953
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

954
		bd->buffer_addr = sg->dma_address;
955 956 957 958 959 960 961 962 963 964 965

		count = sg->length;

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
966
		sdmac->chn_count += count;
967 968 969 970 971

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
972 973 974

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
975
			bd->mode.command = 0;
976 977 978 979 980 981 982 983 984 985 986 987 988 989
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
990 991 992

		param = BD_DONE | BD_EXTD | BD_CONT;

993
		if (i + 1 == sg_len) {
994
			param |= BD_INTR;
995 996
			param |= BD_LAST;
			param &= ~BD_CONT;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		}

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, count, sg->dma_address,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1012
	sdmac->status = DMA_ERROR;
1013 1014 1015 1016 1017
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1018
		size_t period_len, enum dma_transfer_direction direction)
1019 1020 1021 1022
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1023
	int channel = sdmac->channel;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, period_len, dma_addr,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		unsigned long arg)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct dma_slave_config *dmaengine_cfg = (void *)arg;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		sdma_disable_channel(sdmac);
		return 0;
	case DMA_SLAVE_CONFIG:
1103
		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1104 1105 1106 1107 1108 1109 1110 1111
			sdmac->per_address = dmaengine_cfg->src_addr;
			sdmac->watermark_level = dmaengine_cfg->src_maxburst;
			sdmac->word_size = dmaengine_cfg->src_addr_width;
		} else {
			sdmac->per_address = dmaengine_cfg->dst_addr;
			sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
			sdmac->word_size = dmaengine_cfg->dst_addr_width;
		}
1112
		sdmac->direction = dmaengine_cfg->direction;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		return sdma_config_channel(sdmac);
	default:
		return -ENOSYS;
	}

	return -EINVAL;
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
					    dma_cookie_t cookie,
					    struct dma_tx_state *txstate)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	dma_cookie_t last_used;

	last_used = chan->cookie;

1130 1131
	dma_set_tx_state(txstate, sdmac->last_completed, last_used,
			sdmac->chn_count - sdmac->chn_real_count);
1132

1133
	return sdmac->status;
1134 1135 1136 1137 1138 1139 1140 1141 1142
}

static void sdma_issue_pending(struct dma_chan *chan)
{
	/*
	 * Nothing to do. We only have a single descriptor
	 */
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1157
static void sdma_load_firmware(const struct firmware *fw, void *context)
1158
{
1159
	struct sdma_engine *sdma = context;
1160 1161 1162 1163
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1164 1165 1166 1167
	if (!fw) {
		dev_err(sdma->dev, "firmware not found\n");
		return;
	}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

	clk_enable(sdma->clk);
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1186
			addr->ram_code_start_addr);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	clk_disable(sdma->clk);

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
}

static int __init sdma_get_firmware(struct sdma_engine *sdma,
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1207 1208 1209 1210 1211

	return ret;
}

static int __init sdma_init(struct sdma_engine *sdma)
1212 1213 1214 1215
{
	int i, ret;
	dma_addr_t ccb_phys;

1216 1217
	switch (sdma->devtype) {
	case IMX31_SDMA:
1218 1219
		sdma->num_events = 32;
		break;
1220
	case IMX35_SDMA:
1221 1222 1223
		sdma->num_events = 48;
		break;
	default:
1224 1225
		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
			sdma->devtype);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		return -ENODEV;
	}

	clk_enable(sdma->clk);

	/* Be sure SDMA has not started yet */
	__raw_writel(0, sdma->regs + SDMA_H_C0PTR);

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
	for (i = 0; i < sdma->num_events; i++)
		__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
		__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
	__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
	__raw_writel(0, sdma->regs + SDMA_H_CONFIG);

	__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);

	/* Set bits of CONFIG register with given context switching mode */
	__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

	clk_disable(sdma->clk);

	return 0;

err_dma_alloc:
	clk_disable(sdma->clk);
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

static int __init sdma_probe(struct platform_device *pdev)
{
1294 1295 1296 1297
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	const char *fw_name;
1298 1299 1300 1301 1302 1303
	int ret;
	int irq;
	struct resource *iores;
	struct sdma_platform_data *pdata = pdev->dev.platform_data;
	int i;
	struct sdma_engine *sdma;
1304
	s32 *saddr_arr;
1305 1306 1307 1308 1309

	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
	if (!sdma)
		return -ENOMEM;

1310 1311
	mutex_init(&sdma->channel_0_lock);

1312 1313 1314 1315
	sdma->dev = &pdev->dev;

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1316
	if (!iores || irq < 0) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		ret = -EINVAL;
		goto err_irq;
	}

	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
		ret = -EBUSY;
		goto err_request_region;
	}

	sdma->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sdma->clk)) {
		ret = PTR_ERR(sdma->clk);
		goto err_clk;
	}

	sdma->regs = ioremap(iores->start, resource_size(iores));
	if (!sdma->regs) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
	if (ret)
		goto err_request_irq;

1342
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1343 1344
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
1345
		goto err_alloc;
1346
	}
1347

1348 1349 1350 1351 1352
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1353 1354
	if (of_id)
		pdev->id_entry = of_id->data;
1355
	sdma->devtype = pdev->id_entry->driver_data;
1356

1357 1358 1359
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
		sdmac->channel = i;

1371 1372 1373 1374 1375 1376 1377 1378
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1379 1380
	}

1381
	ret = sdma_init(sdma);
1382 1383 1384
	if (ret)
		goto err_init;

1385
	if (pdata && pdata->script_addrs)
1386 1387
		sdma_add_scripts(sdma, pdata->script_addrs);

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	if (pdata) {
		sdma_get_firmware(sdma, pdata->fw_name);
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
		if (ret) {
			dev_err(&pdev->dev, "failed to get firmware name\n");
			goto err_init;
		}

		ret = sdma_get_firmware(sdma, fw_name);
		if (ret) {
			dev_err(&pdev->dev, "failed to get firmware\n");
			goto err_init;
		}
	}
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
	sdma->dma_device.device_control = sdma_control;
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1419 1420
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1421 1422 1423 1424 1425 1426 1427

	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1428
	dev_info(sdma->dev, "initialized\n");
1429 1430 1431 1432 1433

	return 0;

err_init:
	kfree(sdma->script_addrs);
1434
err_alloc:
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	free_irq(irq, sdma);
err_request_irq:
	iounmap(sdma->regs);
err_ioremap:
	clk_put(sdma->clk);
err_clk:
	release_mem_region(iores->start, resource_size(iores));
err_request_region:
err_irq:
	kfree(sdma);
1445
	return ret;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static int __exit sdma_remove(struct platform_device *pdev)
{
	return -EBUSY;
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1456
		.of_match_table = sdma_dt_ids,
1457
	},
1458
	.id_table	= sdma_devtypes,
1459 1460 1461 1462 1463 1464 1465
	.remove		= __exit_p(sdma_remove),
};

static int __init sdma_module_init(void)
{
	return platform_driver_probe(&sdma_driver, sdma_probe);
}
1466
module_init(sdma_module_init);
1467 1468 1469 1470

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");