amd64_edac.c 72.9 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

130 131 132 133 134 135 136 137 138 139
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

140
	f15h_select_dct(pvt, dct);
141 142 143 144

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
163
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
179
		if (scrubrates[i].scrubval < min_rate)
180 181 182 183 184 185 186 187 188 189 190 191 192 193
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

194
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195

196 197 198
	if (scrubval)
		return scrubrates[i].bandwidth;

199 200 201
	return 0;
}

202
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 204
{
	struct amd64_pvt *pvt = mci->pvt_info;
205
	u32 min_scrubrate = 0x5;
206

207 208 209
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

210 211 212 213
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

214
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 216
}

217
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 219 220
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
221
	int i, retval = -EINVAL;
222

223 224 225 226
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

227
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 229 230

	scrubval = scrubval & 0x001F;

231
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232
		if (scrubrates[i].scrubval == scrubval) {
233
			retval = scrubrates[i].bandwidth;
234 235 236
			break;
		}
	}
237
	return retval;
238 239
}

240
/*
241 242
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
243
 */
244 245
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
246
{
247
	u64 addr;
248 249 250 251 252 253 254 255 256

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

257 258
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
259 260 261 262 263 264 265 266 267 268 269 270
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
271
	unsigned node_id;
272 273 274 275 276 277 278 279 280 281 282 283 284
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
285
	intlv_en = dram_intlv_en(pvt, 0);
286 287

	if (intlv_en == 0) {
288
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290
				goto found;
291
		}
292
		goto err_no_match;
293 294
	}

295 296 297
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
298
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 300 301 302 303 304
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
305
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 307
			break;	/* intlv_sel field matches */

308
		if (++node_id >= DRAM_RANGES)
309 310 311 312 313
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 315 316
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
317 318 319 320
		return NULL;
	}

found:
321
	return edac_mc_find((int)node_id);
322 323 324 325 326 327 328

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
329 330

/*
331 332
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
333
 */
334 335
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
336
{
337 338
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
339

340 341 342 343 344 345 346 347 348 349
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
350

351 352 353 354 355
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
356

357
	*base  = (csbase & base_bits) << addr_shift;
358

359 360 361 362 363
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
364 365
}

366 367 368
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

369 370 371
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

372 373 374
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

375 376 377 378 379 380 381 382 383 384 385 386
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

387 388
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
389 390
			continue;

391 392 393
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
432
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 434 435 436 437
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

438
	/* valid for Fam10h and above */
439
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 441 442 443
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

444
	if (!dhar_valid(pvt)) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

468
	base = dhar_base(pvt);
469 470 471 472 473

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
474
		*hole_offset = f10_dhar_offset(pvt);
475
	else
476
		*hole_offset = k8_dhar_offset(pvt);
477 478 479 480 481 482 483 484 485

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
517
	struct amd64_pvt *pvt = mci->pvt_info;
518 519 520
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

521
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
549
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
585
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 587
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
621
	unsigned node_id, intlv_shift;
622 623 624 625 626 627 628 629 630 631 632 633 634
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
635 636

	BUG_ON(node_id > 7);
637

638
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 640 641 642 643 644 645
	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

646 647
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
648

649
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
666
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

684
	base     = get_dram_base(pvt, pvt->mc_node_id);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
729
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
730

731
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
732 733

	*input_addr_min = base & ~mask;
734
	*input_addr_max = base | mask;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
760 761
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
762 763
	return csrow;
}
764

765
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
766 767 768 769 770

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
771
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
772
{
773
	u8 bit;
774
	unsigned long edac_cap = EDAC_FLAG_NONE;
775

776
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
777 778 779
		? 19
		: 17;

780
	if (pvt->dclr0 & BIT(bit))
781 782 783 784 785
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

786
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
787

788 789 790 791 792 793 794 795 796 797 798
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

799 800 801
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
802 803 804 805 806 807 808 809

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

810
/* Display and decode various NB registers for debug purposes. */
811
static void dump_misc_regs(struct amd64_pvt *pvt)
812
{
813 814 815
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
816
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
817

818
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
819 820
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
821 822

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
823

824
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
825

826 827
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
828 829 830
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
831

832
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
833

834
	amd64_debug_display_dimm_sizes(pvt, 0);
835

836
	/* everything below this point is Fam10h and above */
837
	if (boot_cpu_data.x86 == 0xf)
838
		return;
839

840
	amd64_debug_display_dimm_sizes(pvt, 1);
841

842
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
843

844
	/* Only if NOT ganged does dclr1 have valid info */
845 846
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
847 848
}

849
/*
850
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
851
 */
852
static void prep_chip_selects(struct amd64_pvt *pvt)
853
{
854
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
855 856
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
857
	} else {
858 859
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
860 861 862 863
	}
}

/*
864
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
865
 */
866
static void read_dct_base_mask(struct amd64_pvt *pvt)
867
{
868
	int cs;
869

870
	prep_chip_selects(pvt);
871

872
	for_each_chip_select(cs, 0, pvt) {
873 874
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
875 876
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
877

878
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
879
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
880
				cs, *base0, reg0);
881

882 883
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
884

885 886 887
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
888 889
	}

890
	for_each_chip_select_mask(cs, 0, pvt) {
891 892
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
893 894
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
895

896
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
897
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
898
				cs, *mask0, reg0);
899

900 901
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
902

903 904 905
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
906 907 908
	}
}

909
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
910 911 912
{
	enum mem_type type;

913 914 915 916
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
917 918 919 920
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
921 922 923 924
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

925
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
926 927 928 929

	return type;
}

930
/* Get the number of DCT channels the memory controller is using. */
931 932
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
933
	int flag;
934

935
	if (pvt->ext_model >= K8_REV_F)
936
		/* RevF (NPT) and later */
937
		flag = pvt->dclr0 & WIDTH_128;
938
	else
939 940 941 942 943 944 945 946 947
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

948 949
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
950
{
951 952
	struct cpuinfo_x86 *c = &boot_cpu_data;
	u64 addr;
953 954 955
	u8 start_bit = 1;
	u8 end_bit   = 47;

956
	if (c->x86 == 0xf) {
957 958 959 960
		start_bit = 3;
		end_bit   = 39;
	}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
	if (c->x86 == 0x15) {
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
		u8 mce_nid, intlv_en;

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
1008 1009
}

1010
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1011
{
1012
	struct cpuinfo_x86 *c = &boot_cpu_data;
1013
	int off = range << 3;
1014

1015 1016
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1017

1018
	if (c->x86 == 0xf)
1019
		return;
1020

1021 1022
	if (!dram_rw(pvt, range))
		return;
1023

1024 1025
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	/* Factor in CC6 save area by reading dst node's limit reg */
	if (c->x86 == 0x15) {
		struct pci_dev *f1 = NULL;
		u8 nid = dram_dst_node(pvt, range);
		u32 llim;

		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
		if (WARN_ON(!f1))
			return;

		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);

		pvt->ranges[range].lim.lo &= GENMASK(0, 15);

					    /* {[39:27],111b} */
		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;

		pvt->ranges[range].lim.hi &= GENMASK(0, 7);

					    /* [47:40] */
		pvt->ranges[range].lim.hi |= llim >> 13;

		pci_dev_put(f1);
	}
1051 1052
}

1053 1054
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1055 1056
{
	struct mem_ctl_info *src_mci;
1057
	struct amd64_pvt *pvt = mci->pvt_info;
1058 1059 1060 1061
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
1062
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1063
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1064 1065 1066 1067 1068 1069
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1070 1071
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1084
		channel = ((sys_addr & BIT(3)) != 0);
1085 1086 1087 1088 1089 1090
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1091
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1092
	if (!src_mci) {
1093
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1094
			     (unsigned long)sys_addr);
1095 1096 1097 1098
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1099 1100
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1101 1102 1103
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1104
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1105 1106 1107 1108 1109 1110

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1111
static int ddr2_cs_size(unsigned i, bool dct_width)
1112
{
1113
	unsigned shift = 0;
1114

1115 1116 1117 1118
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1119
	else
1120
		shift = (i + 1) >> 1;
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1135
		unsigned diff;
1136 1137
		WARN_ON(cs_mode > 10);

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1165 1166 1167 1168 1169
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1180
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1181
{
1182
	int i, j, channels = 0;
1183

1184
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1185
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1186
		return 2;
1187 1188

	/*
1189 1190 1191
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1192 1193 1194 1195
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1196
	debugf0("Data width is not 128 bits - need more decoding\n");
1197

1198 1199 1200 1201 1202
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1203 1204
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1205

1206 1207 1208 1209 1210 1211
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1212 1213
	}

1214 1215 1216
	if (channels > 2)
		channels = 2;

1217
	amd64_info("MCT channel count: %d\n", channels);
1218 1219 1220 1221

	return channels;
}

1222
static int ddr3_cs_size(unsigned i, bool dct_width)
1223
{
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1250 1251

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1252
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1253
	else
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1264

1265
	return ddr3_cs_size(cs_mode, false);
1266 1267
}

1268
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1269 1270
{

1271 1272 1273
	if (boot_cpu_data.x86 == 0xf)
		return;

1274 1275 1276
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1277

1278 1279
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1280 1281 1282 1283 1284

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1285
		debugf0("  data interleave for ECC: %s, "
1286 1287 1288 1289
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1290 1291
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1292
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1293 1294 1295
			dct_sel_interleave_addr(pvt));
	}

1296
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1297 1298
}

1299
/*
1300
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 1302
 * Interleaving Modes.
 */
1303
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304
				bool hi_range_sel, u8 intlv_en)
1305
{
1306
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1307 1308

	if (dct_ganging_enabled(pvt))
1309
		return 0;
1310

1311 1312
	if (hi_range_sel)
		return dct_sel_high;
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1336 1337 1338 1339

	return 0;
}

1340
/* Convert the sys_addr to the normalized DCT address */
1341
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1342 1343
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1344 1345
{
	u64 chan_off;
1346 1347 1348
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1364
		    dhar_valid(pvt) &&
1365
		    (sys_addr >= BIT_64(32)))
1366
			chan_off = hole_off;
1367 1368 1369
		else
			chan_off = dct_sel_base_off;
	} else {
1370 1371 1372 1373 1374 1375 1376 1377 1378
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1379
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1380
			chan_off = hole_off;
1381
		else
1382
			chan_off = dram_base;
1383 1384
	}

1385
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1386 1387 1388 1389 1390 1391
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1392
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1393
{
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1417
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1418 1419 1420
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1421
	u64 cs_base, cs_mask;
1422 1423 1424
	int cs_found = -EINVAL;
	int csrow;

1425
	mci = mcis[nid];
1426 1427 1428 1429 1430
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1431
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1432

1433 1434
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1435 1436
			continue;

1437
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1438

1439 1440
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1441

1442
		cs_mask = ~cs_mask;
1443

1444 1445 1446
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1447

1448 1449
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1450 1451 1452 1453 1454 1455 1456 1457

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1458 1459 1460 1461 1462
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1463
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1494
/* For a given @dram_range, check if @sys_addr falls within it. */
1495
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1496 1497
				  u64 sys_addr, int *nid, int *chan_sel)
{
1498
	int cs_found = -EINVAL;
1499
	u64 chan_addr;
1500
	u32 dct_sel_base;
1501
	u8 channel;
1502
	bool high_range = false;
1503

1504
	u8 node_id    = dram_dst_node(pvt, range);
1505
	u8 intlv_en   = dram_intlv_en(pvt, range);
1506
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1507

1508 1509
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1510

1511 1512 1513 1514 1515 1516 1517 1518
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1519
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1520 1521
		return -EINVAL;

1522
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1533
		high_range = true;
1534

1535
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1536

1537
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1538
					  high_range, dct_sel_base);
1539

1540 1541 1542 1543
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1544

1545
	/* remove channel interleave */
1546 1547 1548
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1563 1564
	}

1565
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1566

1567
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1568 1569 1570 1571 1572 1573 1574 1575

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1576
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1577 1578
				       int *node, int *chan_sel)
{
1579 1580
	int cs_found = -EINVAL;
	unsigned range;
1581

1582
	for (range = 0; range < DRAM_RANGES; range++) {
1583

1584
		if (!dram_rw(pvt, range))
1585 1586
			continue;

1587 1588
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1589

1590
			cs_found = f1x_match_to_this_node(pvt, range,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1601 1602
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1603
 *
1604 1605
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1606
 */
1607
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1608
				     u16 syndrome)
1609 1610 1611 1612 1613
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1614
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1615

1616 1617 1618 1619 1620 1621
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1622

1623 1624 1625 1626 1627
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1628
	if (dct_ganging_enabled(pvt))
1629
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1630

1631 1632 1633 1634
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1635
		/*
1636
		 * Channel unknown, report all channels on this CSROW as failed.
1637
		 */
1638
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1639
			edac_mc_handle_ce(mci, page, offset, syndrome,
1640
					  csrow, chan, EDAC_MOD_STR);
1641 1642 1643
}

/*
1644
 * debug routine to display the memory sizes of all logical DIMMs and its
1645
 * CSROWs
1646
 */
1647
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1648
{
1649
	int dimm, size0, size1, factor = 0;
1650 1651
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1652

1653
	if (boot_cpu_data.x86 == 0xf) {
1654
		if (pvt->dclr0 & WIDTH_128)
1655 1656
			factor = 1;

1657
		/* K8 families < revF not supported yet */
1658
	       if (pvt->ext_model < K8_REV_F)
1659 1660 1661 1662 1663
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1664
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1665 1666
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1667

1668
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1669

1670 1671
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1672 1673 1674 1675
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1676
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1677 1678
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1679 1680

		size1 = 0;
1681
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1682 1683
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1684

1685 1686 1687
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1688 1689 1690
	}
}

1691 1692
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1693
		.ctl_name = "K8",
1694 1695
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1696
		.ops = {
1697 1698 1699
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1700
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1701 1702 1703
		}
	},
	[F10_CPUS] = {
1704
		.ctl_name = "F10h",
1705 1706
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1707
		.ops = {
1708
			.early_channel_count	= f1x_early_channel_count,
1709
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1710
			.dbam_to_cs		= f10_dbam_to_chip_select,
1711 1712 1713 1714 1715
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1716 1717
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1718
		.ops = {
1719
			.early_channel_count	= f1x_early_channel_count,
1720
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1721
			.dbam_to_cs		= f15_dbam_to_chip_select,
1722
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1744
/*
1745 1746 1747
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1748
 *
1749
 * Algorithm courtesy of Ross LaFetra from AMD.
1750
 */
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1788 1789
};

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1812 1813
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
			   unsigned v_dim)
1814
{
1815 1816 1817 1818
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1819 1820
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1833

1834 1835 1836
					if (!s)
						return err_sym;
				}
1837

1838 1839 1840 1841
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1842 1843 1844 1845 1846
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1890 1891
	int err_sym = -1;

1892
	if (pvt->ecc_sym_sz == 8)
1893 1894
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1895 1896
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1897 1898
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1899
					  pvt->ecc_sym_sz);
1900
	else {
1901
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1902
		return err_sym;
1903
	}
1904

1905
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1906 1907
}

1908 1909 1910 1911
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1912
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1913 1914
{
	struct amd64_pvt *pvt = mci->pvt_info;
1915
	u64 sys_addr;
1916
	u16 syndrome;
1917 1918

	/* Ensure that the Error Address is VALID */
1919
	if (!(m->status & MCI_STATUS_ADDRV)) {
1920
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1921 1922 1923 1924
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1925
	sys_addr = get_error_address(m);
1926
	syndrome = extract_syndrome(m->status);
1927

1928
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1929

1930
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1931 1932 1933
}

/* Handle any Un-correctable Errors (UEs) */
1934
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1935
{
1936
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1937
	int csrow;
1938
	u64 sys_addr;
1939 1940 1941 1942
	u32 page, offset;

	log_mci = mci;

1943
	if (!(m->status & MCI_STATUS_ADDRV)) {
1944
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1945 1946 1947 1948
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1949
	sys_addr = get_error_address(m);
1950 1951 1952 1953 1954

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1955
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1956
	if (!src_mci) {
1957 1958
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1959 1960 1961 1962 1963 1964
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1965
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1966
	if (csrow < 0) {
1967 1968
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1969 1970
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1971
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1972 1973 1974 1975
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1976
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1977
					    struct mce *m)
1978
{
1979 1980 1981
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1982

1983
	/* Bail early out if this was an 'observed' error */
1984
	if (PP(ec) == NBSL_PP_OBS)
1985
		return;
1986

1987 1988
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1989 1990
		return;

1991
	if (ecc_type == 2)
1992
		amd64_handle_ce(mci, m);
1993
	else if (ecc_type == 1)
1994
		amd64_handle_ue(mci, m);
1995 1996
}

1997
void amd64_decode_bus_error(int node_id, struct mce *m)
1998
{
1999
	__amd64_decode_bus_error(mcis[node_id], m);
2000 2001
}

2002
/*
2003
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2004
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2005
 */
2006
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2007 2008
{
	/* Reserve the ADDRESS MAP Device */
2009 2010
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2011 2012 2013
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2014
		return -ENODEV;
2015 2016 2017
	}

	/* Reserve the MISC Device */
2018 2019 2020 2021
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2022

2023 2024 2025
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2026

2027
		return -ENODEV;
2028
	}
2029 2030 2031
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
2032 2033 2034 2035

	return 0;
}

2036
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2037
{
2038 2039
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2040 2041 2042 2043 2044 2045
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2046
static void read_mc_regs(struct amd64_pvt *pvt)
2047
{
2048
	struct cpuinfo_x86 *c = &boot_cpu_data;
2049
	u64 msr_val;
2050
	u32 tmp;
2051
	unsigned range;
2052 2053 2054 2055 2056

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2057 2058
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2059 2060 2061 2062

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2063 2064
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2065 2066 2067
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2068
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2069

2070
	read_dram_ctl_register(pvt);
2071

2072 2073
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
2093 2094
	}

2095
	read_dct_base_mask(pvt);
2096

2097
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2098
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2099

2100
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2101

2102 2103
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2104

2105
	if (!dct_ganging_enabled(pvt)) {
2106 2107
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2108
	}
2109

2110 2111 2112
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2113
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2114
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2115

2116 2117 2118 2119
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2120
	dump_misc_regs(pvt);
2121 2122 2123 2124 2125 2126
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2127
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2157
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2158
{
2159
	u32 cs_mode, nr_pages;
2160
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2161 2162 2163 2164 2165 2166 2167 2168

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2169
	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2170

2171
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2172

2173
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2184
static int init_csrows(struct mem_ctl_info *mci)
2185 2186
{
	struct csrow_info *csrow;
2187
	struct amd64_pvt *pvt = mci->pvt_info;
2188
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2189
	u32 val;
2190 2191 2192
	int i, j, empty = 1;
	enum mem_type mtype;
	enum edac_type edac_mode;
2193

2194
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2195

2196
	pvt->nbcfg = val;
2197

2198 2199
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2200
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2201

2202
	for_each_chip_select(i, 0, pvt) {
2203 2204
		csrow = &mci->csrows[i];

2205
		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2206 2207 2208 2209 2210 2211 2212 2213 2214
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2215 2216 2217 2218
		if (csrow_enabled(i, 0, pvt))
			csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
		if (csrow_enabled(i, 1, pvt))
			csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2219 2220 2221 2222 2223
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2224 2225 2226

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2227 2228
		/* 8 bytes of resolution */

2229
		mtype = amd64_determine_memory_type(pvt, i);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2245
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2246 2247
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2248
		else
2249 2250 2251 2252 2253 2254
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
			csrow->channels[j].dimm->mtype = mtype;
			csrow->channels[j].dimm->edac_mode = edac_mode;
		}
2255 2256 2257 2258
	}

	return empty;
}
2259

2260
/* get all cores on this DCT */
2261
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2271
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2272 2273
{
	cpumask_var_t mask;
2274
	int cpu, nbe;
2275 2276 2277
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2278
		amd64_warn("%s: Error allocating mask\n", __func__);
2279 2280 2281 2282 2283 2284 2285 2286
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2287
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2288
		nbe = reg->l & MSR_MCGCTL_NBE;
2289 2290

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2291
			cpu, reg->q,
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2304
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2305 2306
{
	cpumask_var_t cmask;
2307
	int cpu;
2308 2309

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2310
		amd64_warn("%s: error allocating mask\n", __func__);
2311 2312 2313
		return false;
	}

2314
	get_cpus_on_this_dct_cpumask(cmask, nid);
2315 2316 2317 2318 2319

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2320 2321
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2322
		if (on) {
2323
			if (reg->l & MSR_MCGCTL_NBE)
2324
				s->flags.nb_mce_enable = 1;
2325

2326
			reg->l |= MSR_MCGCTL_NBE;
2327 2328
		} else {
			/*
2329
			 * Turn off NB MCE reporting only when it was off before
2330
			 */
2331
			if (!s->flags.nb_mce_enable)
2332
				reg->l &= ~MSR_MCGCTL_NBE;
2333 2334 2335 2336 2337 2338 2339 2340 2341
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2342 2343
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2344
{
2345
	bool ret = true;
B
Borislav Petkov 已提交
2346
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2347

2348 2349 2350 2351 2352
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2353
	amd64_read_pci_cfg(F3, NBCTL, &value);
2354

2355 2356
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2357 2358

	value |= mask;
B
Borislav Petkov 已提交
2359
	amd64_write_pci_cfg(F3, NBCTL, value);
2360

2361
	amd64_read_pci_cfg(F3, NBCFG, &value);
2362

2363 2364
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2365

2366
	if (!(value & NBCFG_ECC_ENABLE)) {
2367
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2368

2369
		s->flags.nb_ecc_prev = 0;
2370

2371
		/* Attempt to turn on DRAM ECC Enable */
2372 2373
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2374

2375
		amd64_read_pci_cfg(F3, NBCFG, &value);
2376

2377
		if (!(value & NBCFG_ECC_ENABLE)) {
2378 2379
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2380
			ret = false;
2381
		} else {
2382
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2383
		}
2384
	} else {
2385
		s->flags.nb_ecc_prev = 1;
2386
	}
2387

2388 2389
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2390

2391
	return ret;
2392 2393
}

2394 2395
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2396
{
B
Borislav Petkov 已提交
2397 2398
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2399

2400
	if (!s->nbctl_valid)
2401 2402
		return;

B
Borislav Petkov 已提交
2403
	amd64_read_pci_cfg(F3, NBCTL, &value);
2404
	value &= ~mask;
2405
	value |= s->old_nbctl;
2406

B
Borislav Petkov 已提交
2407
	amd64_write_pci_cfg(F3, NBCTL, value);
2408

2409 2410
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2411 2412 2413
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2414 2415 2416
	}

	/* restore the NB Enable MCGCTL bit */
2417
	if (toggle_ecc_err_reporting(s, nid, OFF))
2418
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2419 2420 2421
}

/*
2422 2423 2424 2425
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2426
 */
2427 2428 2429 2430 2431
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2432

2433
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2434 2435
{
	u32 value;
2436
	u8 ecc_en = 0;
2437
	bool nb_mce_en = false;
2438

2439
	amd64_read_pci_cfg(F3, NBCFG, &value);
2440

2441
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2442
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2443

2444
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2445
	if (!nb_mce_en)
2446 2447 2448
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2449

2450 2451 2452 2453 2454
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2455 2456
}

2457 2458 2459 2460 2461 2462
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2463
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2464 2465 2466 2467 2468 2469
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2470 2471 2472
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2473 2474 2475 2476 2477 2478

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2479 2480
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2481 2482 2483 2484 2485 2486
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2487
	if (pvt->nbcap & NBCAP_SECDED)
2488 2489
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2490
	if (pvt->nbcap & NBCAP_CHIPKILL)
2491 2492 2493 2494 2495
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2496
	mci->ctl_name		= fam->ctl_name;
2497
	mci->dev_name		= pci_name(pvt->F2);
2498 2499 2500 2501 2502 2503 2504
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2505 2506 2507 2508
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2509
{
2510 2511 2512 2513
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2514
	case 0xf:
2515
		fam_type		= &amd64_family_types[K8_CPUS];
2516
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2517
		break;
2518

2519
	case 0x10:
2520
		fam_type		= &amd64_family_types[F10_CPUS];
2521
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2522 2523 2524 2525 2526
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2527 2528 2529
		break;

	default:
2530
		amd64_err("Unsupported family!\n");
2531
		return NULL;
2532
	}
2533

2534 2535
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2536
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2537
		     (fam == 0xf ?
2538 2539 2540
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2541
	return fam_type;
2542 2543
}

2544
static int amd64_init_one_instance(struct pci_dev *F2)
2545 2546
{
	struct amd64_pvt *pvt = NULL;
2547
	struct amd64_family_type *fam_type = NULL;
2548
	struct mem_ctl_info *mci = NULL;
2549
	int err = 0, ret;
2550
	u8 nid = get_node_id(F2);
2551 2552 2553 2554

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2555
		goto err_ret;
2556

2557
	pvt->mc_node_id	= nid;
2558
	pvt->F2 = F2;
2559

2560
	ret = -EINVAL;
2561 2562
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2563 2564
		goto err_free;

2565
	ret = -ENODEV;
2566
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2567 2568 2569
	if (err)
		goto err_free;

2570
	read_mc_regs(pvt);
2571 2572 2573 2574

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2575
	 * tables in the 'mci' structure.
2576
	 */
2577
	ret = -EINVAL;
2578 2579
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2580
		goto err_siblings;
2581 2582

	ret = -ENOMEM;
2583
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2584
	if (!mci)
2585
		goto err_siblings;
2586 2587

	mci->pvt_info = pvt;
2588
	mci->dev = &pvt->F2->dev;
2589

2590
	setup_mci_misc_attrs(mci, fam_type);
2591 2592

	if (init_csrows(mci))
2593 2594
		mci->edac_cap = EDAC_FLAG_NONE;

2595
	set_mc_sysfs_attrs(mci);
2596 2597 2598 2599 2600 2601 2602

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2603 2604 2605 2606 2607 2608
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2609 2610 2611 2612
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2613 2614 2615 2616 2617
	return 0;

err_add_mc:
	edac_mc_free(mci);

2618 2619
err_siblings:
	free_mc_sibling_devs(pvt);
2620

2621 2622
err_free:
	kfree(pvt);
2623

2624
err_ret:
2625 2626 2627
	return ret;
}

2628
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2629
					     const struct pci_device_id *mc_type)
2630
{
2631
	u8 nid = get_node_id(pdev);
2632
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2633
	struct ecc_settings *s;
2634
	int ret = 0;
2635 2636

	ret = pci_enable_device(pdev);
2637 2638 2639 2640
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2641

2642 2643 2644
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2645
		goto err_out;
2646 2647 2648

	ecc_stngs[nid] = s;

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2662
	if (ret < 0) {
2663
		amd64_err("Error probing instance: %d\n", nid);
2664 2665
		restore_ecc_error_reporting(s, nid, F3);
	}
2666 2667

	return ret;
2668 2669 2670 2671 2672 2673 2674

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2675 2676 2677 2678 2679 2680
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2681 2682 2683
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2684 2685 2686 2687 2688 2689 2690 2691

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2692
	restore_ecc_error_reporting(s, nid, F3);
2693

2694
	free_mc_sibling_devs(pvt);
2695

2696 2697 2698 2699
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2700 2701
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2702

2703
	/* Free the EDAC CORE resources */
2704
	mci->pvt_info = NULL;
2705
	mcis[nid] = NULL;
2706 2707

	kfree(pvt);
2708 2709 2710 2711 2712 2713 2714 2715
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2716
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2733 2734 2735 2736 2737 2738 2739 2740 2741
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2742 2743 2744 2745 2746 2747
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2748
	.probe		= amd64_probe_one_instance,
2749 2750 2751 2752
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2753
static void setup_pci_device(void)
2754 2755 2756 2757 2758 2759 2760
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2761
	mci = mcis[0];
2762 2763 2764 2765
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2766
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2780
	int err = -ENODEV;
2781

2782
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2783 2784 2785

	opstate_init();

2786
	if (amd_cache_northbridges() < 0)
2787
		goto err_ret;
2788

2789
	err = -ENOMEM;
2790 2791
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2792
	if (!(mcis && ecc_stngs))
2793
		goto err_free;
2794

2795
	msrs = msrs_alloc();
2796
	if (!msrs)
2797
		goto err_free;
2798

2799 2800
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2801
		goto err_pci;
2802

2803
	err = -ENODEV;
2804 2805
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2806

2807 2808
	setup_pci_device();
	return 0;
2809

2810
err_no_instances:
2811
	pci_unregister_driver(&amd64_pci_driver);
2812

2813 2814 2815
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2816

2817 2818 2819 2820 2821 2822 2823
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2824
err_ret:
2825 2826 2827 2828 2829 2830 2831 2832 2833
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2834

2835 2836 2837
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2838 2839 2840
	kfree(mcis);
	mcis = NULL;

2841 2842
	msrs_free(msrs);
	msrs = NULL;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");