imx-sdma.c 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/module.h>
22
#include <linux/types.h>
23
#include <linux/bitops.h>
24 25 26
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
27
#include <linux/delay.h>
28 29 30 31 32 33 34 35 36
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
37 38
#include <linux/of.h>
#include <linux/of_device.h>
39
#include <linux/of_dma.h>
40 41

#include <asm/irq.h>
42 43
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
44

45 46
#include "dmaengine.h"

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
74 75
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
	u32 command :  8; /* command mostlky used for channel 0 */
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
239
 * @channel		the channel number, matches dmaengine chan_id + 1
240 241 242 243 244 245 246 247 248 249 250 251
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
 * @done		channel completion
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
252
	enum dma_transfer_direction		direction;
253 254 255 256 257 258 259 260 261 262 263 264
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
	struct completion		done;
	unsigned int			num_bd;
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
	unsigned long			flags;
	dma_addr_t			per_address;
265 266
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
267 268 269 270 271
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
272 273
	unsigned int			chn_count;
	unsigned int			chn_real_count;
274
	struct tasklet_struct		tasklet;
275 276
};

277
#define IMX_DMA_SG_LOOP		BIT(0)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

310 311 312 313 314
enum sdma_devtype {
	IMX31_SDMA,	/* runs on i.mx31 */
	IMX35_SDMA,	/* runs on i.mx35 and later */
};

315 316
struct sdma_engine {
	struct device			*dev;
317
	struct device_dma_parameters	dma_parms;
318 319 320
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
321
	enum sdma_devtype		devtype;
322 323 324 325
	unsigned int			num_events;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
326 327
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
328
	spinlock_t			channel_0_lock;
329 330 331
	struct sdma_script_start_addrs	*script_addrs;
};

332 333 334 335 336 337 338 339 340 341 342 343 344
static struct platform_device_id sdma_devtypes[] = {
	{
		.name = "imx31-sdma",
		.driver_data = IMX31_SDMA,
	}, {
		.name = "imx35-sdma",
		.driver_data = IMX35_SDMA,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

345 346 347 348 349 350 351
static const struct of_device_id sdma_dt_ids[] = {
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

352 353 354
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
355 356 357 358
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
359 360
	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
						      SDMA_CHNENBL0_IMX35);
361 362 363 364 365 366 367 368
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
369
	unsigned long evt, mcu, dsp;
370 371 372 373

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

374 375 376
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
377 378

	if (dsp_override)
379
		__clear_bit(channel, &dsp);
380
	else
381
		__set_bit(channel, &dsp);
382 383

	if (event_override)
384
		__clear_bit(channel, &evt);
385
	else
386
		__set_bit(channel, &evt);
387 388

	if (mcu_override)
389
		__clear_bit(channel, &mcu);
390
	else
391
		__set_bit(channel, &mcu);
392

393 394 395
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
396 397 398 399

	return 0;
}

400 401
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
402
	writel(BIT(channel), sdma->regs + SDMA_H_START);
403 404
}

405
/*
406
 * sdma_run_channel0 - run a channel and wait till it's done
407
 */
408
static int sdma_run_channel0(struct sdma_engine *sdma)
409 410
{
	int ret;
411
	unsigned long timeout = 500;
412

413
	sdma_enable_channel(sdma, 0);
414

415 416 417 418 419
	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
		if (timeout-- <= 0)
			break;
		udelay(1);
	}
420

421 422 423 424 425 426
	if (ret) {
		/* Clear the interrupt status */
		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
	} else {
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
	}
427 428 429 430 431 432 433 434 435 436 437

	return ret ? 0 : -ETIMEDOUT;
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
438
	unsigned long flags;
439

440 441 442
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
443
	if (!buf_virt) {
444
		return -ENOMEM;
445
	}
446

447 448
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

449 450 451 452 453 454 455 456
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

457
	ret = sdma_run_channel0(sdma);
458

459
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
460

461
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
462

463 464 465 466 467 468 469
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
470
	unsigned long val;
471 472
	u32 chnenbl = chnenbl_ofs(sdma, event);

473
	val = readl_relaxed(sdma->regs + chnenbl);
474
	__set_bit(channel, &val);
475
	writel_relaxed(val, sdma->regs + chnenbl);
476 477 478 479 480 481 482
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
483
	unsigned long val;
484

485
	val = readl_relaxed(sdma->regs + chnenbl);
486
	__clear_bit(channel, &val);
487
	writel_relaxed(val, sdma->regs + chnenbl);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

		if (bd->mode.status & BD_RROR)
			sdmac->status = DMA_ERROR;
		else
507
			sdmac->status = DMA_IN_PROGRESS;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

		bd->mode.status |= BD_DONE;
		sdmac->buf_tail++;
		sdmac->buf_tail %= sdmac->num_bd;

		if (sdmac->desc.callback)
			sdmac->desc.callback(sdmac->desc.callback_param);
	}
}

static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

523
	sdmac->chn_real_count = 0;
524 525 526 527 528 529 530 531 532
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
533
		 sdmac->chn_real_count += bd->mode.count;
534 535 536 537 538 539 540
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
		sdmac->status = DMA_SUCCESS;

541
	dma_cookie_complete(&sdmac->desc);
542 543 544 545
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

546
static void sdma_tasklet(unsigned long data)
547
{
548 549
	struct sdma_channel *sdmac = (struct sdma_channel *) data;

550 551 552 553 554 555 556 557 558 559 560
	complete(&sdmac->done);

	if (sdmac->flags & IMX_DMA_SG_LOOP)
		sdma_handle_channel_loop(sdmac);
	else
		mxc_sdma_handle_channel_normal(sdmac);
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
561
	unsigned long stat;
562

563
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
564 565
	/* not interested in channel 0 interrupts */
	stat &= ~1;
566
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
567 568 569 570 571

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

572
		tasklet_schedule(&sdmac->tasklet);
573

574
		__clear_bit(channel, &stat);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
	int per_2_per = 0, emi_2_emi = 0;

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
671
	unsigned long flags;
672

673
	if (sdmac->direction == DMA_DEV_TO_MEM) {
674 675 676 677 678 679 680 681 682
		load_address = sdmac->pc_from_device;
	} else {
		load_address = sdmac->pc_to_device;
	}

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
683
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
684 685
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
686 687
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
688

689
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
690

691 692 693 694 695 696
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
697 698
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
699 700 701 702 703 704 705 706 707
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
708
	ret = sdma_run_channel0(sdma);
709

710
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
711

712 713 714 715 716 717 718 719
	return ret;
}

static void sdma_disable_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

720
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
721 722 723 724 725 726 727 728 729
	sdmac->status = DMA_ERROR;
}

static int sdma_config_channel(struct sdma_channel *sdmac)
{
	int ret;

	sdma_disable_channel(sdmac);

730 731
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
732 733 734 735
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
736
		if (sdmac->event_id0 >= sdmac->sdma->num_events)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
759
			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
760
			if (sdmac->event_id1 > 31)
761 762
				__set_bit(31, &sdmac->watermark_level);
			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
763
			if (sdmac->event_id0 > 31)
764
				__set_bit(30, &sdmac->watermark_level);
765
		} else {
766
			__set_bit(sdmac->event_id0, sdmac->event_mask);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		}
		/* Watermark Level */
		sdmac->watermark_level |= sdmac->watermark_level;
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

792
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	memset(sdmac->bd, 0, PAGE_SIZE);

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);

	init_completion(&sdmac->done);

	return 0;
out:

	return ret;
}

static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
831
	unsigned long flags;
832 833 834
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

835
	spin_lock_irqsave(&sdmac->lock, flags);
836

837
	cookie = dma_cookie_assign(tx);
838

839
	spin_unlock_irqrestore(&sdmac->lock, flags);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
868

869 870
	clk_enable(sdmac->sdma->clk_ipg);
	clk_enable(sdmac->sdma->clk_ahb);
871

872
	ret = sdma_request_channel(sdmac);
873 874 875
	if (ret)
		return ret;

876
	ret = sdma_set_channel_priority(sdmac, prio);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	if (ret)
		return ret;

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	sdma_disable_channel(sdmac);

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

907 908
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
909 910 911 912
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
913
		unsigned int sg_len, enum dma_transfer_direction direction,
914
		unsigned long flags, void *context)
915 916 917 918
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
919
	int channel = sdmac->channel;
920 921 922 923 924 925 926 927
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

928 929
	sdmac->buf_tail = 0;

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

945
	sdmac->chn_count = 0;
946 947 948 949
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

950
		bd->buffer_addr = sg->dma_address;
951

952
		count = sg_dma_len(sg);
953 954 955 956 957 958 959 960 961

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
962
		sdmac->chn_count += count;
963 964 965 966 967

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
968 969 970

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
971
			bd->mode.command = 0;
972 973 974 975 976 977 978 979 980 981 982 983 984 985
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
986 987 988

		param = BD_DONE | BD_EXTD | BD_CONT;

989
		if (i + 1 == sg_len) {
990
			param |= BD_INTR;
991 992
			param |= BD_LAST;
			param &= ~BD_CONT;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		}

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, count, sg->dma_address,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1008
	sdmac->status = DMA_ERROR;
1009 1010 1011 1012 1013
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1014
		size_t period_len, enum dma_transfer_direction direction,
1015
		unsigned long flags, void *context)
1016 1017 1018 1019
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1020
	int channel = sdmac->channel;
1021 1022 1023 1024 1025 1026 1027 1028 1029
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1030 1031
	sdmac->buf_tail = 0;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, period_len, dma_addr,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		unsigned long arg)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct dma_slave_config *dmaengine_cfg = (void *)arg;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		sdma_disable_channel(sdmac);
		return 0;
	case DMA_SLAVE_CONFIG:
1102
		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1103
			sdmac->per_address = dmaengine_cfg->src_addr;
1104 1105
			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
						dmaengine_cfg->src_addr_width;
1106 1107 1108
			sdmac->word_size = dmaengine_cfg->src_addr_width;
		} else {
			sdmac->per_address = dmaengine_cfg->dst_addr;
1109 1110
			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
						dmaengine_cfg->dst_addr_width;
1111 1112
			sdmac->word_size = dmaengine_cfg->dst_addr_width;
		}
1113
		sdmac->direction = dmaengine_cfg->direction;
1114 1115 1116 1117 1118 1119 1120 1121 1122
		return sdma_config_channel(sdmac);
	default:
		return -ENOSYS;
	}

	return -EINVAL;
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1123 1124
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1125 1126 1127
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1128
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1129
			sdmac->chn_count - sdmac->chn_real_count);
1130

1131
	return sdmac->status;
1132 1133 1134 1135
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1136 1137 1138 1139 1140
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1157
static void sdma_load_firmware(const struct firmware *fw, void *context)
1158
{
1159
	struct sdma_engine *sdma = context;
1160 1161 1162 1163
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1164 1165 1166 1167
	if (!fw) {
		dev_err(sdma->dev, "firmware not found\n");
		return;
	}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1182 1183
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1184 1185 1186
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1187
			addr->ram_code_start_addr);
1188 1189
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1190 1191 1192 1193 1194 1195 1196 1197 1198

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
}

static int __init sdma_get_firmware(struct sdma_engine *sdma,
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1209 1210 1211 1212 1213

	return ret;
}

static int __init sdma_init(struct sdma_engine *sdma)
1214 1215 1216 1217
{
	int i, ret;
	dma_addr_t ccb_phys;

1218 1219
	switch (sdma->devtype) {
	case IMX31_SDMA:
1220 1221
		sdma->num_events = 32;
		break;
1222
	case IMX35_SDMA:
1223 1224 1225
		sdma->num_events = 48;
		break;
	default:
1226 1227
		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
			sdma->devtype);
1228 1229 1230
		return -ENODEV;
	}

1231 1232
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1233 1234

	/* Be sure SDMA has not started yet */
1235
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
	for (i = 0; i < sdma->num_events; i++)
1258
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1259 1260 1261

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1262
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1263 1264 1265 1266 1267 1268 1269 1270

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1271
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1272 1273 1274

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1275
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1276

1277
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1278 1279

	/* Set bits of CONFIG register with given context switching mode */
1280
	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1281 1282 1283 1284

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1285 1286
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1287 1288 1289 1290

	return 0;

err_dma_alloc:
1291 1292
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1293 1294 1295 1296
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

	chan->private = data;

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1326 1327
static int __init sdma_probe(struct platform_device *pdev)
{
1328 1329 1330 1331
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	const char *fw_name;
1332 1333 1334 1335 1336 1337
	int ret;
	int irq;
	struct resource *iores;
	struct sdma_platform_data *pdata = pdev->dev.platform_data;
	int i;
	struct sdma_engine *sdma;
1338
	s32 *saddr_arr;
1339 1340 1341 1342 1343

	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
	if (!sdma)
		return -ENOMEM;

1344
	spin_lock_init(&sdma->channel_0_lock);
1345

1346 1347 1348 1349
	sdma->dev = &pdev->dev;

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1350
	if (!iores || irq < 0) {
1351 1352 1353 1354 1355 1356 1357 1358 1359
		ret = -EINVAL;
		goto err_irq;
	}

	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
		ret = -EBUSY;
		goto err_request_region;
	}

1360 1361 1362
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
	if (IS_ERR(sdma->clk_ipg)) {
		ret = PTR_ERR(sdma->clk_ipg);
1363 1364 1365
		goto err_clk;
	}

1366 1367 1368 1369 1370 1371 1372 1373 1374
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
	if (IS_ERR(sdma->clk_ahb)) {
		ret = PTR_ERR(sdma->clk_ahb);
		goto err_clk;
	}

	clk_prepare(sdma->clk_ipg);
	clk_prepare(sdma->clk_ahb);

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	sdma->regs = ioremap(iores->start, resource_size(iores));
	if (!sdma->regs) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
	if (ret)
		goto err_request_irq;

1385
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1386 1387
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
1388
		goto err_alloc;
1389
	}
1390

1391 1392 1393 1394 1395
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1396 1397
	if (of_id)
		pdev->id_entry = of_id->data;
1398
	sdma->devtype = pdev->id_entry->driver_data;
1399

1400 1401 1402
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1403 1404 1405 1406 1407 1408 1409 1410 1411
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1412
		dma_cookie_init(&sdmac->chan);
1413 1414
		sdmac->channel = i;

1415 1416
		tasklet_init(&sdmac->tasklet, sdma_tasklet,
			     (unsigned long) sdmac);
1417 1418 1419 1420 1421 1422 1423 1424
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1425 1426
	}

1427
	ret = sdma_init(sdma);
1428 1429 1430
	if (ret)
		goto err_init;

1431
	if (pdata && pdata->script_addrs)
1432 1433
		sdma_add_scripts(sdma, pdata->script_addrs);

1434
	if (pdata) {
1435 1436
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1437
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1438 1439 1440 1441 1442 1443 1444 1445
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1446
		if (ret)
1447
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1448 1449 1450
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1451
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1452 1453
		}
	}
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
	sdma->dma_device.device_control = sdma_control;
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1464 1465
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1466 1467 1468 1469 1470 1471 1472

	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1473 1474 1475 1476 1477 1478 1479 1480
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
	}

1481
	dev_info(sdma->dev, "initialized\n");
1482 1483 1484

	return 0;

1485 1486
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1487 1488
err_init:
	kfree(sdma->script_addrs);
1489
err_alloc:
1490 1491 1492 1493 1494 1495 1496 1497 1498
	free_irq(irq, sdma);
err_request_irq:
	iounmap(sdma->regs);
err_ioremap:
err_clk:
	release_mem_region(iores->start, resource_size(iores));
err_request_region:
err_irq:
	kfree(sdma);
1499
	return ret;
1500 1501
}

1502
static int sdma_remove(struct platform_device *pdev)
1503 1504 1505 1506 1507 1508 1509
{
	return -EBUSY;
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1510
		.of_match_table = sdma_dt_ids,
1511
	},
1512
	.id_table	= sdma_devtypes,
1513
	.remove		= sdma_remove,
1514 1515 1516 1517 1518 1519
};

static int __init sdma_module_init(void)
{
	return platform_driver_probe(&sdma_driver, sdma_probe);
}
1520
module_init(sdma_module_init);
1521 1522 1523 1524

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");