imx-sdma.c 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/module.h>
22
#include <linux/types.h>
23
#include <linux/bitops.h>
24 25 26
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
27
#include <linux/delay.h>
28 29 30 31 32 33 34 35 36
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
37 38
#include <linux/of.h>
#include <linux/of_device.h>
39 40

#include <asm/irq.h>
41 42
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
43

44 45
#include "dmaengine.h"

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
73 74
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
	u32 command :  8; /* command mostlky used for channel 0 */
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
238
 * @channel		the channel number, matches dmaengine chan_id + 1
239 240 241 242 243 244 245 246 247 248 249 250
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
 * @done		channel completion
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
251
	enum dma_transfer_direction		direction;
252 253 254 255 256 257 258 259 260 261 262 263
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
	struct completion		done;
	unsigned int			num_bd;
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
	unsigned long			flags;
	dma_addr_t			per_address;
264 265
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
266 267 268 269 270
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
271 272
	unsigned int			chn_count;
	unsigned int			chn_real_count;
273
	struct tasklet_struct		tasklet;
274 275
};

276
#define IMX_DMA_SG_LOOP		BIT(0)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

309 310 311 312 313
enum sdma_devtype {
	IMX31_SDMA,	/* runs on i.mx31 */
	IMX35_SDMA,	/* runs on i.mx35 and later */
};

314 315
struct sdma_engine {
	struct device			*dev;
316
	struct device_dma_parameters	dma_parms;
317 318 319
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
320
	enum sdma_devtype		devtype;
321 322 323 324
	unsigned int			num_events;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
325 326
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
327
	spinlock_t			channel_0_lock;
328 329 330
	struct sdma_script_start_addrs	*script_addrs;
};

331 332 333 334 335 336 337 338 339 340 341 342 343
static struct platform_device_id sdma_devtypes[] = {
	{
		.name = "imx31-sdma",
		.driver_data = IMX31_SDMA,
	}, {
		.name = "imx35-sdma",
		.driver_data = IMX35_SDMA,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

344 345 346 347 348 349 350
static const struct of_device_id sdma_dt_ids[] = {
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

351 352 353
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
354 355 356 357
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
358 359
	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
						      SDMA_CHNENBL0_IMX35);
360 361 362 363 364 365 366 367
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
368
	unsigned long evt, mcu, dsp;
369 370 371 372

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

373 374 375
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376 377

	if (dsp_override)
378
		__clear_bit(channel, &dsp);
379
	else
380
		__set_bit(channel, &dsp);
381 382

	if (event_override)
383
		__clear_bit(channel, &evt);
384
	else
385
		__set_bit(channel, &evt);
386 387

	if (mcu_override)
388
		__clear_bit(channel, &mcu);
389
	else
390
		__set_bit(channel, &mcu);
391

392 393 394
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395 396 397 398

	return 0;
}

399 400
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
401
	writel(BIT(channel), sdma->regs + SDMA_H_START);
402 403
}

404
/*
405
 * sdma_run_channel0 - run a channel and wait till it's done
406
 */
407
static int sdma_run_channel0(struct sdma_engine *sdma)
408 409
{
	int ret;
410
	unsigned long timeout = 500;
411

412
	sdma_enable_channel(sdma, 0);
413

414 415 416 417 418
	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
		if (timeout-- <= 0)
			break;
		udelay(1);
	}
419

420 421 422 423 424 425
	if (ret) {
		/* Clear the interrupt status */
		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
	} else {
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
	}
426 427 428 429 430 431 432 433 434 435 436

	return ret ? 0 : -ETIMEDOUT;
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
437
	unsigned long flags;
438

439 440 441
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
442
	if (!buf_virt) {
443
		return -ENOMEM;
444
	}
445

446 447
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

448 449 450 451 452 453 454 455
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

456
	ret = sdma_run_channel0(sdma);
457

458
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
459

460
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
461

462 463 464 465 466 467 468
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
469
	unsigned long val;
470 471
	u32 chnenbl = chnenbl_ofs(sdma, event);

472
	val = readl_relaxed(sdma->regs + chnenbl);
473
	__set_bit(channel, &val);
474
	writel_relaxed(val, sdma->regs + chnenbl);
475 476 477 478 479 480 481
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
482
	unsigned long val;
483

484
	val = readl_relaxed(sdma->regs + chnenbl);
485
	__clear_bit(channel, &val);
486
	writel_relaxed(val, sdma->regs + chnenbl);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

		if (bd->mode.status & BD_RROR)
			sdmac->status = DMA_ERROR;
		else
506
			sdmac->status = DMA_IN_PROGRESS;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

		bd->mode.status |= BD_DONE;
		sdmac->buf_tail++;
		sdmac->buf_tail %= sdmac->num_bd;

		if (sdmac->desc.callback)
			sdmac->desc.callback(sdmac->desc.callback_param);
	}
}

static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

522
	sdmac->chn_real_count = 0;
523 524 525 526 527 528 529 530 531
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
532
		 sdmac->chn_real_count += bd->mode.count;
533 534 535 536 537 538 539
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
		sdmac->status = DMA_SUCCESS;

540
	dma_cookie_complete(&sdmac->desc);
541 542 543 544
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

545
static void sdma_tasklet(unsigned long data)
546
{
547 548
	struct sdma_channel *sdmac = (struct sdma_channel *) data;

549 550 551 552 553 554 555 556 557 558 559
	complete(&sdmac->done);

	if (sdmac->flags & IMX_DMA_SG_LOOP)
		sdma_handle_channel_loop(sdmac);
	else
		mxc_sdma_handle_channel_normal(sdmac);
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
560
	unsigned long stat;
561

562
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
563 564
	/* not interested in channel 0 interrupts */
	stat &= ~1;
565
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
566 567 568 569 570

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

571
		tasklet_schedule(&sdmac->tasklet);
572

573
		__clear_bit(channel, &stat);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
	int per_2_per = 0, emi_2_emi = 0;

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
670
	unsigned long flags;
671

672
	if (sdmac->direction == DMA_DEV_TO_MEM) {
673 674 675 676 677 678 679 680 681
		load_address = sdmac->pc_from_device;
	} else {
		load_address = sdmac->pc_to_device;
	}

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
682
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
683 684
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
685 686
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
687

688
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
689

690 691 692 693 694 695
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
696 697
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
698 699 700 701 702 703 704 705 706
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
707
	ret = sdma_run_channel0(sdma);
708

709
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
710

711 712 713 714 715 716 717 718
	return ret;
}

static void sdma_disable_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

719
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
720 721 722 723 724 725 726 727 728
	sdmac->status = DMA_ERROR;
}

static int sdma_config_channel(struct sdma_channel *sdmac)
{
	int ret;

	sdma_disable_channel(sdmac);

729 730
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
731 732 733 734
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
735
		if (sdmac->event_id0 >= sdmac->sdma->num_events)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
758
			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
759
			if (sdmac->event_id1 > 31)
760 761
				__set_bit(31, &sdmac->watermark_level);
			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
762
			if (sdmac->event_id0 > 31)
763
				__set_bit(30, &sdmac->watermark_level);
764
		} else {
765
			__set_bit(sdmac->event_id0, sdmac->event_mask);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		}
		/* Watermark Level */
		sdmac->watermark_level |= sdmac->watermark_level;
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

791
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	memset(sdmac->bd, 0, PAGE_SIZE);

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);

	init_completion(&sdmac->done);

	return 0;
out:

	return ret;
}

static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
830
	unsigned long flags;
831 832 833
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

834
	spin_lock_irqsave(&sdmac->lock, flags);
835

836
	cookie = dma_cookie_assign(tx);
837

838
	spin_unlock_irqrestore(&sdmac->lock, flags);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
867

868 869
	clk_enable(sdmac->sdma->clk_ipg);
	clk_enable(sdmac->sdma->clk_ahb);
870

871
	ret = sdma_request_channel(sdmac);
872 873 874
	if (ret)
		return ret;

875
	ret = sdma_set_channel_priority(sdmac, prio);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	if (ret)
		return ret;

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	sdma_disable_channel(sdmac);

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

906 907
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
908 909 910 911
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
912
		unsigned int sg_len, enum dma_transfer_direction direction,
913
		unsigned long flags, void *context)
914 915 916 917
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
918
	int channel = sdmac->channel;
919 920 921 922 923 924 925 926
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

927 928
	sdmac->buf_tail = 0;

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

944
	sdmac->chn_count = 0;
945 946 947 948
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

949
		bd->buffer_addr = sg->dma_address;
950

951
		count = sg_dma_len(sg);
952 953 954 955 956 957 958 959 960

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
961
		sdmac->chn_count += count;
962 963 964 965 966

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
967 968 969

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
970
			bd->mode.command = 0;
971 972 973 974 975 976 977 978 979 980 981 982 983 984
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
985 986 987

		param = BD_DONE | BD_EXTD | BD_CONT;

988
		if (i + 1 == sg_len) {
989
			param |= BD_INTR;
990 991
			param |= BD_LAST;
			param &= ~BD_CONT;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		}

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, count, sg->dma_address,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1007
	sdmac->status = DMA_ERROR;
1008 1009 1010 1011 1012
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1013
		size_t period_len, enum dma_transfer_direction direction,
1014
		unsigned long flags, void *context)
1015 1016 1017 1018
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1019
	int channel = sdmac->channel;
1020 1021 1022 1023 1024 1025 1026 1027 1028
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1029 1030
	sdmac->buf_tail = 0;

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
				i, period_len, dma_addr,
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		unsigned long arg)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct dma_slave_config *dmaengine_cfg = (void *)arg;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		sdma_disable_channel(sdmac);
		return 0;
	case DMA_SLAVE_CONFIG:
1101
		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1102
			sdmac->per_address = dmaengine_cfg->src_addr;
1103 1104
			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
						dmaengine_cfg->src_addr_width;
1105 1106 1107
			sdmac->word_size = dmaengine_cfg->src_addr_width;
		} else {
			sdmac->per_address = dmaengine_cfg->dst_addr;
1108 1109
			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
						dmaengine_cfg->dst_addr_width;
1110 1111
			sdmac->word_size = dmaengine_cfg->dst_addr_width;
		}
1112
		sdmac->direction = dmaengine_cfg->direction;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		return sdma_config_channel(sdmac);
	default:
		return -ENOSYS;
	}

	return -EINVAL;
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
					    dma_cookie_t cookie,
					    struct dma_tx_state *txstate)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	dma_cookie_t last_used;

	last_used = chan->cookie;

1130
	dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1131
			sdmac->chn_count - sdmac->chn_real_count);
1132

1133
	return sdmac->status;
1134 1135 1136 1137
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1138 1139 1140 1141 1142
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1143 1144
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1159
static void sdma_load_firmware(const struct firmware *fw, void *context)
1160
{
1161
	struct sdma_engine *sdma = context;
1162 1163 1164 1165
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1166 1167 1168 1169
	if (!fw) {
		dev_err(sdma->dev, "firmware not found\n");
		return;
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1184 1185
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1186 1187 1188
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1189
			addr->ram_code_start_addr);
1190 1191
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1192 1193 1194 1195 1196 1197 1198 1199 1200

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
}

static int __init sdma_get_firmware(struct sdma_engine *sdma,
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1211 1212 1213 1214 1215

	return ret;
}

static int __init sdma_init(struct sdma_engine *sdma)
1216 1217 1218 1219
{
	int i, ret;
	dma_addr_t ccb_phys;

1220 1221
	switch (sdma->devtype) {
	case IMX31_SDMA:
1222 1223
		sdma->num_events = 32;
		break;
1224
	case IMX35_SDMA:
1225 1226 1227
		sdma->num_events = 48;
		break;
	default:
1228 1229
		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
			sdma->devtype);
1230 1231 1232
		return -ENODEV;
	}

1233 1234
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1235 1236

	/* Be sure SDMA has not started yet */
1237
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
	for (i = 0; i < sdma->num_events; i++)
1260
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1261 1262 1263

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1264
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1265 1266 1267 1268 1269 1270 1271 1272

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1273
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1274 1275 1276

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1277
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1278

1279
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1280 1281

	/* Set bits of CONFIG register with given context switching mode */
1282
	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1283 1284 1285 1286

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1287 1288
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1289 1290 1291 1292

	return 0;

err_dma_alloc:
1293 1294
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1295 1296 1297 1298 1299 1300
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

static int __init sdma_probe(struct platform_device *pdev)
{
1301 1302 1303 1304
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	const char *fw_name;
1305 1306 1307 1308 1309 1310
	int ret;
	int irq;
	struct resource *iores;
	struct sdma_platform_data *pdata = pdev->dev.platform_data;
	int i;
	struct sdma_engine *sdma;
1311
	s32 *saddr_arr;
1312 1313 1314 1315 1316

	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
	if (!sdma)
		return -ENOMEM;

1317
	spin_lock_init(&sdma->channel_0_lock);
1318

1319 1320 1321 1322
	sdma->dev = &pdev->dev;

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1323
	if (!iores || irq < 0) {
1324 1325 1326 1327 1328 1329 1330 1331 1332
		ret = -EINVAL;
		goto err_irq;
	}

	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
		ret = -EBUSY;
		goto err_request_region;
	}

1333 1334 1335
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
	if (IS_ERR(sdma->clk_ipg)) {
		ret = PTR_ERR(sdma->clk_ipg);
1336 1337 1338
		goto err_clk;
	}

1339 1340 1341 1342 1343 1344 1345 1346 1347
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
	if (IS_ERR(sdma->clk_ahb)) {
		ret = PTR_ERR(sdma->clk_ahb);
		goto err_clk;
	}

	clk_prepare(sdma->clk_ipg);
	clk_prepare(sdma->clk_ahb);

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	sdma->regs = ioremap(iores->start, resource_size(iores));
	if (!sdma->regs) {
		ret = -ENOMEM;
		goto err_ioremap;
	}

	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
	if (ret)
		goto err_request_irq;

1358
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1359 1360
	if (!sdma->script_addrs) {
		ret = -ENOMEM;
1361
		goto err_alloc;
1362
	}
1363

1364 1365 1366 1367 1368
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1369 1370
	if (of_id)
		pdev->id_entry = of_id->data;
1371
	sdma->devtype = pdev->id_entry->driver_data;
1372

1373 1374 1375
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1376 1377 1378 1379 1380 1381 1382 1383 1384
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1385
		dma_cookie_init(&sdmac->chan);
1386 1387
		sdmac->channel = i;

1388 1389
		tasklet_init(&sdmac->tasklet, sdma_tasklet,
			     (unsigned long) sdmac);
1390 1391 1392 1393 1394 1395 1396 1397
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1398 1399
	}

1400
	ret = sdma_init(sdma);
1401 1402 1403
	if (ret)
		goto err_init;

1404
	if (pdata && pdata->script_addrs)
1405 1406
		sdma_add_scripts(sdma, pdata->script_addrs);

1407
	if (pdata) {
1408 1409
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1410
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1411 1412 1413 1414 1415 1416 1417 1418
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1419
		if (ret)
1420
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1421 1422 1423
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1424
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1425 1426
		}
	}
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
	sdma->dma_device.device_control = sdma_control;
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1437 1438
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1439 1440 1441 1442 1443 1444 1445

	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1446
	dev_info(sdma->dev, "initialized\n");
1447 1448 1449 1450 1451

	return 0;

err_init:
	kfree(sdma->script_addrs);
1452
err_alloc:
1453 1454 1455 1456 1457 1458 1459 1460 1461
	free_irq(irq, sdma);
err_request_irq:
	iounmap(sdma->regs);
err_ioremap:
err_clk:
	release_mem_region(iores->start, resource_size(iores));
err_request_region:
err_irq:
	kfree(sdma);
1462
	return ret;
1463 1464
}

1465
static int sdma_remove(struct platform_device *pdev)
1466 1467 1468 1469 1470 1471 1472
{
	return -EBUSY;
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1473
		.of_match_table = sdma_dt_ids,
1474
	},
1475
	.id_table	= sdma_devtypes,
1476
	.remove		= sdma_remove,
1477 1478 1479 1480 1481 1482
};

static int __init sdma_module_init(void)
{
	return platform_driver_probe(&sdma_driver, sdma_probe);
}
1483
module_init(sdma_module_init);
1484 1485 1486 1487

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");