amd64_edac.c 73.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

130 131 132 133 134 135 136 137 138 139
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

140
	f15h_select_dct(pvt, dct);
141 142 143 144

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
163
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 165 166 167 168 169 170 171 172
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
173 174 175
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
176
	 */
177
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 179 180 181
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
182
		if (scrubrates[i].scrubval < min_rate)
183 184 185 186 187 188 189 190
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

191
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192

193 194 195
	if (scrubval)
		return scrubrates[i].bandwidth;

196 197 198
	return 0;
}

199
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 201
{
	struct amd64_pvt *pvt = mci->pvt_info;
202
	u32 min_scrubrate = 0x5;
203

204 205 206
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

207 208 209 210
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

211
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 213
}

214
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 216 217
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
218
	int i, retval = -EINVAL;
219

220 221 222 223
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

224
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225 226 227

	scrubval = scrubval & 0x001F;

228
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229
		if (scrubrates[i].scrubval == scrubval) {
230
			retval = scrubrates[i].bandwidth;
231 232 233
			break;
		}
	}
234
	return retval;
235 236
}

237
/*
238 239
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
240
 */
241 242
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
243
{
244
	u64 addr;
245 246 247 248 249 250 251 252 253

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

254 255
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
256 257 258 259 260 261 262 263 264 265 266 267
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
268
	unsigned node_id;
269 270 271 272 273 274 275 276 277 278 279 280 281
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
282
	intlv_en = dram_intlv_en(pvt, 0);
283 284

	if (intlv_en == 0) {
285
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
287
				goto found;
288
		}
289
		goto err_no_match;
290 291
	}

292 293 294
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
295
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 297 298 299 300 301
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
302
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 304
			break;	/* intlv_sel field matches */

305
		if (++node_id >= DRAM_RANGES)
306 307 308 309 310
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 312 313
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
314 315 316 317
		return NULL;
	}

found:
318
	return edac_mc_find((int)node_id);
319 320

err_no_match:
321 322
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
323 324 325

	return NULL;
}
326 327

/*
328 329
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
330
 */
331 332
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
333
{
334 335
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
336

337 338 339 340 341 342 343 344 345 346
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
347

348 349 350 351 352
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
353

354
	*base  = (csbase & base_bits) << addr_shift;
355

356 357 358 359 360
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
361 362
}

363 364 365
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

366 367 368
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

369 370 371
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

372 373 374 375 376 377 378 379 380 381 382 383
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

384 385
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
386 387
			continue;

388 389 390
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
391 392

		if ((input_addr & mask) == (base & mask)) {
393 394 395
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
396 397 398 399

			return csrow;
		}
	}
400 401
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
429
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
430 431
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
432 433 434
		return 1;
	}

435
	/* valid for Fam10h and above */
436
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
437
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
438 439 440
		return 1;
	}

441
	if (!dhar_valid(pvt)) {
442 443
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

465
	base = dhar_base(pvt);
466 467 468 469 470

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
471
		*hole_offset = f10_dhar_offset(pvt);
472
	else
473
		*hole_offset = k8_dhar_offset(pvt);
474

475 476 477
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
478 479 480 481 482

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
514
	struct amd64_pvt *pvt = mci->pvt_info;
515 516 517
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

518
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
519 520 521 522 523 524 525 526 527

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

528 529 530
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
531 532 533 534 535 536 537 538 539 540 541 542 543 544

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
545
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
546

547 548
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
580
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
581 582
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
583

584 585 586
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

602 603
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)input_addr);
604 605 606 607 608 609 610 611 612 613 614 615

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
616
	unsigned node_id, intlv_shift;
617 618 619 620 621 622 623 624 625 626 627 628 629
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
630 631

	BUG_ON(node_id > 7);
632

633
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
634
	if (intlv_shift == 0) {
635 636
		edac_dbg(1, "    InputAddr 0x%lx translates to DramAddr of same value\n",
			 (unsigned long)input_addr);
637 638 639 640

		return input_addr;
	}

641 642
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
643

644
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
645 646
	dram_addr = bits + (intlv_sel << 12);

647 648 649
	edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
		 (unsigned long)input_addr,
		 (unsigned long)dram_addr, intlv_shift);
650 651 652 653 654 655 656 657 658 659 660

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
661
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
662 663 664 665 666 667 668 669 670
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

671 672 673
			edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
				 (unsigned long)dram_addr,
				 (unsigned long)sys_addr);
674 675 676 677 678

			return sys_addr;
		}
	}

679
	base     = get_dram_base(pvt, pvt->mc_node_id);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

695 696 697
	edac_dbg(1, "    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)dram_addr,
		 (unsigned long)sys_addr);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
736 737
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
738 739
	return csrow;
}
740

741
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
742 743 744 745 746

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
747
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
748
{
749
	u8 bit;
750
	unsigned long edac_cap = EDAC_FLAG_NONE;
751

752
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
753 754 755
		? 19
		: 17;

756
	if (pvt->dclr0 & BIT(bit))
757 758 759 760 761
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

762
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
763

764 765
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
766
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
767

768 769 770
	edac_dbg(1, "  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		 (dclr & BIT(16)) ?  "un" : "",
		 (dclr & BIT(19)) ? "yes" : "no");
771

772 773
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
774

775
	if (boot_cpu_data.x86 == 0x10)
776 777
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
778

779 780 781 782 783
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
784 785
}

786
/* Display and decode various NB registers for debug purposes. */
787
static void dump_misc_regs(struct amd64_pvt *pvt)
788
{
789
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
790

791 792
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
793

794 795 796
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
797 798

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
799

800
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
801

802 803 804 805
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
		 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
		 : f10_dhar_offset(pvt));
806

807
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
808

809
	amd64_debug_display_dimm_sizes(pvt, 0);
810

811
	/* everything below this point is Fam10h and above */
812
	if (boot_cpu_data.x86 == 0xf)
813
		return;
814

815
	amd64_debug_display_dimm_sizes(pvt, 1);
816

817
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
818

819
	/* Only if NOT ganged does dclr1 have valid info */
820 821
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
822 823
}

824
/*
825
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
826
 */
827
static void prep_chip_selects(struct amd64_pvt *pvt)
828
{
829
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
830 831
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
832
	} else {
833 834
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
835 836 837 838
	}
}

/*
839
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
840
 */
841
static void read_dct_base_mask(struct amd64_pvt *pvt)
842
{
843
	int cs;
844

845
	prep_chip_selects(pvt);
846

847
	for_each_chip_select(cs, 0, pvt) {
848 849
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
850 851
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
852

853
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
854 855
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
856

857 858
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
859

860
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
861 862
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, reg1);
863 864
	}

865
	for_each_chip_select_mask(cs, 0, pvt) {
866 867
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
868 869
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
870

871
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
872 873
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
874

875 876
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
877

878
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
879 880
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, reg1);
881 882 883
	}
}

884
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
885 886 887
{
	enum mem_type type;

888 889 890 891
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
892 893 894 895
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
896 897 898 899
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

900
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
901 902 903 904

	return type;
}

905
/* Get the number of DCT channels the memory controller is using. */
906 907
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
908
	int flag;
909

910
	if (pvt->ext_model >= K8_REV_F)
911
		/* RevF (NPT) and later */
912
		flag = pvt->dclr0 & WIDTH_128;
913
	else
914 915 916 917 918 919 920 921 922
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

923 924
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
925
{
926 927
	struct cpuinfo_x86 *c = &boot_cpu_data;
	u64 addr;
928 929 930
	u8 start_bit = 1;
	u8 end_bit   = 47;

931
	if (c->x86 == 0xf) {
932 933 934 935
		start_bit = 3;
		end_bit   = 39;
	}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
	if (c->x86 == 0x15) {
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
		u8 mce_nid, intlv_en;

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
983 984
}

985
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
986
{
987
	struct cpuinfo_x86 *c = &boot_cpu_data;
988
	int off = range << 3;
989

990 991
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
992

993
	if (c->x86 == 0xf)
994
		return;
995

996 997
	if (!dram_rw(pvt, range))
		return;
998

999 1000
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	/* Factor in CC6 save area by reading dst node's limit reg */
	if (c->x86 == 0x15) {
		struct pci_dev *f1 = NULL;
		u8 nid = dram_dst_node(pvt, range);
		u32 llim;

		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
		if (WARN_ON(!f1))
			return;

		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);

		pvt->ranges[range].lim.lo &= GENMASK(0, 15);

					    /* {[39:27],111b} */
		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;

		pvt->ranges[range].lim.hi &= GENMASK(0, 7);

					    /* [47:40] */
		pvt->ranges[range].lim.hi |= llim >> 13;

		pci_dev_put(f1);
	}
1026 1027
}

1028 1029
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1030 1031
{
	struct mem_ctl_info *src_mci;
1032
	struct amd64_pvt *pvt = mci->pvt_info;
1033 1034 1035
	int channel, csrow;
	u32 page, offset;

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	error_address_to_page_and_offset(sys_addr, &page, &offset);

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!src_mci) {
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1046
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1047 1048 1049
				     page, offset, syndrome,
				     -1, -1, -1,
				     "failed to map error addr to a node",
1050
				     "");
1051 1052 1053 1054 1055 1056
		return;
	}

	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
	if (csrow < 0) {
1057
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1058 1059 1060
				     page, offset, syndrome,
				     -1, -1, -1,
				     "failed to map error addr to a csrow",
1061
				     "");
1062 1063 1064
		return;
	}

1065
	/* CHIPKILL enabled */
1066
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1067
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1068 1069 1070 1071 1072 1073
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1074 1075 1076
			amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
				      "possible error reporting race\n",
				      syndrome);
1077
			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1078 1079 1080
					     page, offset, syndrome,
					     csrow, -1, -1,
					     "unknown syndrome - possible error reporting race",
1081
					     "");
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1093
		channel = ((sys_addr & BIT(3)) != 0);
1094 1095
	}

1096
	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, 1,
1097 1098
			     page, offset, syndrome,
			     csrow, channel, -1,
1099
			     "", "");
1100 1101
}

1102
static int ddr2_cs_size(unsigned i, bool dct_width)
1103
{
1104
	unsigned shift = 0;
1105

1106 1107 1108 1109
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1110
	else
1111
		shift = (i + 1) >> 1;
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1126
		unsigned diff;
1127 1128
		WARN_ON(cs_mode > 10);

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1156 1157 1158 1159 1160
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1171
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1172
{
1173
	int i, j, channels = 0;
1174

1175
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1176
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1177
		return 2;
1178 1179

	/*
1180 1181 1182
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1183 1184 1185 1186
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1187
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1188

1189 1190 1191 1192 1193
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1194 1195
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1196

1197 1198 1199 1200 1201 1202
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1203 1204
	}

1205 1206 1207
	if (channels > 2)
		channels = 2;

1208
	amd64_info("MCT channel count: %d\n", channels);
1209 1210 1211 1212

	return channels;
}

1213
static int ddr3_cs_size(unsigned i, bool dct_width)
1214
{
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1241 1242

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1243
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1244
	else
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1255

1256
	return ddr3_cs_size(cs_mode, false);
1257 1258
}

1259
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1260 1261
{

1262 1263 1264
	if (boot_cpu_data.x86 == 0xf)
		return;

1265
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1266 1267
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1268

1269 1270
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1271 1272

		if (!dct_ganging_enabled(pvt))
1273 1274
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1275

1276 1277 1278
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1279

1280 1281 1282 1283
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1284 1285
	}

1286
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1287 1288
}

1289
/*
1290
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1291 1292
 * Interleaving Modes.
 */
1293
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1294
				bool hi_range_sel, u8 intlv_en)
1295
{
1296
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1297 1298

	if (dct_ganging_enabled(pvt))
1299
		return 0;
1300

1301 1302
	if (hi_range_sel)
		return dct_sel_high;
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1326 1327 1328 1329

	return 0;
}

1330
/* Convert the sys_addr to the normalized DCT address */
1331
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1332 1333
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1334 1335
{
	u64 chan_off;
1336 1337 1338
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1354
		    dhar_valid(pvt) &&
1355
		    (sys_addr >= BIT_64(32)))
1356
			chan_off = hole_off;
1357 1358 1359
		else
			chan_off = dct_sel_base_off;
	} else {
1360 1361 1362 1363 1364 1365 1366 1367 1368
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1369
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1370
			chan_off = hole_off;
1371
		else
1372
			chan_off = dram_base;
1373 1374
	}

1375
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1376 1377 1378 1379 1380 1381
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1382
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1383
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1407
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1408 1409 1410
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1411
	u64 cs_base, cs_mask;
1412 1413 1414
	int cs_found = -EINVAL;
	int csrow;

1415
	mci = mcis[nid];
1416 1417 1418 1419 1420
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1421
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1422

1423 1424
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1425 1426
			continue;

1427
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1428

1429 1430
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1431

1432
		cs_mask = ~cs_mask;
1433

1434 1435
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1436

1437 1438
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1439

1440
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1441 1442 1443 1444 1445 1446
			break;
		}
	}
	return cs_found;
}

1447 1448 1449 1450 1451
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1452
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1483
/* For a given @dram_range, check if @sys_addr falls within it. */
1484
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1485 1486
				  u64 sys_addr, int *nid, int *chan_sel)
{
1487
	int cs_found = -EINVAL;
1488
	u64 chan_addr;
1489
	u32 dct_sel_base;
1490
	u8 channel;
1491
	bool high_range = false;
1492

1493
	u8 node_id    = dram_dst_node(pvt, range);
1494
	u8 intlv_en   = dram_intlv_en(pvt, range);
1495
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1496

1497 1498
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1499

1500 1501 1502 1503 1504 1505 1506 1507
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1508
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1509 1510
		return -EINVAL;

1511
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1522
		high_range = true;
1523

1524
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1525

1526
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1527
					  high_range, dct_sel_base);
1528

1529 1530 1531 1532
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1533

1534
	/* remove channel interleave */
1535 1536 1537
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1552 1553
	}

1554
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1555

1556
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1557 1558 1559 1560 1561 1562 1563 1564

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1565
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1566 1567
				       int *node, int *chan_sel)
{
1568 1569
	int cs_found = -EINVAL;
	unsigned range;
1570

1571
	for (range = 0; range < DRAM_RANGES; range++) {
1572

1573
		if (!dram_rw(pvt, range))
1574 1575
			continue;

1576 1577
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1578

1579
			cs_found = f1x_match_to_this_node(pvt, range,
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1590 1591
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1592
 *
1593 1594
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1595
 */
1596
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1597
				     u16 syndrome)
1598 1599 1600 1601 1602
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1603 1604
	error_address_to_page_and_offset(sys_addr, &page, &offset);

1605
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1606

1607
	if (csrow < 0) {
1608
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1609 1610 1611
				     page, offset, syndrome,
				     -1, -1, -1,
				     "failed to map error addr to a csrow",
1612
				     "");
1613 1614 1615 1616 1617 1618 1619 1620
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1621
	if (dct_ganging_enabled(pvt))
1622
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1623

1624
	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1625 1626
			     page, offset, syndrome,
			     csrow, chan, -1,
1627
			     "", "");
1628 1629 1630
}

/*
1631
 * debug routine to display the memory sizes of all logical DIMMs and its
1632
 * CSROWs
1633
 */
1634
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1635
{
1636
	int dimm, size0, size1, factor = 0;
1637 1638
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1639

1640
	if (boot_cpu_data.x86 == 0xf) {
1641
		if (pvt->dclr0 & WIDTH_128)
1642 1643
			factor = 1;

1644
		/* K8 families < revF not supported yet */
1645
	       if (pvt->ext_model < K8_REV_F)
1646 1647 1648 1649 1650
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1651
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1652 1653
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1654

1655 1656
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1657

1658 1659
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1660 1661 1662 1663
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1664
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1665 1666
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1667 1668

		size1 = 0;
1669
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1670 1671
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1672

1673 1674 1675
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1676 1677 1678
	}
}

1679 1680
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1681
		.ctl_name = "K8",
1682 1683
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1684
		.ops = {
1685 1686 1687
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1688
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1689 1690 1691
		}
	},
	[F10_CPUS] = {
1692
		.ctl_name = "F10h",
1693 1694
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1695
		.ops = {
1696
			.early_channel_count	= f1x_early_channel_count,
1697
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1698
			.dbam_to_cs		= f10_dbam_to_chip_select,
1699 1700 1701 1702 1703
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1704 1705
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1706
		.ops = {
1707
			.early_channel_count	= f1x_early_channel_count,
1708
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1709
			.dbam_to_cs		= f15_dbam_to_chip_select,
1710
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1732
/*
1733 1734 1735
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1736
 *
1737
 * Algorithm courtesy of Ross LaFetra from AMD.
1738
 */
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1776 1777
};

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1800 1801
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
			   unsigned v_dim)
1802
{
1803 1804 1805 1806
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1807 1808
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1821

1822 1823 1824
					if (!s)
						return err_sym;
				}
1825

1826 1827 1828 1829
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1830 1831
	}

1832
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1833 1834
	return -1;
}
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1878 1879
	int err_sym = -1;

1880
	if (pvt->ecc_sym_sz == 8)
1881 1882
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1883 1884
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1885 1886
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1887
					  pvt->ecc_sym_sz);
1888
	else {
1889
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1890
		return err_sym;
1891
	}
1892

1893
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1894 1895
}

1896 1897 1898 1899
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1900
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1901 1902
{
	struct amd64_pvt *pvt = mci->pvt_info;
1903
	u64 sys_addr;
1904
	u16 syndrome;
1905 1906

	/* Ensure that the Error Address is VALID */
1907
	if (!(m->status & MCI_STATUS_ADDRV)) {
1908
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1909
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1910 1911 1912
				     0, 0, 0,
				     -1, -1, -1,
				     "HW has no ERROR_ADDRESS available",
1913
				     "");
1914 1915 1916
		return;
	}

1917
	sys_addr = get_error_address(m);
1918
	syndrome = extract_syndrome(m->status);
1919

1920
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1921

1922
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1923 1924 1925
}

/* Handle any Un-correctable Errors (UEs) */
1926
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1927
{
1928
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1929
	int csrow;
1930
	u64 sys_addr;
1931 1932 1933 1934
	u32 page, offset;

	log_mci = mci;

1935
	if (!(m->status & MCI_STATUS_ADDRV)) {
1936
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1937
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1938 1939 1940
				     0, 0, 0,
				     -1, -1, -1,
				     "HW has no ERROR_ADDRESS available",
1941
				     "");
1942 1943 1944
		return;
	}

1945
	sys_addr = get_error_address(m);
1946
	error_address_to_page_and_offset(sys_addr, &page, &offset);
1947 1948 1949 1950 1951

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1952
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1953
	if (!src_mci) {
1954 1955
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1956
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1957 1958
				     page, offset, 0,
				     -1, -1, -1,
1959
				     "ERROR ADDRESS NOT mapped to a MC",
1960
				     "");
1961 1962 1963 1964 1965
		return;
	}

	log_mci = src_mci;

1966
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1967
	if (csrow < 0) {
1968 1969
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1970
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1971 1972 1973
				     page, offset, 0,
				     -1, -1, -1,
				     "ERROR ADDRESS NOT mapped to CS",
1974
				     "");
1975
	} else {
1976
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1977 1978
				     page, offset, 0,
				     csrow, -1, -1,
1979
				     "", "");
1980 1981 1982
	}
}

1983
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1984
					    struct mce *m)
1985
{
1986 1987 1988
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1989

1990
	/* Bail early out if this was an 'observed' error */
1991
	if (PP(ec) == NBSL_PP_OBS)
1992
		return;
1993

1994 1995
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1996 1997
		return;

1998
	if (ecc_type == 2)
1999
		amd64_handle_ce(mci, m);
2000
	else if (ecc_type == 1)
2001
		amd64_handle_ue(mci, m);
2002 2003
}

2004
void amd64_decode_bus_error(int node_id, struct mce *m)
2005
{
2006
	__amd64_decode_bus_error(mcis[node_id], m);
2007 2008
}

2009
/*
2010
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2011
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2012
 */
2013
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2014 2015
{
	/* Reserve the ADDRESS MAP Device */
2016 2017
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2018 2019 2020
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2021
		return -ENODEV;
2022 2023 2024
	}

	/* Reserve the MISC Device */
2025 2026 2027 2028
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2029

2030 2031 2032
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2033

2034
		return -ENODEV;
2035
	}
2036 2037 2038
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2039 2040 2041 2042

	return 0;
}

2043
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2044
{
2045 2046
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2047 2048 2049 2050 2051 2052
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2053
static void read_mc_regs(struct amd64_pvt *pvt)
2054
{
2055
	struct cpuinfo_x86 *c = &boot_cpu_data;
2056
	u64 msr_val;
2057
	u32 tmp;
2058
	unsigned range;
2059 2060 2061 2062 2063

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2064
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2065
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2066 2067 2068 2069

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2070
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2071
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2072
	} else
2073
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2074

2075
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2076

2077
	read_dram_ctl_register(pvt);
2078

2079 2080
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2081

2082 2083 2084 2085 2086 2087 2088
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2089 2090 2091 2092
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2093

2094 2095 2096 2097 2098 2099
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2100 2101
	}

2102
	read_dct_base_mask(pvt);
2103

2104
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2105
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2106

2107
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2108

2109 2110
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2111

2112
	if (!dct_ganging_enabled(pvt)) {
2113 2114
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2115
	}
2116

2117 2118 2119
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2120
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2121
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2122

2123 2124 2125 2126
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2127
	dump_misc_regs(pvt);
2128 2129 2130 2131 2132 2133
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2134
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2164
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2165
{
2166
	u32 cs_mode, nr_pages;
2167
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2168 2169 2170 2171 2172 2173 2174 2175

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2176
	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2177

2178
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2179

2180 2181 2182
	edac_dbg(0, "  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
	edac_dbg(0, "    nr_pages/channel= %u  channel-count = %d\n",
		 nr_pages, pvt->channel_count);
2183 2184 2185 2186 2187 2188 2189 2190

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2191
static int init_csrows(struct mem_ctl_info *mci)
2192 2193
{
	struct csrow_info *csrow;
2194
	struct dimm_info *dimm;
2195
	struct amd64_pvt *pvt = mci->pvt_info;
2196
	u64 base, mask;
2197
	u32 val;
2198 2199 2200
	int i, j, empty = 1;
	enum mem_type mtype;
	enum edac_type edac_mode;
2201
	int nr_pages = 0;
2202

2203
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2204

2205
	pvt->nbcfg = val;
2206

2207 2208 2209
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2210

2211
	for_each_chip_select(i, 0, pvt) {
2212
		csrow = mci->csrows[i];
2213

2214
		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2215 2216
			edac_dbg(1, "----CSROW %d VALID for MC node %d\n",
				 i, pvt->mc_node_id);
2217 2218 2219 2220
			continue;
		}

		empty = 0;
2221
		if (csrow_enabled(i, 0, pvt))
2222
			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2223
		if (csrow_enabled(i, 1, pvt))
2224
			nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2225 2226

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2227 2228
		/* 8 bytes of resolution */

2229
		mtype = amd64_determine_memory_type(pvt, i);
2230

2231 2232 2233
		edac_dbg(1, "  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		edac_dbg(1, "    nr_pages: %u\n",
			 nr_pages * pvt->channel_count);
2234 2235 2236 2237

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2238
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2239 2240
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2241
		else
2242 2243 2244
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2245 2246 2247 2248
			dimm = csrow->channels[j]->dimm;
			dimm->mtype = mtype;
			dimm->edac_mode = edac_mode;
			dimm->nr_pages = nr_pages;
2249
		}
2250 2251 2252 2253
	}

	return empty;
}
2254

2255
/* get all cores on this DCT */
2256
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2257 2258 2259 2260 2261 2262 2263 2264 2265
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2266
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2267 2268
{
	cpumask_var_t mask;
2269
	int cpu, nbe;
2270 2271 2272
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2273
		amd64_warn("%s: Error allocating mask\n", __func__);
2274 2275 2276 2277 2278 2279 2280 2281
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2282
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2283
		nbe = reg->l & MSR_MCGCTL_NBE;
2284

2285 2286 2287
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2299
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2300 2301
{
	cpumask_var_t cmask;
2302
	int cpu;
2303 2304

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2305
		amd64_warn("%s: error allocating mask\n", __func__);
2306 2307 2308
		return false;
	}

2309
	get_cpus_on_this_dct_cpumask(cmask, nid);
2310 2311 2312 2313 2314

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2315 2316
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2317
		if (on) {
2318
			if (reg->l & MSR_MCGCTL_NBE)
2319
				s->flags.nb_mce_enable = 1;
2320

2321
			reg->l |= MSR_MCGCTL_NBE;
2322 2323
		} else {
			/*
2324
			 * Turn off NB MCE reporting only when it was off before
2325
			 */
2326
			if (!s->flags.nb_mce_enable)
2327
				reg->l &= ~MSR_MCGCTL_NBE;
2328 2329 2330 2331 2332 2333 2334 2335 2336
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2337 2338
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2339
{
2340
	bool ret = true;
B
Borislav Petkov 已提交
2341
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2342

2343 2344 2345 2346 2347
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2348
	amd64_read_pci_cfg(F3, NBCTL, &value);
2349

2350 2351
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2352 2353

	value |= mask;
B
Borislav Petkov 已提交
2354
	amd64_write_pci_cfg(F3, NBCTL, value);
2355

2356
	amd64_read_pci_cfg(F3, NBCFG, &value);
2357

2358 2359
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2360

2361
	if (!(value & NBCFG_ECC_ENABLE)) {
2362
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2363

2364
		s->flags.nb_ecc_prev = 0;
2365

2366
		/* Attempt to turn on DRAM ECC Enable */
2367 2368
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2369

2370
		amd64_read_pci_cfg(F3, NBCFG, &value);
2371

2372
		if (!(value & NBCFG_ECC_ENABLE)) {
2373 2374
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2375
			ret = false;
2376
		} else {
2377
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2378
		}
2379
	} else {
2380
		s->flags.nb_ecc_prev = 1;
2381
	}
2382

2383 2384
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2385

2386
	return ret;
2387 2388
}

2389 2390
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2391
{
B
Borislav Petkov 已提交
2392 2393
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2394

2395
	if (!s->nbctl_valid)
2396 2397
		return;

B
Borislav Petkov 已提交
2398
	amd64_read_pci_cfg(F3, NBCTL, &value);
2399
	value &= ~mask;
2400
	value |= s->old_nbctl;
2401

B
Borislav Petkov 已提交
2402
	amd64_write_pci_cfg(F3, NBCTL, value);
2403

2404 2405
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2406 2407 2408
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2409 2410 2411
	}

	/* restore the NB Enable MCGCTL bit */
2412
	if (toggle_ecc_err_reporting(s, nid, OFF))
2413
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2414 2415 2416
}

/*
2417 2418 2419 2420
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2421
 */
2422 2423 2424 2425 2426
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2427

2428
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2429 2430
{
	u32 value;
2431
	u8 ecc_en = 0;
2432
	bool nb_mce_en = false;
2433

2434
	amd64_read_pci_cfg(F3, NBCFG, &value);
2435

2436
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2437
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2438

2439
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2440
	if (!nb_mce_en)
2441 2442 2443
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2444

2445 2446 2447 2448 2449
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2450 2451
}

2452
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2453
{
2454
	int rc;
2455

2456 2457 2458
	rc = amd64_create_sysfs_dbg_files(mci);
	if (rc < 0)
		return rc;
2459

2460 2461 2462 2463 2464 2465 2466 2467
	if (boot_cpu_data.x86 >= 0x10) {
		rc = amd64_create_sysfs_inject_files(mci);
		if (rc < 0)
			return rc;
	}

	return 0;
}
2468

2469 2470 2471
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
	amd64_remove_sysfs_dbg_files(mci);
2472

2473 2474
	if (boot_cpu_data.x86 >= 0x10)
		amd64_remove_sysfs_inject_files(mci);
2475 2476
}

2477 2478
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2479 2480 2481 2482 2483 2484
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2485
	if (pvt->nbcap & NBCAP_SECDED)
2486 2487
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2488
	if (pvt->nbcap & NBCAP_CHIPKILL)
2489 2490 2491 2492 2493
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2494
	mci->ctl_name		= fam->ctl_name;
2495
	mci->dev_name		= pci_name(pvt->F2);
2496 2497 2498 2499 2500 2501 2502
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2503 2504 2505 2506
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2507
{
2508 2509 2510 2511
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2512
	case 0xf:
2513
		fam_type		= &amd64_family_types[K8_CPUS];
2514
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2515
		break;
2516

2517
	case 0x10:
2518
		fam_type		= &amd64_family_types[F10_CPUS];
2519
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2520 2521 2522 2523 2524
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2525 2526 2527
		break;

	default:
2528
		amd64_err("Unsupported family!\n");
2529
		return NULL;
2530
	}
2531

2532 2533
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2534
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2535
		     (fam == 0xf ?
2536 2537 2538
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2539
	return fam_type;
2540 2541
}

2542
static int amd64_init_one_instance(struct pci_dev *F2)
2543 2544
{
	struct amd64_pvt *pvt = NULL;
2545
	struct amd64_family_type *fam_type = NULL;
2546
	struct mem_ctl_info *mci = NULL;
2547
	struct edac_mc_layer layers[2];
2548
	int err = 0, ret;
2549
	u8 nid = get_node_id(F2);
2550 2551 2552 2553

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2554
		goto err_ret;
2555

2556
	pvt->mc_node_id	= nid;
2557
	pvt->F2 = F2;
2558

2559
	ret = -EINVAL;
2560 2561
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2562 2563
		goto err_free;

2564
	ret = -ENODEV;
2565
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2566 2567 2568
	if (err)
		goto err_free;

2569
	read_mc_regs(pvt);
2570 2571 2572 2573

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2574
	 * tables in the 'mci' structure.
2575
	 */
2576
	ret = -EINVAL;
2577 2578
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2579
		goto err_siblings;
2580 2581

	ret = -ENOMEM;
2582 2583 2584 2585 2586 2587
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = pvt->channel_count;
	layers[1].is_virt_csrow = false;
2588
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2589
	if (!mci)
2590
		goto err_siblings;
2591 2592

	mci->pvt_info = pvt;
2593
	mci->pdev = &pvt->F2->dev;
2594

2595
	setup_mci_misc_attrs(mci, fam_type);
2596 2597

	if (init_csrows(mci))
2598 2599 2600 2601
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
2602
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2603 2604
		goto err_add_mc;
	}
2605
	if (set_mc_sysfs_attrs(mci)) {
2606
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2607 2608
		goto err_add_sysfs;
	}
2609

2610 2611 2612 2613 2614 2615
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2616 2617 2618 2619
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2620 2621
	return 0;

2622 2623
err_add_sysfs:
	edac_mc_del_mc(mci->pdev);
2624 2625 2626
err_add_mc:
	edac_mc_free(mci);

2627 2628
err_siblings:
	free_mc_sibling_devs(pvt);
2629

2630 2631
err_free:
	kfree(pvt);
2632

2633
err_ret:
2634 2635 2636
	return ret;
}

2637
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2638
					     const struct pci_device_id *mc_type)
2639
{
2640
	u8 nid = get_node_id(pdev);
2641
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2642
	struct ecc_settings *s;
2643
	int ret = 0;
2644 2645

	ret = pci_enable_device(pdev);
2646
	if (ret < 0) {
2647
		edac_dbg(0, "ret=%d\n", ret);
2648 2649
		return -EIO;
	}
2650

2651 2652 2653
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2654
		goto err_out;
2655 2656 2657

	ecc_stngs[nid] = s;

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2671
	if (ret < 0) {
2672
		amd64_err("Error probing instance: %d\n", nid);
2673 2674
		restore_ecc_error_reporting(s, nid, F3);
	}
2675 2676

	return ret;
2677 2678 2679 2680 2681 2682 2683

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2684 2685 2686 2687 2688 2689
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2690 2691 2692
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2693

2694 2695
	mci = find_mci_by_dev(&pdev->dev);
	del_mc_sysfs_attrs(mci);
2696 2697 2698 2699 2700 2701 2702
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2703
	restore_ecc_error_reporting(s, nid, F3);
2704

2705
	free_mc_sibling_devs(pvt);
2706

2707 2708 2709 2710
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2711 2712
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2713

2714
	/* Free the EDAC CORE resources */
2715
	mci->pvt_info = NULL;
2716
	mcis[nid] = NULL;
2717 2718

	kfree(pvt);
2719 2720 2721 2722 2723 2724 2725 2726
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2727
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2744 2745 2746 2747 2748 2749 2750 2751 2752
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2753 2754 2755 2756 2757 2758
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2759
	.probe		= amd64_probe_one_instance,
2760 2761 2762 2763
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2764
static void setup_pci_device(void)
2765 2766 2767 2768 2769 2770 2771
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2772
	mci = mcis[0];
2773 2774 2775 2776
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2777
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2791
	int err = -ENODEV;
2792

2793
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2794 2795 2796

	opstate_init();

2797
	if (amd_cache_northbridges() < 0)
2798
		goto err_ret;
2799

2800
	err = -ENOMEM;
2801 2802
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2803
	if (!(mcis && ecc_stngs))
2804
		goto err_free;
2805

2806
	msrs = msrs_alloc();
2807
	if (!msrs)
2808
		goto err_free;
2809

2810 2811
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2812
		goto err_pci;
2813

2814
	err = -ENODEV;
2815 2816
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2817

2818 2819
	setup_pci_device();
	return 0;
2820

2821
err_no_instances:
2822
	pci_unregister_driver(&amd64_pci_driver);
2823

2824 2825 2826
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2827

2828 2829 2830 2831 2832 2833 2834
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2835
err_ret:
2836 2837 2838 2839 2840 2841 2842 2843 2844
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2845

2846 2847 2848
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2849 2850 2851
	kfree(mcis);
	mcis = NULL;

2852 2853
	msrs_free(msrs);
	msrs = NULL;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");