intel_lrc.c 75.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235
					    struct intel_engine_cs *engine);
236
static int intel_lr_context_pin(struct i915_gem_context *ctx,
237
				struct intel_engine_cs *engine);
238

239 240
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241
 * @dev_priv: i915 device private
242 243 244
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263 264 265
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
266 267 268 269
		return 1;

	return 0;
}
270

271
static void
272
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273
{
274
	struct drm_i915_private *dev_priv = engine->i915;
275

276
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277
		engine->idle_lite_restore_wa = ~0;
278

279 280
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281
					(engine->id == VCS || engine->id == VCS2);
282

283
	engine->ctx_desc_template = GEN8_CTX_VALID;
284
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
286
	if (IS_GEN8(dev_priv))
287 288
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289 290 291 292 293 294 295

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 297
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 299
}

300
/**
301 302
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
303
 *
304
 * @ctx: Context to work on
305
 * @engine: Engine the descriptor will be used with
306
 *
307 308 309 310 311 312
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
313
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
314
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
315
 *    bits 32-52:    ctx ID, a globally unique tag
316 317
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
318
 */
319
static void
320
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321
				   struct intel_engine_cs *engine)
322
{
323
	struct intel_context *ce = &ctx->engine[engine->id];
324
	u64 desc;
325

326
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327

328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
329 330
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
331
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
332

333
	ce->lrc_desc = desc;
334 335
}

336
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337
				     struct intel_engine_cs *engine)
338
{
339
	return ctx->engine[engine->id].lrc_desc;
340
}
341

342 343
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
344
{
345

346
	struct intel_engine_cs *engine = rq0->engine;
347
	struct drm_i915_private *dev_priv = rq0->i915;
348
	uint64_t desc[2];
349

350
	if (rq1) {
351
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352 353 354 355
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
356

357
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358
	rq0->elsp_submitted++;
359

360
	/* You must always write both descriptors in the order below. */
361 362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363

364
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365
	/* The context is automatically loaded after the following */
366
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367

368
	/* ELSP is a wo register, use another nearby reg for posting */
369
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 371
}

372 373 374 375 376 377 378 379 380 381
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
382
{
383
	struct intel_engine_cs *engine = rq->engine;
384
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386

387
	reg_state[CTX_RING_TAIL+1] = rq->tail;
388

389 390 391 392 393 394 395
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
396 397
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	struct drm_i915_private *dev_priv = rq0->i915;
402
	unsigned int fw_domains = rq0->engine->fw_domains;
403

404
	execlists_update_context(rq0);
405

406
	if (rq1)
407
		execlists_update_context(rq1);
408

409
	spin_lock_irq(&dev_priv->uncore.lock);
410
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411

412
	execlists_elsp_write(rq0, rq1);
413

414
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415
	spin_unlock_irq(&dev_priv->uncore.lock);
416 417
}

418
static void execlists_context_unqueue(struct intel_engine_cs *engine)
419
{
420
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421
	struct drm_i915_gem_request *cursor, *tmp;
422

423
	assert_spin_locked(&engine->execlist_lock);
424

425 426 427 428
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
429
	WARN_ON(!intel_irqs_enabled(engine->i915));
430

431
	/* Try to read in pairs */
432
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433 434 435
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
436
		} else if (req0->ctx == cursor->ctx) {
437 438
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
439
			cursor->elsp_submitted = req0->elsp_submitted;
440 441
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
442 443 444
			req0 = cursor;
		} else {
			req1 = cursor;
445
			WARN_ON(req1->elsp_submitted);
446 447 448 449
			break;
		}
	}

450 451 452
	if (unlikely(!req0))
		return;

453
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454
		/*
455 456 457 458 459 460
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
461
		 */
462
		struct intel_ringbuffer *ringbuf;
463

464
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
465 466
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
467 468
	}

469
	execlists_submit_requests(req0, req1);
470 471
}

472
static unsigned int
473
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474
{
475
	struct drm_i915_gem_request *head_req;
476

477
	assert_spin_locked(&engine->execlist_lock);
478

479
	head_req = list_first_entry_or_null(&engine->execlist_queue,
480
					    struct drm_i915_gem_request,
481 482
					    execlist_link);

483 484
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
485 486 487 488 489 490

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

491 492
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
493

494
	return 1;
495 496
}

497
static u32
498
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499
		   u32 *context_id)
B
Ben Widawsky 已提交
500
{
501
	struct drm_i915_private *dev_priv = engine->i915;
502
	u32 status;
B
Ben Widawsky 已提交
503

504 505
	read_pointer %= GEN8_CSB_ENTRIES;

506
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507 508 509

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
510

511
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512 513 514
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
515 516
}

517
/**
518
 * intel_lrc_irq_handler() - handle Context Switch interrupts
519
 * @data: tasklet handler passed in unsigned long
520 521 522 523
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
524
static void intel_lrc_irq_handler(unsigned long data)
525
{
526
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527
	struct drm_i915_private *dev_priv = engine->i915;
528
	u32 status_pointer;
529
	unsigned int read_pointer, write_pointer;
530 531
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
532 533
	unsigned int submit_contexts = 0;

534
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535

536
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537

538
	read_pointer = engine->next_context_status_buffer;
539
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540
	if (read_pointer > write_pointer)
541
		write_pointer += GEN8_CSB_ENTRIES;
542 543

	while (read_pointer < write_pointer) {
544 545 546 547 548 549
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
550

551 552 553 554 555 556 557 558
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

559
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560 561 562 563 564 565 566

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
567 568 569 570 571
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

572
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573 574
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
575
				execlists_check_remove_request(engine, csb[i][1]);
576 577
	}

578
	if (submit_contexts) {
579
		if (!engine->disable_lite_restore_wa ||
580 581
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
582
	}
583

584
	spin_unlock(&engine->execlist_lock);
585 586 587

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
588 589
}

590
static void execlists_context_queue(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593
	struct drm_i915_gem_request *cursor;
594
	int num_elements = 0;
595

596
	spin_lock_bh(&engine->execlist_lock);
597

598
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599 600 601 602
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
603
		struct drm_i915_gem_request *tail_req;
604

605
		tail_req = list_last_entry(&engine->execlist_queue,
606
					   struct drm_i915_gem_request,
607 608
					   execlist_link);

609
		if (request->ctx == tail_req->ctx) {
610
			WARN(tail_req->elsp_submitted != 0,
611
				"More than 2 already-submitted reqs queued\n");
612 613
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
614 615 616
		}
	}

617
	i915_gem_request_reference(request);
618
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
619
	request->ctx_hw_id = request->ctx->hw_id;
620
	if (num_elements == 0)
621
		execlists_context_unqueue(engine);
622

623
	spin_unlock_bh(&engine->execlist_lock);
624 625
}

626
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627
{
628
	struct intel_engine_cs *engine = req->engine;
629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
633
	if (engine->gpu_caches_dirty)
634 635
		flush_domains = I915_GEM_GPU_DOMAINS;

636
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 638 639
	if (ret)
		return ret;

640
	engine->gpu_caches_dirty = false;
641 642 643
	return 0;
}

644
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 646
				 struct list_head *vmas)
{
647
	const unsigned other_rings = ~intel_engine_flag(req->engine);
648 649 650 651 652 653 654 655
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

656
		if (obj->active & other_rings) {
657
			ret = i915_gem_object_sync(obj, req->engine, &req);
658 659 660
			if (ret)
				return ret;
		}
661 662 663 664 665 666 667 668 669 670 671 672 673

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
674
	return logical_ring_invalidate_all_caches(req);
675 676
}

677
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678
{
679
	struct intel_engine_cs *engine = request->engine;
680
	struct intel_context *ce = &request->ctx->engine[engine->id];
681
	int ret;
682

683 684 685 686
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
687
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
688

689
	if (!ce->state) {
690 691 692 693 694
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

695
	request->ringbuf = ce->ringbuf;
696

697 698 699 700 701 702
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
703
		ret = i915_guc_wq_check_space(request);
704 705 706 707
		if (ret)
			return ret;
	}

708 709 710
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
711

712 713 714 715
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

716
	if (!ce->initialised) {
717 718 719 720
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

721
		ce->initialised = true;
722 723 724 725 726 727 728 729 730
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

731
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 733 734
	return 0;

err_unpin:
735
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
736
	return ret;
737 738 739 740
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741
 * @request: Request to advance the logical ringbuffer of.
742 743 744 745 746 747
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
748
static int
749
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750
{
751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
752
	struct intel_engine_cs *engine = request->engine;
753

754 755
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
756

757 758 759 760 761 762 763 764 765
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
766

767
	if (intel_engine_stopped(engine))
768
		return 0;
769

770 771 772 773 774 775 776 777
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
778

779 780
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
781 782
	else
		execlists_context_queue(request);
783 784

	return 0;
785 786
}

787 788
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
789
 * @params: execbuffer call parameters.
790 791 792 793 794 795 796 797
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
798
int intel_execlists_submission(struct i915_execbuffer_params *params,
799
			       struct drm_i915_gem_execbuffer2 *args,
800
			       struct list_head *vmas)
801
{
802
	struct drm_device       *dev = params->dev;
803
	struct intel_engine_cs *engine = params->engine;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806
	u64 exec_start;
807 808 809 810 811 812 813 814 815 816
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
817
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

842
	ret = execlists_move_to_gpu(params->request, vmas);
843 844 845
	if (ret)
		return ret;

846
	if (engine == &dev_priv->engine[RCS] &&
847
	    instp_mode != dev_priv->relative_constants_mode) {
848
		ret = intel_ring_begin(params->request, 4);
849 850 851 852 853
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
855 856 857 858 859 860
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

861 862 863
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

864
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865 866 867
	if (ret)
		return ret;

868
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869

870
	i915_gem_execbuffer_move_to_active(vmas, params->request);
871

872 873 874
	return 0;
}

875
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876
{
877
	struct drm_i915_gem_request *req, *tmp;
878
	LIST_HEAD(cancel_list);
879

880
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
881

882
	spin_lock_bh(&engine->execlist_lock);
883
	list_replace_init(&engine->execlist_queue, &cancel_list);
884
	spin_unlock_bh(&engine->execlist_lock);
885

886
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887
		list_del(&req->execlist_link);
888
		i915_gem_request_unreference(req);
889 890 891
	}
}

892
void intel_logical_ring_stop(struct intel_engine_cs *engine)
893
{
894
	struct drm_i915_private *dev_priv = engine->i915;
895 896
	int ret;

897
	if (!intel_engine_initialized(engine))
898 899
		return;

900
	ret = intel_engine_idle(engine);
901
	if (ret)
902
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903
			  engine->name, ret);
904 905

	/* TODO: Is this correct with Execlists enabled? */
906 907 908
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
909 910
		return;
	}
911
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
912 913
}

914
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
915
{
916
	struct intel_engine_cs *engine = req->engine;
917 918
	int ret;

919
	if (!engine->gpu_caches_dirty)
920 921
		return 0;

922
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
923 924 925
	if (ret)
		return ret;

926
	engine->gpu_caches_dirty = false;
927 928 929
	return 0;
}

930
static int intel_lr_context_pin(struct i915_gem_context *ctx,
931
				struct intel_engine_cs *engine)
932
{
933
	struct drm_i915_private *dev_priv = ctx->i915;
934
	struct intel_context *ce = &ctx->engine[engine->id];
935 936
	void *vaddr;
	u32 *lrc_reg_state;
937
	int ret;
938

939
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
940

941
	if (ce->pin_count++)
942 943
		return 0;

944 945
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
946
	if (ret)
947
		goto err;
948

949
	vaddr = i915_gem_object_pin_map(ce->state);
950 951
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
952 953 954
		goto unpin_ctx_obj;
	}

955 956
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

957
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
958
	if (ret)
959
		goto unpin_map;
960

961
	i915_gem_context_reference(ctx);
962
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
963
	intel_lr_context_descriptor_update(ctx, engine);
964 965 966 967

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
968

969 970 971
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972

973
	return 0;
974

975
unpin_map:
976
	i915_gem_object_unpin_map(ce->state);
977
unpin_ctx_obj:
978
	i915_gem_object_ggtt_unpin(ce->state);
979
err:
980
	ce->pin_count = 0;
981 982 983
	return ret;
}

984
void intel_lr_context_unpin(struct i915_gem_context *ctx,
985
			    struct intel_engine_cs *engine)
986
{
987
	struct intel_context *ce = &ctx->engine[engine->id];
988

989
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
990
	GEM_BUG_ON(ce->pin_count == 0);
991

992
	if (--ce->pin_count)
993
		return;
994

995
	intel_unpin_ringbuffer_obj(ce->ringbuf);
996

997 998
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
999

1000 1001 1002
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1003

1004
	i915_gem_context_unreference(ctx);
1005 1006
}

1007
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1008 1009
{
	int ret, i;
1010
	struct intel_engine_cs *engine = req->engine;
1011
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1012
	struct i915_workarounds *w = &req->i915->workarounds;
1013

1014
	if (w->count == 0)
1015 1016
		return 0;

1017
	engine->gpu_caches_dirty = true;
1018
	ret = logical_ring_flush_all_caches(req);
1019 1020 1021
	if (ret)
		return ret;

1022
	ret = intel_ring_begin(req, w->count * 2 + 2);
1023 1024 1025 1026 1027
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1028
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1029 1030 1031 1032 1033 1034
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1035
	engine->gpu_caches_dirty = true;
1036
	ret = logical_ring_flush_all_caches(req);
1037 1038 1039 1040 1041 1042
	if (ret)
		return ret;

	return 0;
}

1043
#define wa_ctx_emit(batch, index, cmd)					\
1044
	do {								\
1045 1046
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1047 1048
			return -ENOSPC;					\
		}							\
1049
		batch[__index] = (cmd);					\
1050 1051
	} while (0)

V
Ville Syrjälä 已提交
1052
#define wa_ctx_emit_reg(batch, index, reg) \
1053
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1071
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1072 1073 1074 1075 1076
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1077 1078 1079 1080 1081 1082
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1083
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1084 1085
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1086
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1087
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1088
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1089
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1090 1091 1092
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1093
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1104
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1105
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1106
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1107
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1108
	wa_ctx_emit(batch, index, 0);
1109 1110 1111 1112

	return index;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1135
 * @engine: only applicable for RCS
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1151
 *
1152 1153 1154 1155 1156 1157 1158 1159
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1160
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1161 1162 1163 1164
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1165
	uint32_t scratch_addr;
1166 1167
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1168
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1169
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1170

1171
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1172
	if (IS_BROADWELL(engine->i915)) {
1173
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1174 1175 1176
		if (rc < 0)
			return rc;
		index = rc;
1177 1178
	}

1179 1180
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1181
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1192

1193 1194
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1195
		wa_ctx_emit(batch, index, MI_NOOP);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1209
 * @engine: only applicable for RCS
1210 1211 1212
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1213
 * @batch: page in which WA are loaded
1214 1215 1216 1217 1218 1219 1220 1221 1222
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1223
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1224 1225 1226 1227 1228 1229
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1230
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1231
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1232

1233
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1234 1235 1236 1237

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1238
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1239 1240 1241 1242
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1243
	int ret;
1244 1245
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1246
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1247 1248
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1249
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1250

1251
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1252
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1253 1254 1255 1256
	if (ret < 0)
		return ret;
	index = ret;

1257 1258 1259 1260 1261 1262 1263
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1264
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1265 1266 1267 1268 1269 1270
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1271
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1272 1273
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1274
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1275
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1276 1277 1278 1279 1280
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1281
	/* WaClearTdlStateAckDirtyBits:bxt */
1282
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1300
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1301 1302
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1303 1304
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1305 1306 1307 1308 1309
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1310
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1311 1312 1313
{
	int ret;

1314
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1315
						   PAGE_ALIGN(size));
1316
	if (IS_ERR(engine->wa_ctx.obj)) {
1317
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1318 1319 1320
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1321 1322
	}

1323
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1324 1325 1326
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1327
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1328 1329 1330 1331 1332 1333
		return ret;
	}

	return 0;
}

1334
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1335
{
1336 1337 1338 1339
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1340 1341 1342
	}
}

1343
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1344 1345 1346 1347 1348
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1349
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1350

1351
	WARN_ON(engine->id != RCS);
1352

1353
	/* update this when WA for higher Gen are added */
1354
	if (INTEL_GEN(engine->i915) > 9) {
1355
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1356
			  INTEL_GEN(engine->i915));
1357
		return 0;
1358
	}
1359

1360
	/* some WA perform writes to scratch page, ensure it is valid */
1361 1362
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1363 1364 1365
		return -EINVAL;
	}

1366
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1367 1368 1369 1370 1371
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1372
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1373 1374 1375
	batch = kmap_atomic(page);
	offset = 0;

1376
	if (IS_GEN8(engine->i915)) {
1377
		ret = gen8_init_indirectctx_bb(engine,
1378 1379 1380 1381 1382 1383
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1384
		ret = gen8_init_perctx_bb(engine,
1385 1386 1387 1388 1389
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1390
	} else if (IS_GEN9(engine->i915)) {
1391
		ret = gen9_init_indirectctx_bb(engine,
1392 1393 1394 1395 1396 1397
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1398
		ret = gen9_init_perctx_bb(engine,
1399 1400 1401 1402 1403
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1404 1405 1406 1407 1408
	}

out:
	kunmap_atomic(batch);
	if (ret)
1409
		lrc_destroy_wa_ctx_obj(engine);
1410 1411 1412 1413

	return ret;
}

1414 1415
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1416
	struct drm_i915_private *dev_priv = engine->i915;
1417 1418 1419 1420 1421 1422

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1423
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1424
{
1425
	struct drm_i915_private *dev_priv = engine->i915;
1426
	unsigned int next_context_status_buffer_hw;
1427

1428
	lrc_init_hws(engine);
1429

1430 1431 1432
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1433

1434
	I915_WRITE(RING_MODE_GEN7(engine),
1435 1436
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1437
	POSTING_READ(RING_MODE_GEN7(engine));
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1448 1449
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1450
	 */
1451
	next_context_status_buffer_hw =
1452
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1453 1454 1455 1456 1457 1458 1459 1460 1461

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1462 1463
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1464

1465
	intel_engine_init_hangcheck(engine);
1466

1467
	return intel_mocs_init_engine(engine);
1468 1469
}

1470
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1471
{
1472
	struct drm_i915_private *dev_priv = engine->i915;
1473 1474
	int ret;

1475
	ret = gen8_init_common_ring(engine);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1489
	return init_workarounds_ring(engine);
1490 1491
}

1492
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1493 1494 1495
{
	int ret;

1496
	ret = gen8_init_common_ring(engine);
1497 1498 1499
	if (ret)
		return ret;

1500
	return init_workarounds_ring(engine);
1501 1502
}

1503 1504 1505
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1506
	struct intel_engine_cs *engine = req->engine;
1507 1508 1509 1510
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1511
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1512 1513 1514 1515 1516 1517 1518
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1519 1520
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1521
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1522 1523
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1524 1525 1526 1527 1528 1529 1530 1531 1532
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1533
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1534
			      u64 offset, unsigned dispatch_flags)
1535
{
1536
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1537
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1538 1539
	int ret;

1540 1541 1542 1543
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1544 1545
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1546
	if (req->ctx->ppgtt &&
1547
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1548
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1549
		    !intel_vgpu_active(req->i915)) {
1550 1551 1552 1553
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1554

1555
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1556 1557
	}

1558
	ret = intel_ring_begin(req, 4);
1559 1560 1561 1562
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1563 1564 1565 1566
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1567 1568 1569 1570 1571 1572 1573 1574
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1575
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1576
{
1577
	struct drm_i915_private *dev_priv = engine->i915;
1578 1579
	unsigned long flags;

1580
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1581 1582 1583
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1584 1585 1586 1587
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1588 1589 1590 1591 1592 1593
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1594
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1595
{
1596
	struct drm_i915_private *dev_priv = engine->i915;
1597 1598 1599
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600 1601 1602
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1603 1604 1605 1606
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1607
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1608 1609 1610
			   u32 invalidate_domains,
			   u32 unused)
{
1611
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1612
	struct intel_engine_cs *engine = ringbuf->engine;
1613
	struct drm_i915_private *dev_priv = request->i915;
1614 1615 1616
	uint32_t cmd;
	int ret;

1617
	ret = intel_ring_begin(request, 4);
1618 1619 1620 1621 1622
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1632
		if (engine == &dev_priv->engine[VCS])
1633
			cmd |= MI_INVALIDATE_BSD;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1647
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1648 1649 1650
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1651
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1652
	struct intel_engine_cs *engine = ringbuf->engine;
1653
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1654
	bool vf_flush_wa = false;
1655 1656 1657 1658 1659 1660 1661 1662
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1663
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1664
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1677 1678 1679 1680
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1681
		if (IS_GEN9(request->i915))
1682 1683
			vf_flush_wa = true;
	}
1684

1685
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1686 1687 1688
	if (ret)
		return ret;

1689 1690 1691 1692 1693 1694 1695 1696 1697
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1709
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1710
{
1711
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1712 1713
}

1714
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1715
{
1716
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1717 1718
}

1719
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1731
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1732 1733
}

1734
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1735
{
1736
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1737 1738

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1739
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1740 1741
}

1742 1743 1744 1745 1746 1747 1748
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1749
static int gen8_emit_request(struct drm_i915_gem_request *request)
1750
{
1751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1752 1753
	int ret;

1754
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1755 1756 1757
	if (ret)
		return ret;

1758 1759
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1760 1761

	intel_logical_ring_emit(ringbuf,
1762 1763
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1764
				intel_hws_seqno_address(request->engine) |
1765
				MI_FLUSH_DW_USE_GTT);
1766
	intel_logical_ring_emit(ringbuf, 0);
1767
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1768 1769
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1770 1771
	return intel_logical_ring_advance_and_submit(request);
}
1772

1773 1774 1775 1776
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1777

1778
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1779 1780 1781
	if (ret)
		return ret;

1782 1783 1784
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1785 1786 1787 1788
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1789
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1790 1791 1792 1793
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1794 1795
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1796 1797
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1798 1799
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1800
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1801
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1802
	return intel_logical_ring_advance_and_submit(request);
1803 1804
}

1805
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1806 1807 1808 1809
{
	struct render_state so;
	int ret;

1810
	ret = i915_gem_render_state_prepare(req->engine, &so);
1811 1812 1813 1814 1815 1816
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1817
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1818
				       I915_DISPATCH_SECURE);
1819 1820 1821
	if (ret)
		goto out;

1822
	ret = req->engine->emit_bb_start(req,
1823 1824 1825 1826 1827
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1828
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1829 1830 1831 1832 1833 1834

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1835
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1836 1837 1838
{
	int ret;

1839
	ret = intel_logical_ring_workarounds_emit(req);
1840 1841 1842
	if (ret)
		return ret;

1843 1844 1845 1846 1847 1848 1849 1850
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1851
	return intel_lr_context_render_state_init(req);
1852 1853
}

1854 1855 1856
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1857
 * @engine: Engine Command Streamer.
1858 1859
 *
 */
1860
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1861
{
1862
	struct drm_i915_private *dev_priv;
1863

1864
	if (!intel_engine_initialized(engine))
1865 1866
		return;

1867 1868 1869 1870 1871 1872 1873
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1874
	dev_priv = engine->i915;
1875

1876 1877 1878
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1879
	}
1880

1881 1882
	if (engine->cleanup)
		engine->cleanup(engine);
1883

1884 1885
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1886

1887
	if (engine->status_page.obj) {
1888
		i915_gem_object_unpin_map(engine->status_page.obj);
1889
		engine->status_page.obj = NULL;
1890
	}
1891
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1892

1893 1894 1895
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1896

1897
	lrc_destroy_wa_ctx_obj(engine);
1898
	engine->i915 = NULL;
1899 1900
}

1901
static void
1902
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1903 1904
{
	/* Default vfuncs which can be overriden by each engine. */
1905 1906 1907 1908 1909 1910
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1911 1912
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1913
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1914
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1915
		engine->set_seqno = bxt_a_set_seqno;
1916 1917 1918
	}
}

1919
static inline void
1920
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1921
{
1922 1923
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1924
	init_waitqueue_head(&engine->irq_queue);
1925 1926
}

1927
static int
1928 1929 1930
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1931
	void *hws;
1932 1933 1934 1935

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1936 1937 1938 1939
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1940
	engine->status_page.obj = dctx_obj;
1941 1942

	return 0;
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1991
{
1992
	const struct logical_ring_info *info = &logical_rings[id];
1993
	struct drm_i915_private *dev_priv = to_i915(dev);
1994
	struct intel_engine_cs *engine = &dev_priv->engine[id];
1995
	enum forcewake_domains fw_domains;
1996

1997 1998 1999 2000 2001
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2002

2003
	engine->i915 = dev_priv;
2004

2005 2006
	/* Intentionally left blank. */
	engine->buffer = NULL;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2036
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2037 2038 2039 2040 2041 2042 2043

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2044
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2045 2046
	int ret;

2047
	ret = i915_cmd_parser_init_ring(engine);
2048
	if (ret)
2049
		goto error;
2050

2051
	ret = execlists_context_deferred_alloc(dctx, engine);
2052
	if (ret)
2053
		goto error;
2054 2055

	/* As this is the default context, always pin it */
2056
	ret = intel_lr_context_pin(dctx, engine);
2057
	if (ret) {
2058 2059
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2060
		goto error;
2061
	}
2062

2063
	/* And setup the hardware status page. */
2064 2065 2066 2067 2068
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2069

2070 2071 2072
	return 0;

error:
2073
	intel_logical_ring_cleanup(engine);
2074
	return ret;
2075 2076 2077 2078
}

static int logical_render_ring_init(struct drm_device *dev)
{
2079
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2080
	int ret;
2081

2082
	if (HAS_L3_DPF(dev))
2083
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2084

2085
	/* Override some for render ring. */
2086
	if (INTEL_INFO(dev)->gen >= 9)
2087
		engine->init_hw = gen9_init_render_ring;
2088
	else
2089 2090 2091 2092 2093
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2094

2095
	ret = intel_init_pipe_control(engine);
2096 2097 2098
	if (ret)
		return ret;

2099
	ret = intel_init_workaround_bb(engine);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2110
	ret = logical_ring_init(engine);
2111
	if (ret) {
2112
		lrc_destroy_wa_ctx_obj(engine);
2113
	}
2114 2115

	return ret;
2116 2117 2118 2119
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2120
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2121

2122
	return logical_ring_init(engine);
2123 2124 2125 2126
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2127
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2128

2129
	return logical_ring_init(engine);
2130 2131 2132 2133
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2134
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2135

2136
	return logical_ring_init(engine);
2137 2138 2139 2140
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2141
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2142

2143
	return logical_ring_init(engine);
2144 2145
}

2146 2147 2148 2149 2150
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2151
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2152 2153 2154 2155
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2192
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2193
cleanup_blt_ring:
2194
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2195
cleanup_bsd_ring:
2196
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2197
cleanup_render_ring:
2198
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2199 2200 2201 2202

	return ret;
}

2203
static u32
2204
make_rpcs(struct drm_i915_private *dev_priv)
2205 2206 2207 2208 2209 2210 2211
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2212
	if (INTEL_GEN(dev_priv) < 9)
2213 2214 2215 2216 2217 2218 2219 2220
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2221
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2222
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2223
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2224 2225 2226 2227
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2228
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2229
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2230
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2231 2232 2233 2234
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2235 2236
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2237
			GEN8_RPCS_EU_MIN_SHIFT;
2238
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2239 2240 2241 2242 2243 2244 2245
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2246
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2247 2248 2249
{
	u32 indirect_ctx_offset;

2250
	switch (INTEL_GEN(engine->i915)) {
2251
	default:
2252
		MISSING_CASE(INTEL_GEN(engine->i915));
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2267
static int
2268
populate_lr_context(struct i915_gem_context *ctx,
2269
		    struct drm_i915_gem_object *ctx_obj,
2270 2271
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2272
{
2273
	struct drm_i915_private *dev_priv = ctx->i915;
2274
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2275 2276
	void *vaddr;
	u32 *reg_state;
2277 2278
	int ret;

2279 2280 2281
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2282 2283 2284 2285 2286 2287
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2288 2289 2290 2291
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2292 2293
		return ret;
	}
2294
	ctx_obj->dirty = true;
2295 2296 2297

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2298
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2299 2300 2301 2302 2303 2304

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2305
	reg_state[CTX_LRI_HEADER_0] =
2306 2307 2308
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2309 2310
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2311
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2312
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2313 2314 2315 2316
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2317 2318 2319
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2320 2321 2322 2323
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2324
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2325 2326 2327 2328 2329 2330
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2331
		       RING_BB_PPGTT);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2347 2348 2349 2350 2351 2352 2353
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2354
				intel_lr_indirect_ctx_offset(engine) << 6;
2355 2356 2357 2358 2359

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2360
	}
2361
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2362 2363
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2364
	/* PDP values well be assigned later if needed */
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2394
		execlists_update_context_pdps(ppgtt, reg_state);
2395 2396
	}

2397
	if (engine->id == RCS) {
2398
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2399
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2400
			       make_rpcs(dev_priv));
2401 2402
	}

2403
	i915_gem_object_unpin_map(ctx_obj);
2404 2405 2406 2407

	return 0;
}

2408 2409
/**
 * intel_lr_context_size() - return the size of the context for an engine
2410
 * @engine: which engine to find the context size for
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2422
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2423 2424 2425
{
	int ret = 0;

2426
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2427

2428
	switch (engine->id) {
2429
	case RCS:
2430
		if (INTEL_GEN(engine->i915) >= 9)
2431 2432 2433
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2444 2445
}

2446
/**
2447
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2448
 * @ctx: LR context to create.
2449
 * @engine: engine to be used with the context.
2450 2451 2452 2453 2454 2455 2456
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2457
 * Return: non-zero on error.
2458
 */
2459
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2460
					    struct intel_engine_cs *engine)
2461
{
2462
	struct drm_i915_gem_object *ctx_obj;
2463
	struct intel_context *ce = &ctx->engine[engine->id];
2464
	uint32_t context_size;
2465
	struct intel_ringbuffer *ringbuf;
2466 2467
	int ret;

2468
	WARN_ON(ce->state);
2469

2470
	context_size = round_up(intel_lr_context_size(engine), 4096);
2471

2472 2473 2474
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2475
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2476
	if (IS_ERR(ctx_obj)) {
2477
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2478
		return PTR_ERR(ctx_obj);
2479 2480
	}

2481
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2482 2483
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2484
		goto error_deref_obj;
2485 2486
	}

2487
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2488 2489
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2490
		goto error_ringbuf;
2491 2492
	}

2493 2494 2495
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2496 2497

	return 0;
2498

2499 2500
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2501
error_deref_obj:
2502
	drm_gem_object_unreference(&ctx_obj->base);
2503 2504
	ce->ringbuf = NULL;
	ce->state = NULL;
2505
	return ret;
2506
}
2507

2508
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2509
			    struct i915_gem_context *ctx)
2510
{
2511
	struct intel_engine_cs *engine;
2512

2513
	for_each_engine(engine, dev_priv) {
2514 2515
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2516
		void *vaddr;
2517 2518 2519 2520 2521
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2522 2523
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2524
			continue;
2525 2526 2527

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2528 2529 2530 2531

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2532
		i915_gem_object_unpin_map(ctx_obj);
2533

2534 2535
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2536 2537
	}
}