imx-sdma.c 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * drivers/dma/imx-sdma.c
 *
 * This file contains a driver for the Freescale Smart DMA engine
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
 *
 * Based on code from Freescale:
 *
 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/init.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/types.h>
24
#include <linux/bitops.h>
25 26 27
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
28
#include <linux/delay.h>
29 30 31 32 33 34 35 36 37
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
38
#include <linux/of.h>
39
#include <linux/of_address.h>
40
#include <linux/of_device.h>
41
#include <linux/of_dma.h>
42 43

#include <asm/irq.h>
44 45
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
46 47 48
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49

50 51
#include "dmaengine.h"

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* SDMA registers */
#define SDMA_H_C0PTR		0x000
#define SDMA_H_INTR		0x004
#define SDMA_H_STATSTOP		0x008
#define SDMA_H_START		0x00c
#define SDMA_H_EVTOVR		0x010
#define SDMA_H_DSPOVR		0x014
#define SDMA_H_HOSTOVR		0x018
#define SDMA_H_EVTPEND		0x01c
#define SDMA_H_DSPENBL		0x020
#define SDMA_H_RESET		0x024
#define SDMA_H_EVTERR		0x028
#define SDMA_H_INTRMSK		0x02c
#define SDMA_H_PSW		0x030
#define SDMA_H_EVTERRDBG	0x034
#define SDMA_H_CONFIG		0x038
#define SDMA_ONCE_ENB		0x040
#define SDMA_ONCE_DATA		0x044
#define SDMA_ONCE_INSTR		0x048
#define SDMA_ONCE_STAT		0x04c
#define SDMA_ONCE_CMD		0x050
#define SDMA_EVT_MIRROR		0x054
#define SDMA_ILLINSTADDR	0x058
#define SDMA_CHN0ADDR		0x05c
#define SDMA_ONCE_RTB		0x060
#define SDMA_XTRIG_CONF1	0x070
#define SDMA_XTRIG_CONF2	0x074
79 80
#define SDMA_CHNENBL0_IMX35	0x200
#define SDMA_CHNENBL0_IMX31	0x080
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#define SDMA_CHNPRI_0		0x100

/*
 * Buffer descriptor status values.
 */
#define BD_DONE  0x01
#define BD_WRAP  0x02
#define BD_CONT  0x04
#define BD_INTR  0x08
#define BD_RROR  0x10
#define BD_LAST  0x20
#define BD_EXTD  0x80

/*
 * Data Node descriptor status values.
 */
#define DND_END_OF_FRAME  0x80
#define DND_END_OF_XFER   0x40
#define DND_DONE          0x20
#define DND_UNUSED        0x01

/*
 * IPCV2 descriptor status values.
 */
#define BD_IPCV2_END_OF_FRAME  0x40

#define IPCV2_MAX_NODES        50
/*
 * Error bit set in the CCB status field by the SDMA,
 * in setbd routine, in case of a transfer error
 */
#define DATA_ERROR  0x10000000

/*
 * Buffer descriptor commands.
 */
#define C0_ADDR             0x01
#define C0_LOAD             0x02
#define C0_DUMP             0x03
#define C0_SETCTX           0x07
#define C0_GETCTX           0x03
#define C0_SETDM            0x01
#define C0_SETPM            0x04
#define C0_GETDM            0x02
#define C0_GETPM            0x08
/*
 * Change endianness indicator in the BD command field
 */
#define CHANGE_ENDIANNESS   0x80

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 *  p_2_p watermark_level description
 *	Bits		Name			Description
 *	0-7		Lower WML		Lower watermark level
 *	8		PS			1: Pad Swallowing
 *						0: No Pad Swallowing
 *	9		PA			1: Pad Adding
 *						0: No Pad Adding
 *	10		SPDIF			If this bit is set both source
 *						and destination are on SPBA
 *	11		Source Bit(SP)		1: Source on SPBA
 *						0: Source on AIPS
 *	12		Destination Bit(DP)	1: Destination on SPBA
 *						0: Destination on AIPS
 *	13-15		---------		MUST BE 0
 *	16-23		Higher WML		HWML
 *	24-27		N			Total number of samples after
 *						which Pad adding/Swallowing
 *						must be done. It must be odd.
 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 *						LWML event mask
 *						0: LWE in EVENTS register
 *						1: LWE in EVENTS2 register
 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 *						HWML event mask
 *						0: HWE in EVENTS register
 *						1: HWE in EVENTS2 register
 *	30		---------		MUST BE 0
 *	31		CONT			1: Amount of samples to be
 *						transferred is unknown and
 *						script will keep on
 *						transferring samples as long as
 *						both events are detected and
 *						script must be manually stopped
 *						by the application
 *						0: The amount of samples to be
 *						transferred is equal to the
 *						count field of mode word
 */
#define SDMA_WATERMARK_LEVEL_LWML	0xFF
#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/*
 * Mode/Count of data node descriptors - IPCv2
 */
struct sdma_mode_count {
	u32 count   : 16; /* size of the buffer pointed by this BD */
	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
	u32 command :  8; /* command mostlky used for channel 0 */
};

/*
 * Buffer descriptor
 */
struct sdma_buffer_descriptor {
	struct sdma_mode_count  mode;
	u32 buffer_addr;	/* address of the buffer described */
	u32 ext_buffer_addr;	/* extended buffer address */
} __attribute__ ((packed));

/**
 * struct sdma_channel_control - Channel control Block
 *
 * @current_bd_ptr	current buffer descriptor processed
 * @base_bd_ptr		first element of buffer descriptor array
 * @unused		padding. The SDMA engine expects an array of 128 byte
 *			control blocks
 */
struct sdma_channel_control {
	u32 current_bd_ptr;
	u32 base_bd_ptr;
	u32 unused[2];
} __attribute__ ((packed));

/**
 * struct sdma_state_registers - SDMA context for a channel
 *
 * @pc:		program counter
 * @t:		test bit: status of arithmetic & test instruction
 * @rpc:	return program counter
 * @sf:		source fault while loading data
 * @spc:	loop start program counter
 * @df:		destination fault while storing data
 * @epc:	loop end program counter
 * @lm:		loop mode
 */
struct sdma_state_registers {
	u32 pc     :14;
	u32 unused1: 1;
	u32 t      : 1;
	u32 rpc    :14;
	u32 unused0: 1;
	u32 sf     : 1;
	u32 spc    :14;
	u32 unused2: 1;
	u32 df     : 1;
	u32 epc    :14;
	u32 lm     : 2;
} __attribute__ ((packed));

/**
 * struct sdma_context_data - sdma context specific to a channel
 *
 * @channel_state:	channel state bits
 * @gReg:		general registers
 * @mda:		burst dma destination address register
 * @msa:		burst dma source address register
 * @ms:			burst dma status register
 * @md:			burst dma data register
 * @pda:		peripheral dma destination address register
 * @psa:		peripheral dma source address register
 * @ps:			peripheral dma status register
 * @pd:			peripheral dma data register
 * @ca:			CRC polynomial register
 * @cs:			CRC accumulator register
 * @dda:		dedicated core destination address register
 * @dsa:		dedicated core source address register
 * @ds:			dedicated core status register
 * @dd:			dedicated core data register
 */
struct sdma_context_data {
	struct sdma_state_registers  channel_state;
	u32  gReg[8];
	u32  mda;
	u32  msa;
	u32  ms;
	u32  md;
	u32  pda;
	u32  psa;
	u32  ps;
	u32  pd;
	u32  ca;
	u32  cs;
	u32  dda;
	u32  dsa;
	u32  ds;
	u32  dd;
	u32  scratch0;
	u32  scratch1;
	u32  scratch2;
	u32  scratch3;
	u32  scratch4;
	u32  scratch5;
	u32  scratch6;
	u32  scratch7;
} __attribute__ ((packed));

#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))

struct sdma_engine;

/**
 * struct sdma_channel - housekeeping for a SDMA channel
 *
 * @sdma		pointer to the SDMA engine for this channel
294
 * @channel		the channel number, matches dmaengine chan_id + 1
295 296 297 298 299 300 301 302 303 304 305
 * @direction		transfer type. Needed for setting SDMA script
 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 * @event_id0		aka dma request line
 * @event_id1		for channels that use 2 events
 * @word_size		peripheral access size
 * @buf_tail		ID of the buffer that was processed
 * @num_bd		max NUM_BD. number of descriptors currently handling
 */
struct sdma_channel {
	struct sdma_engine		*sdma;
	unsigned int			channel;
306
	enum dma_transfer_direction		direction;
307 308 309 310 311 312
	enum sdma_peripheral_type	peripheral_type;
	unsigned int			event_id0;
	unsigned int			event_id1;
	enum dma_slave_buswidth		word_size;
	unsigned int			buf_tail;
	unsigned int			num_bd;
313
	unsigned int			period_len;
314 315 316
	struct sdma_buffer_descriptor	*bd;
	dma_addr_t			bd_phys;
	unsigned int			pc_from_device, pc_to_device;
317
	unsigned int			device_to_device;
318
	unsigned long			flags;
319
	dma_addr_t			per_address, per_address2;
320 321
	unsigned long			event_mask[2];
	unsigned long			watermark_level;
322 323 324 325 326
	u32				shp_addr, per_addr;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
327 328
	unsigned int			chn_count;
	unsigned int			chn_real_count;
329
	struct tasklet_struct		tasklet;
330
	struct imx_dma_data		data;
331 332
};

333
#define IMX_DMA_SG_LOOP		BIT(0)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7

#define SDMA_FIRMWARE_MAGIC 0x414d4453

/**
 * struct sdma_firmware_header - Layout of the firmware image
 *
 * @magic		"SDMA"
 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 *			changes.
 * @version_minor	firmware minor version (for binary compatible changes)
 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 * @num_script_addrs	Number of script addresses in this image
 * @ram_code_start	offset of SDMA ram image in this firmware image
 * @ram_code_size	size of SDMA ram image
 * @script_addrs	Stores the start address of the SDMA scripts
 *			(in SDMA memory space)
 */
struct sdma_firmware_header {
	u32	magic;
	u32	version_major;
	u32	version_minor;
	u32	script_addrs_start;
	u32	num_script_addrs;
	u32	ram_code_start;
	u32	ram_code_size;
};

366 367 368
struct sdma_driver_data {
	int chnenbl0;
	int num_events;
369
	struct sdma_script_start_addrs	*script_addrs;
370 371
};

372 373
struct sdma_engine {
	struct device			*dev;
374
	struct device_dma_parameters	dma_parms;
375 376 377 378 379 380
	struct sdma_channel		channel[MAX_DMA_CHANNELS];
	struct sdma_channel_control	*channel_control;
	void __iomem			*regs;
	struct sdma_context_data	*context;
	dma_addr_t			context_phys;
	struct dma_device		dma_device;
381 382
	struct clk			*clk_ipg;
	struct clk			*clk_ahb;
383
	spinlock_t			channel_0_lock;
384
	u32				script_number;
385
	struct sdma_script_start_addrs	*script_addrs;
386
	const struct sdma_driver_data	*drvdata;
387 388
	u32				spba_start_addr;
	u32				spba_end_addr;
389 390
};

391
static struct sdma_driver_data sdma_imx31 = {
392 393 394 395
	.chnenbl0 = SDMA_CHNENBL0_IMX31,
	.num_events = 32,
};

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static struct sdma_script_start_addrs sdma_script_imx25 = {
	.ap_2_ap_addr = 729,
	.uart_2_mcu_addr = 904,
	.per_2_app_addr = 1255,
	.mcu_2_app_addr = 834,
	.uartsh_2_mcu_addr = 1120,
	.per_2_shp_addr = 1329,
	.mcu_2_shp_addr = 1048,
	.ata_2_mcu_addr = 1560,
	.mcu_2_ata_addr = 1479,
	.app_2_per_addr = 1189,
	.app_2_mcu_addr = 770,
	.shp_2_per_addr = 1407,
	.shp_2_mcu_addr = 979,
};

412
static struct sdma_driver_data sdma_imx25 = {
413 414 415 416 417
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx25,
};

418
static struct sdma_driver_data sdma_imx35 = {
419 420
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
421 422
};

423 424 425 426 427 428 429 430 431 432 433 434 435
static struct sdma_script_start_addrs sdma_script_imx51 = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.mcu_2_shp_addr = 961,
	.ata_2_mcu_addr = 1473,
	.mcu_2_ata_addr = 1392,
	.app_2_per_addr = 1033,
	.app_2_mcu_addr = 683,
	.shp_2_per_addr = 1251,
	.shp_2_mcu_addr = 892,
};

436
static struct sdma_driver_data sdma_imx51 = {
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx51,
};

static struct sdma_script_start_addrs sdma_script_imx53 = {
	.ap_2_ap_addr = 642,
	.app_2_mcu_addr = 683,
	.mcu_2_app_addr = 747,
	.uart_2_mcu_addr = 817,
	.shp_2_mcu_addr = 891,
	.mcu_2_shp_addr = 960,
	.uartsh_2_mcu_addr = 1032,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
	.firi_2_mcu_addr = 1193,
	.mcu_2_firi_addr = 1290,
};

456
static struct sdma_driver_data sdma_imx53 = {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx53,
};

static struct sdma_script_start_addrs sdma_script_imx6q = {
	.ap_2_ap_addr = 642,
	.uart_2_mcu_addr = 817,
	.mcu_2_app_addr = 747,
	.per_2_per_addr = 6331,
	.uartsh_2_mcu_addr = 1032,
	.mcu_2_shp_addr = 960,
	.app_2_mcu_addr = 683,
	.shp_2_mcu_addr = 891,
	.spdif_2_mcu_addr = 1100,
	.mcu_2_spdif_addr = 1134,
};

475
static struct sdma_driver_data sdma_imx6q = {
476 477 478 479 480
	.chnenbl0 = SDMA_CHNENBL0_IMX35,
	.num_events = 48,
	.script_addrs = &sdma_script_imx6q,
};

481
static const struct platform_device_id sdma_devtypes[] = {
482
	{
483 484 485
		.name = "imx25-sdma",
		.driver_data = (unsigned long)&sdma_imx25,
	}, {
486
		.name = "imx31-sdma",
487
		.driver_data = (unsigned long)&sdma_imx31,
488 489
	}, {
		.name = "imx35-sdma",
490
		.driver_data = (unsigned long)&sdma_imx35,
491 492 493 494 495 496 497 498 499
	}, {
		.name = "imx51-sdma",
		.driver_data = (unsigned long)&sdma_imx51,
	}, {
		.name = "imx53-sdma",
		.driver_data = (unsigned long)&sdma_imx53,
	}, {
		.name = "imx6q-sdma",
		.driver_data = (unsigned long)&sdma_imx6q,
500 501 502 503 504 505
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);

506
static const struct of_device_id sdma_dt_ids[] = {
507 508 509
	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
510
	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
511
	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
512
	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
513 514 515 516
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);

517 518 519
#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
520 521 522 523
#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/

static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
524
	u32 chnenbl0 = sdma->drvdata->chnenbl0;
525 526 527 528 529 530 531 532
	return chnenbl0 + event * 4;
}

static int sdma_config_ownership(struct sdma_channel *sdmac,
		bool event_override, bool mcu_override, bool dsp_override)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
533
	unsigned long evt, mcu, dsp;
534 535 536 537

	if (event_override && mcu_override && dsp_override)
		return -EINVAL;

538 539 540
	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
541 542

	if (dsp_override)
543
		__clear_bit(channel, &dsp);
544
	else
545
		__set_bit(channel, &dsp);
546 547

	if (event_override)
548
		__clear_bit(channel, &evt);
549
	else
550
		__set_bit(channel, &evt);
551 552

	if (mcu_override)
553
		__clear_bit(channel, &mcu);
554
	else
555
		__set_bit(channel, &mcu);
556

557 558 559
	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
560 561 562 563

	return 0;
}

564 565
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
566
	writel(BIT(channel), sdma->regs + SDMA_H_START);
567 568
}

569
/*
570
 * sdma_run_channel0 - run a channel and wait till it's done
571
 */
572
static int sdma_run_channel0(struct sdma_engine *sdma)
573 574
{
	int ret;
575
	u32 reg;
576

577
	sdma_enable_channel(sdma, 0);
578

579 580 581
	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
						reg, !(reg & 1), 1, 500);
	if (ret)
582
		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
583

584 585 586 587
	/* Set bits of CONFIG register with dynamic context switching */
	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);

588
	return ret;
589 590 591 592 593 594 595 596 597
}

static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
		u32 address)
{
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	void *buf_virt;
	dma_addr_t buf_phys;
	int ret;
598
	unsigned long flags;
599

600 601 602
	buf_virt = dma_alloc_coherent(NULL,
			size,
			&buf_phys, GFP_KERNEL);
603
	if (!buf_virt) {
604
		return -ENOMEM;
605
	}
606

607 608
	spin_lock_irqsave(&sdma->channel_0_lock, flags);

609 610 611 612 613 614 615 616
	bd0->mode.command = C0_SETPM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = size / 2;
	bd0->buffer_addr = buf_phys;
	bd0->ext_buffer_addr = address;

	memcpy(buf_virt, buf, size);

617
	ret = sdma_run_channel0(sdma);
618

619
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
620

621
	dma_free_coherent(NULL, size, buf_virt, buf_phys);
622

623 624 625 626 627 628 629
	return ret;
}

static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
630
	unsigned long val;
631 632
	u32 chnenbl = chnenbl_ofs(sdma, event);

633
	val = readl_relaxed(sdma->regs + chnenbl);
634
	__set_bit(channel, &val);
635
	writel_relaxed(val, sdma->regs + chnenbl);
636 637 638 639 640 641 642
}

static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	u32 chnenbl = chnenbl_ofs(sdma, event);
643
	unsigned long val;
644

645
	val = readl_relaxed(sdma->regs + chnenbl);
646
	__clear_bit(channel, &val);
647
	writel_relaxed(val, sdma->regs + chnenbl);
648 649 650
}

static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
651 652 653 654 655 656
{
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

static void sdma_update_channel_loop(struct sdma_channel *sdmac)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
{
	struct sdma_buffer_descriptor *bd;

	/*
	 * loop mode. Iterate over descriptors, re-setup them and
	 * call callback function.
	 */
	while (1) {
		bd = &sdmac->bd[sdmac->buf_tail];

		if (bd->mode.status & BD_DONE)
			break;

		if (bd->mode.status & BD_RROR)
			sdmac->status = DMA_ERROR;

		bd->mode.status |= BD_DONE;
		sdmac->buf_tail++;
		sdmac->buf_tail %= sdmac->num_bd;
	}
}

static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
{
	struct sdma_buffer_descriptor *bd;
	int i, error = 0;

684
	sdmac->chn_real_count = 0;
685 686 687 688 689 690 691 692 693
	/*
	 * non loop mode. Iterate over all descriptors, collect
	 * errors and call callback function
	 */
	for (i = 0; i < sdmac->num_bd; i++) {
		bd = &sdmac->bd[i];

		 if (bd->mode.status & (BD_DONE | BD_RROR))
			error = -EIO;
694
		 sdmac->chn_real_count += bd->mode.count;
695 696 697 698 699
	}

	if (error)
		sdmac->status = DMA_ERROR;
	else
700
		sdmac->status = DMA_COMPLETE;
701

702
	dma_cookie_complete(&sdmac->desc);
703 704 705 706
	if (sdmac->desc.callback)
		sdmac->desc.callback(sdmac->desc.callback_param);
}

707
static void sdma_tasklet(unsigned long data)
708
{
709 710
	struct sdma_channel *sdmac = (struct sdma_channel *) data;

711 712 713 714 715 716 717 718 719
	if (sdmac->flags & IMX_DMA_SG_LOOP)
		sdma_handle_channel_loop(sdmac);
	else
		mxc_sdma_handle_channel_normal(sdmac);
}

static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
	struct sdma_engine *sdma = dev_id;
720
	unsigned long stat;
721

722 723
	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
724 725
	/* channel 0 is special and not handled here, see run_channel0() */
	stat &= ~1;
726 727 728 729 730

	while (stat) {
		int channel = fls(stat) - 1;
		struct sdma_channel *sdmac = &sdma->channel[channel];

731 732 733
		if (sdmac->flags & IMX_DMA_SG_LOOP)
			sdma_update_channel_loop(sdmac);

734
		tasklet_schedule(&sdmac->tasklet);
735

736
		__clear_bit(channel, &stat);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	}

	return IRQ_HANDLED;
}

/*
 * sets the pc of SDMA script according to the peripheral type
 */
static void sdma_get_pc(struct sdma_channel *sdmac,
		enum sdma_peripheral_type peripheral_type)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int per_2_emi = 0, emi_2_per = 0;
	/*
	 * These are needed once we start to support transfers between
	 * two peripherals or memory-to-memory transfers
	 */
	int per_2_per = 0, emi_2_emi = 0;

	sdmac->pc_from_device = 0;
	sdmac->pc_to_device = 0;
758
	sdmac->device_to_device = 0;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

	switch (peripheral_type) {
	case IMX_DMATYPE_MEMORY:
		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
		break;
	case IMX_DMATYPE_DSP:
		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
		break;
	case IMX_DMATYPE_FIRI:
		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
		break;
	case IMX_DMATYPE_UART:
		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
	case IMX_DMATYPE_UART_SP:
		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ATA:
		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
		break;
	case IMX_DMATYPE_CSPI:
	case IMX_DMATYPE_EXT:
	case IMX_DMATYPE_SSI:
787
	case IMX_DMATYPE_SAI:
788 789 790
		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
		break;
791 792 793 794
	case IMX_DMATYPE_SSI_DUAL:
		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
		break;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
	case IMX_DMATYPE_SSI_SP:
	case IMX_DMATYPE_MMC:
	case IMX_DMATYPE_SDHC:
	case IMX_DMATYPE_CSPI_SP:
	case IMX_DMATYPE_ESAI:
	case IMX_DMATYPE_MSHC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		break;
	case IMX_DMATYPE_ASRC:
		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
809 810 811 812 813
	case IMX_DMATYPE_ASRC_SP:
		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
		per_2_per = sdma->script_addrs->per_2_per_addr;
		break;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	case IMX_DMATYPE_MSHC:
		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
		break;
	case IMX_DMATYPE_CCM:
		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
		break;
	case IMX_DMATYPE_SPDIF:
		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
		break;
	case IMX_DMATYPE_IPU_MEMORY:
		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
		break;
	default:
		break;
	}

	sdmac->pc_from_device = per_2_emi;
	sdmac->pc_to_device = emi_2_per;
834
	sdmac->device_to_device = per_2_per;
835 836 837 838 839 840 841 842 843 844
}

static int sdma_load_context(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int load_address;
	struct sdma_context_data *context = sdma->context;
	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
	int ret;
845
	unsigned long flags;
846

847
	if (sdmac->direction == DMA_DEV_TO_MEM)
848
		load_address = sdmac->pc_from_device;
849 850 851
	else if (sdmac->direction == DMA_DEV_TO_DEV)
		load_address = sdmac->device_to_device;
	else
852 853 854 855 856 857
		load_address = sdmac->pc_to_device;

	if (load_address < 0)
		return load_address;

	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
858
	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
859 860
	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
861 862
	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
863

864
	spin_lock_irqsave(&sdma->channel_0_lock, flags);
865

866 867 868 869 870 871
	memset(context, 0, sizeof(*context));
	context->channel_state.pc = load_address;

	/* Send by context the event mask,base address for peripheral
	 * and watermark level
	 */
872 873
	context->gReg[0] = sdmac->event_mask[1];
	context->gReg[1] = sdmac->event_mask[0];
874 875 876 877 878 879 880 881 882
	context->gReg[2] = sdmac->per_addr;
	context->gReg[6] = sdmac->shp_addr;
	context->gReg[7] = sdmac->watermark_level;

	bd0->mode.command = C0_SETDM;
	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
	bd0->mode.count = sizeof(*context) / 4;
	bd0->buffer_addr = sdma->context_phys;
	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
883
	ret = sdma_run_channel0(sdma);
884

885
	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
886

887 888 889
	return ret;
}

890 891 892 893 894 895
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct sdma_channel, chan);
}

static int sdma_disable_channel(struct dma_chan *chan)
896
{
897
	struct sdma_channel *sdmac = to_sdma_chan(chan);
898 899 900
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

901
	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
902
	sdmac->status = DMA_ERROR;
903 904

	return 0;
905 906
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;

	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;

	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);

	if (sdmac->event_id0 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;

	if (sdmac->event_id1 > 31)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;

	/*
	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
	 * r0(event_mask[1]) and r1(event_mask[0]).
	 */
	if (lwml > hwml) {
		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
						SDMA_WATERMARK_LEVEL_HWML);
		sdmac->watermark_level |= hwml;
		sdmac->watermark_level |= lwml << 16;
		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
	}

	if (sdmac->per_address2 >= sdma->spba_start_addr &&
			sdmac->per_address2 <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;

	if (sdmac->per_address >= sdma->spba_start_addr &&
			sdmac->per_address <= sdma->spba_end_addr)
		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;

	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}

947
static int sdma_config_channel(struct dma_chan *chan)
948
{
949
	struct sdma_channel *sdmac = to_sdma_chan(chan);
950 951
	int ret;

952
	sdma_disable_channel(chan);
953

954 955
	sdmac->event_mask[0] = 0;
	sdmac->event_mask[1] = 0;
956 957 958 959
	sdmac->shp_addr = 0;
	sdmac->per_addr = 0;

	if (sdmac->event_id0) {
960
		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
961 962 963 964
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id0);
	}

965 966 967 968 969 970
	if (sdmac->event_id1) {
		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
			return -EINVAL;
		sdma_event_enable(sdmac, sdmac->event_id1);
	}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	switch (sdmac->peripheral_type) {
	case IMX_DMATYPE_DSP:
		sdma_config_ownership(sdmac, false, true, true);
		break;
	case IMX_DMATYPE_MEMORY:
		sdma_config_ownership(sdmac, false, true, false);
		break;
	default:
		sdma_config_ownership(sdmac, true, true, false);
		break;
	}

	sdma_get_pc(sdmac, sdmac->peripheral_type);

	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
		/* Handle multiple event channels differently */
		if (sdmac->event_id1) {
989 990 991 992
			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
				sdma_set_watermarklevel_for_p2p(sdmac);
		} else
993
			__set_bit(sdmac->event_id0, sdmac->event_mask);
994

995 996 997 998
		/* Watermark Level */
		sdmac->watermark_level |= sdmac->watermark_level;
		/* Address */
		sdmac->shp_addr = sdmac->per_address;
999
		sdmac->per_addr = sdmac->per_address2;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	} else {
		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
	}

	ret = sdma_load_context(sdmac);

	return ret;
}

static int sdma_set_channel_priority(struct sdma_channel *sdmac,
		unsigned int priority)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;

	if (priority < MXC_SDMA_MIN_PRIORITY
	    || priority > MXC_SDMA_MAX_PRIORITY) {
		return -EINVAL;
	}

1020
	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

	return 0;
}

static int sdma_request_channel(struct sdma_channel *sdmac)
{
	struct sdma_engine *sdma = sdmac->sdma;
	int channel = sdmac->channel;
	int ret = -EBUSY;

J
Joe Perches 已提交
1031 1032
	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
					GFP_KERNEL);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	if (!sdmac->bd) {
		ret = -ENOMEM;
		goto out;
	}

	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
	return 0;
out:

	return ret;
}

static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
1050
	unsigned long flags;
1051 1052 1053
	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
	dma_cookie_t cookie;

1054
	spin_lock_irqsave(&sdmac->lock, flags);
1055

1056
	cookie = dma_cookie_assign(tx);
1057

1058
	spin_unlock_irqrestore(&sdmac->lock, flags);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	return cookie;
}

static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct imx_dma_data *data = chan->private;
	int prio, ret;

	if (!data)
		return -EINVAL;

	switch (data->priority) {
	case DMA_PRIO_HIGH:
		prio = 3;
		break;
	case DMA_PRIO_MEDIUM:
		prio = 2;
		break;
	case DMA_PRIO_LOW:
	default:
		prio = 1;
		break;
	}

	sdmac->peripheral_type = data->peripheral_type;
	sdmac->event_id0 = data->dma_request;
1087
	sdmac->event_id1 = data->dma_request2;
1088

1089 1090 1091 1092 1093 1094
	ret = clk_enable(sdmac->sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdmac->sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1095

1096
	ret = sdma_request_channel(sdmac);
1097
	if (ret)
1098
		goto disable_clk_ahb;
1099

1100
	ret = sdma_set_channel_priority(sdmac, prio);
1101
	if (ret)
1102
		goto disable_clk_ahb;
1103 1104 1105 1106 1107 1108 1109

	dma_async_tx_descriptor_init(&sdmac->desc, chan);
	sdmac->desc.tx_submit = sdma_tx_submit;
	/* txd.flags will be overwritten in prep funcs */
	sdmac->desc.flags = DMA_CTRL_ACK;

	return 0;
1110 1111 1112 1113 1114 1115

disable_clk_ahb:
	clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
	clk_disable(sdmac->sdma->clk_ipg);
	return ret;
1116 1117 1118 1119 1120 1121 1122
}

static void sdma_free_chan_resources(struct dma_chan *chan)
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

1123
	sdma_disable_channel(chan);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	if (sdmac->event_id0)
		sdma_event_disable(sdmac, sdmac->event_id0);
	if (sdmac->event_id1)
		sdma_event_disable(sdmac, sdmac->event_id1);

	sdmac->event_id0 = 0;
	sdmac->event_id1 = 0;

	sdma_set_channel_priority(sdmac, 0);

	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);

1137 1138
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1139 1140 1141 1142
}

static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
1143
		unsigned int sg_len, enum dma_transfer_direction direction,
1144
		unsigned long flags, void *context)
1145 1146 1147 1148
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int ret, i, count;
1149
	int channel = sdmac->channel;
1150 1151 1152 1153 1154 1155 1156 1157
	struct scatterlist *sg;

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;
	sdmac->status = DMA_IN_PROGRESS;

	sdmac->flags = 0;

1158 1159
	sdmac->buf_tail = 0;

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
			sg_len, channel);

	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (sg_len > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, sg_len, NUM_BD);
		ret = -EINVAL;
		goto err_out;
	}

1175
	sdmac->chn_count = 0;
1176 1177 1178 1179
	for_each_sg(sgl, sg, sg_len, i) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

1180
		bd->buffer_addr = sg->dma_address;
1181

1182
		count = sg_dma_len(sg);
1183 1184 1185 1186 1187 1188 1189 1190 1191

		if (count > 0xffff) {
			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
					channel, count, 0xffff);
			ret = -EINVAL;
			goto err_out;
		}

		bd->mode.count = count;
1192
		sdmac->chn_count += count;
1193 1194 1195 1196 1197

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
			ret =  -EINVAL;
			goto err_out;
		}
1198 1199 1200

		switch (sdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1201
			bd->mode.command = 0;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (count & 3 || sg->dma_address & 3)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			bd->mode.command = 2;
			if (count & 1 || sg->dma_address & 1)
				return NULL;
			break;
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			bd->mode.command = 1;
			break;
		default:
			return NULL;
		}
1216 1217 1218

		param = BD_DONE | BD_EXTD | BD_CONT;

1219
		if (i + 1 == sg_len) {
1220
			param |= BD_INTR;
1221 1222
			param |= BD_LAST;
			param &= ~BD_CONT;
1223 1224
		}

1225 1226
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, count, (u64)sg->dma_address,
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;
	}

	sdmac->num_bd = sg_len;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
1238
	sdmac->status = DMA_ERROR;
1239 1240 1241 1242 1243
	return NULL;
}

static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1244
		size_t period_len, enum dma_transfer_direction direction,
1245
		unsigned long flags)
1246 1247 1248 1249
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;
	int num_periods = buf_len / period_len;
1250
	int channel = sdmac->channel;
1251 1252 1253 1254 1255 1256 1257 1258 1259
	int ret, i = 0, buf = 0;

	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);

	if (sdmac->status == DMA_IN_PROGRESS)
		return NULL;

	sdmac->status = DMA_IN_PROGRESS;

1260
	sdmac->buf_tail = 0;
1261
	sdmac->period_len = period_len;
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	sdmac->flags |= IMX_DMA_SG_LOOP;
	sdmac->direction = direction;
	ret = sdma_load_context(sdmac);
	if (ret)
		goto err_out;

	if (num_periods > NUM_BD) {
		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
				channel, num_periods, NUM_BD);
		goto err_out;
	}

	if (period_len > 0xffff) {
		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
				channel, period_len, 0xffff);
		goto err_out;
	}

	while (buf < buf_len) {
		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
		int param;

		bd->buffer_addr = dma_addr;

		bd->mode.count = period_len;

		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
			goto err_out;
		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
			bd->mode.command = 0;
		else
			bd->mode.command = sdmac->word_size;

		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
		if (i + 1 == num_periods)
			param |= BD_WRAP;

1300 1301
		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
				i, period_len, (u64)dma_addr,
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
				param & BD_WRAP ? "wrap" : "",
				param & BD_INTR ? " intr" : "");

		bd->mode.status = param;

		dma_addr += period_len;
		buf += period_len;

		i++;
	}

	sdmac->num_bd = num_periods;
	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;

	return &sdmac->desc;
err_out:
	sdmac->status = DMA_ERROR;
	return NULL;
}

1322 1323
static int sdma_config(struct dma_chan *chan,
		       struct dma_slave_config *dmaengine_cfg)
1324 1325 1326
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);

1327 1328 1329 1330 1331
	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
		sdmac->per_address = dmaengine_cfg->src_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
			dmaengine_cfg->src_addr_width;
		sdmac->word_size = dmaengine_cfg->src_addr_width;
1332 1333 1334 1335 1336 1337 1338 1339
	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
		sdmac->per_address2 = dmaengine_cfg->src_addr;
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
			SDMA_WATERMARK_LEVEL_LWML;
		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
			SDMA_WATERMARK_LEVEL_HWML;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1340 1341 1342 1343 1344 1345 1346 1347
	} else {
		sdmac->per_address = dmaengine_cfg->dst_addr;
		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
			dmaengine_cfg->dst_addr_width;
		sdmac->word_size = dmaengine_cfg->dst_addr_width;
	}
	sdmac->direction = dmaengine_cfg->direction;
	return sdma_config_channel(chan);
1348 1349 1350
}

static enum dma_status sdma_tx_status(struct dma_chan *chan,
1351 1352
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
1353 1354
{
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1355 1356 1357 1358 1359 1360
	u32 residue;

	if (sdmac->flags & IMX_DMA_SG_LOOP)
		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
	else
		residue = sdmac->chn_count - sdmac->chn_real_count;
1361

1362
	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1363
			 residue);
1364

1365
	return sdmac->status;
1366 1367 1368 1369
}

static void sdma_issue_pending(struct dma_chan *chan)
{
1370 1371 1372 1373 1374
	struct sdma_channel *sdmac = to_sdma_chan(chan);
	struct sdma_engine *sdma = sdmac->sdma;

	if (sdmac->status == DMA_IN_PROGRESS)
		sdma_enable_channel(sdma, sdmac->channel);
1375 1376
}

1377
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1378
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1379
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1380 1381 1382 1383 1384 1385 1386 1387

static void sdma_add_scripts(struct sdma_engine *sdma,
		const struct sdma_script_start_addrs *addr)
{
	s32 *addr_arr = (u32 *)addr;
	s32 *saddr_arr = (u32 *)sdma->script_addrs;
	int i;

1388 1389 1390 1391
	/* use the default firmware in ROM if missing external firmware */
	if (!sdma->script_number)
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;

1392
	for (i = 0; i < sdma->script_number; i++)
1393 1394 1395 1396
		if (addr_arr[i] > 0)
			saddr_arr[i] = addr_arr[i];
}

1397
static void sdma_load_firmware(const struct firmware *fw, void *context)
1398
{
1399
	struct sdma_engine *sdma = context;
1400 1401 1402 1403
	const struct sdma_firmware_header *header;
	const struct sdma_script_start_addrs *addr;
	unsigned short *ram_code;

1404
	if (!fw) {
1405 1406
		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
		/* In this case we just use the ROM firmware. */
1407 1408
		return;
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	if (fw->size < sizeof(*header))
		goto err_firmware;

	header = (struct sdma_firmware_header *)fw->data;

	if (header->magic != SDMA_FIRMWARE_MAGIC)
		goto err_firmware;
	if (header->ram_code_start + header->ram_code_size > fw->size)
		goto err_firmware;
1419
	switch (header->version_major) {
A
Asaf Vertz 已提交
1420 1421 1422 1423 1424 1425
	case 1:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
		break;
	case 2:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
		break;
1426 1427 1428
	case 3:
		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
		break;
A
Asaf Vertz 已提交
1429 1430 1431
	default:
		dev_err(sdma->dev, "unknown firmware version\n");
		goto err_firmware;
1432
	}
1433 1434 1435 1436

	addr = (void *)header + header->script_addrs_start;
	ram_code = (void *)header + header->ram_code_start;

1437 1438
	clk_enable(sdma->clk_ipg);
	clk_enable(sdma->clk_ahb);
1439 1440 1441
	/* download the RAM image for SDMA */
	sdma_load_script(sdma, ram_code,
			header->ram_code_size,
1442
			addr->ram_code_start_addr);
1443 1444
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1445 1446 1447 1448 1449 1450 1451 1452 1453

	sdma_add_scripts(sdma, addr);

	dev_info(sdma->dev, "loaded firmware %d.%d\n",
			header->version_major,
			header->version_minor);

err_firmware:
	release_firmware(fw);
1454 1455
}

1456 1457
#define EVENT_REMAP_CELLS 3

1458
static int sdma_event_remap(struct sdma_engine *sdma)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	struct device_node *np = sdma->dev->of_node;
	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
	struct property *event_remap;
	struct regmap *gpr;
	char propname[] = "fsl,sdma-event-remap";
	u32 reg, val, shift, num_map, i;
	int ret = 0;

	if (IS_ERR(np) || IS_ERR(gpr_np))
		goto out;

	event_remap = of_find_property(np, propname, NULL);
	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
	if (!num_map) {
1474
		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		goto out;
	} else if (num_map % EVENT_REMAP_CELLS) {
		dev_err(sdma->dev, "the property %s must modulo %d\n",
				propname, EVENT_REMAP_CELLS);
		ret = -EINVAL;
		goto out;
	}

	gpr = syscon_node_to_regmap(gpr_np);
	if (IS_ERR(gpr)) {
		dev_err(sdma->dev, "failed to get gpr regmap\n");
		ret = PTR_ERR(gpr);
		goto out;
	}

	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
		ret = of_property_read_u32_index(np, propname, i, &reg);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 1);
			goto out;
		}

		ret = of_property_read_u32_index(np, propname, i + 2, &val);
		if (ret) {
			dev_err(sdma->dev, "failed to read property %s index %d\n",
					propname, i + 2);
			goto out;
		}

		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
	}

out:
	if (!IS_ERR(gpr_np))
		of_node_put(gpr_np);

	return ret;
}

1522
static int sdma_get_firmware(struct sdma_engine *sdma,
1523 1524 1525 1526 1527 1528 1529
		const char *fw_name)
{
	int ret;

	ret = request_firmware_nowait(THIS_MODULE,
			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
			GFP_KERNEL, sdma, sdma_load_firmware);
1530 1531 1532 1533

	return ret;
}

1534
static int sdma_init(struct sdma_engine *sdma)
1535 1536 1537 1538
{
	int i, ret;
	dma_addr_t ccb_phys;

1539 1540 1541 1542 1543 1544
	ret = clk_enable(sdma->clk_ipg);
	if (ret)
		return ret;
	ret = clk_enable(sdma->clk_ahb);
	if (ret)
		goto disable_clk_ipg;
1545 1546

	/* Be sure SDMA has not started yet */
1547
	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	sdma->channel_control = dma_alloc_coherent(NULL,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
			sizeof(struct sdma_context_data),
			&ccb_phys, GFP_KERNEL);

	if (!sdma->channel_control) {
		ret = -ENOMEM;
		goto err_dma_alloc;
	}

	sdma->context = (void *)sdma->channel_control +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
	sdma->context_phys = ccb_phys +
		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);

	/* Zero-out the CCB structures array just allocated */
	memset(sdma->channel_control, 0,
			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));

	/* disable all channels */
1569
	for (i = 0; i < sdma->drvdata->num_events; i++)
1570
		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1571 1572 1573

	/* All channels have priority 0 */
	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1574
		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1575 1576 1577 1578 1579 1580 1581 1582

	ret = sdma_request_channel(&sdma->channel[0]);
	if (ret)
		goto err_dma_alloc;

	sdma_config_ownership(&sdma->channel[0], false, true, false);

	/* Set Command Channel (Channel Zero) */
1583
	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1584 1585 1586

	/* Set bits of CONFIG register but with static context switching */
	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1587
	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1588

1589
	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1590 1591 1592 1593

	/* Initializes channel's priorities */
	sdma_set_channel_priority(&sdma->channel[0], 7);

1594 1595
	clk_disable(sdma->clk_ipg);
	clk_disable(sdma->clk_ahb);
1596 1597 1598 1599

	return 0;

err_dma_alloc:
1600
	clk_disable(sdma->clk_ahb);
1601 1602
disable_clk_ipg:
	clk_disable(sdma->clk_ipg);
1603 1604 1605 1606
	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
	return ret;
}

1607 1608
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
1609
	struct sdma_channel *sdmac = to_sdma_chan(chan);
1610 1611 1612 1613 1614
	struct imx_dma_data *data = fn_param;

	if (!imx_dma_is_general_purpose(chan))
		return false;

1615 1616
	sdmac->data = *data;
	chan->private = &sdmac->data;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	return true;
}

static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
				   struct of_dma *ofdma)
{
	struct sdma_engine *sdma = ofdma->of_dma_data;
	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
	struct imx_dma_data data;

	if (dma_spec->args_count != 3)
		return NULL;

	data.dma_request = dma_spec->args[0];
	data.peripheral_type = dma_spec->args[1];
	data.priority = dma_spec->args[2];
1634 1635 1636 1637 1638 1639 1640 1641
	/*
	 * init dma_request2 to zero, which is not used by the dts.
	 * For P2P, dma_request2 is init from dma_request_channel(),
	 * chan->private will point to the imx_dma_data, and in
	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
	 * be set to sdmac->event_id1.
	 */
	data.dma_request2 = 0;
1642 1643 1644 1645

	return dma_request_channel(mask, sdma_filter_fn, &data);
}

1646
static int sdma_probe(struct platform_device *pdev)
1647
{
1648 1649 1650
	const struct of_device_id *of_id =
			of_match_device(sdma_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
1651
	struct device_node *spba_bus;
1652
	const char *fw_name;
1653 1654 1655
	int ret;
	int irq;
	struct resource *iores;
1656
	struct resource spba_res;
J
Jingoo Han 已提交
1657
	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1658 1659
	int i;
	struct sdma_engine *sdma;
1660
	s32 *saddr_arr;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	const struct sdma_driver_data *drvdata = NULL;

	if (of_id)
		drvdata = of_id->data;
	else if (pdev->id_entry)
		drvdata = (void *)pdev->id_entry->driver_data;

	if (!drvdata) {
		dev_err(&pdev->dev, "unable to find driver data\n");
		return -EINVAL;
	}
1672

1673 1674 1675 1676
	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1677
	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1678 1679 1680
	if (!sdma)
		return -ENOMEM;

1681
	spin_lock_init(&sdma->channel_0_lock);
1682

1683
	sdma->dev = &pdev->dev;
1684
	sdma->drvdata = drvdata;
1685 1686

	irq = platform_get_irq(pdev, 0);
1687
	if (irq < 0)
1688
		return irq;
1689

1690 1691 1692 1693
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(sdma->regs))
		return PTR_ERR(sdma->regs);
1694

1695
	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1696 1697
	if (IS_ERR(sdma->clk_ipg))
		return PTR_ERR(sdma->clk_ipg);
1698

1699
	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1700 1701
	if (IS_ERR(sdma->clk_ahb))
		return PTR_ERR(sdma->clk_ahb);
1702 1703 1704 1705

	clk_prepare(sdma->clk_ipg);
	clk_prepare(sdma->clk_ahb);

1706 1707
	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
			       sdma);
1708
	if (ret)
1709
		return ret;
1710

1711
	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1712 1713
	if (!sdma->script_addrs)
		return -ENOMEM;
1714

1715 1716 1717 1718 1719
	/* initially no scripts available */
	saddr_arr = (s32 *)sdma->script_addrs;
	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
		saddr_arr[i] = -EINVAL;

1720 1721 1722
	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);

1723 1724 1725 1726 1727 1728 1729 1730 1731
	INIT_LIST_HEAD(&sdma->dma_device.channels);
	/* Initialize channel parameters */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		sdmac->sdma = sdma;
		spin_lock_init(&sdmac->lock);

		sdmac->chan.device = &sdma->dma_device;
1732
		dma_cookie_init(&sdmac->chan);
1733 1734
		sdmac->channel = i;

1735 1736
		tasklet_init(&sdmac->tasklet, sdma_tasklet,
			     (unsigned long) sdmac);
1737 1738 1739 1740 1741 1742 1743 1744
		/*
		 * Add the channel to the DMAC list. Do not add channel 0 though
		 * because we need it internally in the SDMA driver. This also means
		 * that channel 0 in dmaengine counting matches sdma channel 1.
		 */
		if (i)
			list_add_tail(&sdmac->chan.device_node,
					&sdma->dma_device.channels);
1745 1746
	}

1747
	ret = sdma_init(sdma);
1748 1749 1750
	if (ret)
		goto err_init;

1751 1752 1753 1754
	ret = sdma_event_remap(sdma);
	if (ret)
		goto err_init;

1755 1756
	if (sdma->drvdata->script_addrs)
		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1757
	if (pdata && pdata->script_addrs)
1758 1759
		sdma_add_scripts(sdma, pdata->script_addrs);

1760
	if (pdata) {
1761 1762
		ret = sdma_get_firmware(sdma, pdata->fw_name);
		if (ret)
1763
			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1764 1765 1766 1767 1768 1769 1770 1771
	} else {
		/*
		 * Because that device tree does not encode ROM script address,
		 * the RAM script in firmware is mandatory for device tree
		 * probe, otherwise it fails.
		 */
		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
					      &fw_name);
1772
		if (ret)
1773
			dev_warn(&pdev->dev, "failed to get firmware name\n");
1774 1775 1776
		else {
			ret = sdma_get_firmware(sdma, fw_name);
			if (ret)
1777
				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1778 1779
		}
	}
1780

1781 1782 1783 1784 1785 1786 1787
	sdma->dma_device.dev = &pdev->dev;

	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
	sdma->dma_device.device_tx_status = sdma_tx_status;
	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1788 1789
	sdma->dma_device.device_config = sdma_config;
	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1790 1791 1792 1793
	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1794
	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1795 1796
	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1797

1798 1799
	platform_set_drvdata(pdev, sdma);

1800 1801 1802 1803 1804 1805
	ret = dma_async_device_register(&sdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

1806 1807 1808 1809 1810 1811
	if (np) {
		ret = of_dma_controller_register(np, sdma_xlate, sdma);
		if (ret) {
			dev_err(&pdev->dev, "failed to register controller\n");
			goto err_register;
		}
1812 1813 1814 1815 1816 1817 1818 1819

		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
		ret = of_address_to_resource(spba_bus, 0, &spba_res);
		if (!ret) {
			sdma->spba_start_addr = spba_res.start;
			sdma->spba_end_addr = spba_res.end;
		}
		of_node_put(spba_bus);
1820 1821
	}

1822 1823
	return 0;

1824 1825
err_register:
	dma_async_device_unregister(&sdma->dma_device);
1826 1827
err_init:
	kfree(sdma->script_addrs);
1828
	return ret;
1829 1830
}

1831
static int sdma_remove(struct platform_device *pdev)
1832
{
1833
	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1834
	int i;
1835 1836 1837

	dma_async_device_unregister(&sdma->dma_device);
	kfree(sdma->script_addrs);
1838 1839 1840 1841 1842 1843
	/* Kill the tasklet */
	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
		struct sdma_channel *sdmac = &sdma->channel[i];

		tasklet_kill(&sdmac->tasklet);
	}
1844 1845 1846

	platform_set_drvdata(pdev, NULL);
	return 0;
1847 1848 1849 1850 1851
}

static struct platform_driver sdma_driver = {
	.driver		= {
		.name	= "imx-sdma",
1852
		.of_match_table = sdma_dt_ids,
1853
	},
1854
	.id_table	= sdma_devtypes,
1855
	.remove		= sdma_remove,
1856
	.probe		= sdma_probe,
1857 1858
};

1859
module_platform_driver(sdma_driver);
1860 1861 1862 1863

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
MODULE_LICENSE("GPL");