xfs_icache.c 46.2 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
8
#include "xfs_format.h"
9 10
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
11 12 13 14
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
15 16
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
17
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
18
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_icache.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22 23
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
24
#include "xfs_reflink.h"
25

26 27
#include <linux/kthread.h>
#include <linux/freezer.h>
J
Jeff Layton 已提交
28
#include <linux/iversion.h>
29

D
Dave Chinner 已提交
30 31 32
/*
 * Allocate and initialise an xfs_inode.
 */
33
struct xfs_inode *
D
Dave Chinner 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
53 54 55
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

56
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
57 58 59 60 61 62 63 64 65
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
66 67 68
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
69 70 71
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
72
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
73 74 75 76 77 78 79 80 81 82 83

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
84
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
85 86 87 88 89 90 91 92 93
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
94 95
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
96 97

	if (ip->i_itemp) {
D
Dave Chinner 已提交
98 99
		ASSERT(!test_bit(XFS_LI_IN_AIL,
				 &ip->i_itemp->ili_item.li_flags));
D
Dave Chinner 已提交
100 101 102 103
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

104 105 106
	kmem_zone_free(xfs_inode_zone, ip);
}

107 108 109 110 111 112 113 114 115 116 117
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

118 119 120 121
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
122 123
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
124 125 126 127 128 129 130 131 132 133 134
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

135
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
136 137
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

182
	lockdep_assert_held(&pag->pag_ici_lock);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

204
	lockdep_assert_held(&pag->pag_ici_lock);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

254 255 256 257 258 259 260 261
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
262
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
263 264 265 266
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
267
	finish_wait(wq, &wait.wq_entry);
268 269
}

270 271 272 273
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
274
 * overwrite the values unconditionally. Hence we save the parameters we
275
 * need to retain across reinitialisation, and rewrite them into the VFS inode
276
 * after reinitialisation even if it fails.
277 278 279 280 281 282 283
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
284
	uint32_t	nlink = inode->i_nlink;
285
	uint32_t	generation = inode->i_generation;
J
Jeff Layton 已提交
286
	uint64_t	version = inode_peek_iversion(inode);
D
Dave Chinner 已提交
287
	umode_t		mode = inode->i_mode;
288
	dev_t		dev = inode->i_rdev;
289 290 291

	error = inode_init_always(mp->m_super, inode);

292
	set_nlink(inode, nlink);
293
	inode->i_generation = generation;
J
Jeff Layton 已提交
294
	inode_set_iversion_queried(inode, version);
D
Dave Chinner 已提交
295
	inode->i_mode = mode;
296
	inode->i_rdev = dev;
297 298 299
	return error;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * If we are allocating a new inode, then check what was returned is
 * actually a free, empty inode. If we are not allocating an inode,
 * then check we didn't find a free inode.
 *
 * Returns:
 *	0		if the inode free state matches the lookup context
 *	-ENOENT		if the inode is free and we are not allocating
 *	-EFSCORRUPTED	if there is any state mismatch at all
 */
static int
xfs_iget_check_free_state(
	struct xfs_inode	*ip,
	int			flags)
{
	if (flags & XFS_IGET_CREATE) {
		/* should be a free inode */
		if (VFS_I(ip)->i_mode != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
				ip->i_ino, VFS_I(ip)->i_mode);
			return -EFSCORRUPTED;
		}

		if (ip->i_d.di_nblocks != 0) {
			xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
				ip->i_ino);
			return -EFSCORRUPTED;
		}
		return 0;
	}

	/* should be an allocated inode */
	if (VFS_I(ip)->i_mode == 0)
		return -ENOENT;

	return 0;
}

D
Dave Chinner 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
365
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
366
		error = -EAGAIN;
D
Dave Chinner 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
383
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
384
		error = -EAGAIN;
D
Dave Chinner 已提交
385 386 387 388
		goto out_error;
	}

	/*
389 390
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
D
Dave Chinner 已提交
391
	 */
392 393
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
394 395 396 397 398 399 400 401 402
		goto out_error;

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

403 404 405 406 407
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
408 409 410 411 412 413 414 415 416 417 418
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

419
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
420
		if (error) {
421
			bool wake;
D
Dave Chinner 已提交
422 423 424 425 426 427
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
428
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
429
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
430 431
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
447
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
448 449
		inode->i_state = I_NEW;

450 451
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
452 453 454 455 456 457 458

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
459
			error = -EAGAIN;
D
Dave Chinner 已提交
460 461 462 463 464 465 466 467 468 469 470 471
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

472 473
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
474
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
502
		return -ENOMEM;
D
Dave Chinner 已提交
503 504 505 506 507

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

508 509 510 511 512
	if (!xfs_inode_verify_forks(ip)) {
		error = -EFSCORRUPTED;
		goto out_destroy;
	}

D
Dave Chinner 已提交
513 514
	trace_xfs_iget_miss(ip);

515 516

	/*
517 518
	 * Check the inode free state is valid. This also detects lookup
	 * racing with unlinks.
519
	 */
520 521
	error = xfs_iget_check_free_state(ip, flags);
	if (error)
D
Dave Chinner 已提交
522 523 524 525 526 527 528 529 530
		goto out_destroy;

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
531
		error = -EAGAIN;
D
Dave Chinner 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
556 557
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
558
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
559 560 561 562 563 564 565
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
566
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
567
		error = -EAGAIN;
D
Dave Chinner 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
634
		return -EINVAL;
D
Dave Chinner 已提交
635

636
	XFS_STATS_INC(mp, xs_ig_attempts);
637

D
Dave Chinner 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
653
		if (flags & XFS_IGET_INCORE) {
654
			error = -ENODATA;
655 656
			goto out_error_or_again;
		}
657
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
658 659 660 661 662 663 664 665 666 667 668

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
669
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
670 671
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
672
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
673
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
674 675 676
	return 0;

out_error_or_again:
677
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
678 679 680 681 682 683 684
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
719
	xfs_irele(ip);
720 721 722
	return 0;
}

723 724 725 726 727 728 729 730
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

731 732
STATIC int
xfs_inode_ag_walk_grab(
733 734
	struct xfs_inode	*ip,
	int			flags)
735 736
{
	struct inode		*inode = VFS_I(ip);
737
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
755 756
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
757 758 759
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

760 761
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
762
		return -EFSCORRUPTED;
763 764 765

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
766
		return -ENOENT;
767 768 769

	/* inode is valid */
	return 0;
770 771 772

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
773
	return -ENOENT;
774 775
}

776 777 778
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
779
	struct xfs_perag	*pag,
780
	int			(*execute)(struct xfs_inode *ip, int flags,
781 782 783
					   void *args),
	int			flags,
	void			*args,
784 785
	int			tag,
	int			iter_flags)
786 787 788 789
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
790
	int			done;
791
	int			nr_found;
792 793

restart:
794
	done = 0;
795 796
	skipped = 0;
	first_index = 0;
797
	nr_found = 0;
798
	do {
799
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
800
		int		error = 0;
801
		int		i;
802

803
		rcu_read_lock();
804 805 806

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
807 808
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
809 810 811 812 813 814
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

815
		if (!nr_found) {
816
			rcu_read_unlock();
817
			break;
818
		}
819

820
		/*
821 822
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
823
		 */
824 825 826
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

827
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
828 829 830
				batch[i] = NULL;

			/*
831 832 833 834 835 836 837 838 839 840
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
841
			 */
842 843
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
844 845 846
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
847
		}
848 849

		/* unlock now we've grabbed the inodes. */
850
		rcu_read_unlock();
851

852 853 854
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
855 856 857
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
858
			error = execute(batch[i], flags, args);
859
			xfs_irele(batch[i]);
D
Dave Chinner 已提交
860
			if (error == -EAGAIN) {
861 862 863
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
864
			if (error && last_error != -EFSCORRUPTED)
865
				last_error = error;
866
		}
867 868

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
869
		if (error == -EFSCORRUPTED)
870 871
			break;

872 873
		cond_resched();

874
	} while (nr_found && !done);
875 876 877 878 879 880 881 882

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

883 884
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
885
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
886
 */
887
void
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

909 910 911 912 913
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
914
void
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

936
int
937
xfs_inode_ag_iterator_flags(
938
	struct xfs_mount	*mp,
939
	int			(*execute)(struct xfs_inode *ip, int flags,
940 941
					   void *args),
	int			flags,
942 943
	void			*args,
	int			iter_flags)
944
{
945
	struct xfs_perag	*pag;
946 947 948 949
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

950
	ag = 0;
951 952
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
953 954
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
955 956 957
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
958
			if (error == -EFSCORRUPTED)
959 960 961
				break;
		}
	}
E
Eric Sandeen 已提交
962
	return last_error;
963 964
}

965 966 967 968 969 970 971 972 973 974 975
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

976 977 978
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
979
	int			(*execute)(struct xfs_inode *ip, int flags,
980 981 982 983 984 985 986 987 988 989 990 991 992
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
993 994
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
995
		xfs_perag_put(pag);
996 997
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
998
			if (error == -EFSCORRUPTED)
999 1000 1001
				break;
		}
	}
E
Eric Sandeen 已提交
1002
	return last_error;
1003 1004
}

D
Dave Chinner 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
1014 1015 1016 1017 1018
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
1019 1020

	/*
1021 1022 1023
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
1024 1025
	 */
	if ((flags & SYNC_TRYLOCK) &&
1026
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
1027 1028 1029 1030 1031 1032
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
1033 1034 1035 1036 1037
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
1038 1039
	 */
	spin_lock(&ip->i_flags_lock);
1040 1041 1042
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1043 1044 1045 1046 1047 1048 1049 1050
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1051
/*
1052 1053
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1054 1055 1056 1057 1058 1059 1060
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1061 1062
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1063 1064
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1065 1066 1067 1068
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1069 1070
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1071
 * the inode is clean.
1072
 *
1073 1074 1075 1076 1077 1078
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1079
 *
1080 1081 1082
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1083
 *	pinned, async	=> requeue
1084
 *	pinned, sync	=> unpin
1085 1086
 *	stale		=> reclaim
 *	clean		=> reclaim
1087
 *	dirty, async	=> requeue
1088
 *	dirty, sync	=> flush, wait and reclaim
1089
 */
1090
STATIC int
1091
xfs_reclaim_inode(
1092 1093
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1094
	int			sync_mode)
1095
{
1096
	struct xfs_buf		*bp = NULL;
1097
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1098
	int			error;
1099

1100 1101
restart:
	error = 0;
1102
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1103 1104 1105 1106 1107
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1108

1109 1110
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1111
		/* xfs_iflush_abort() drops the flush lock */
1112
		xfs_iflush_abort(ip, false);
1113 1114
		goto reclaim;
	}
1115
	if (xfs_ipincount(ip)) {
1116 1117
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1118
		xfs_iunpin_wait(ip);
1119
	}
1120 1121
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1122
		goto reclaim;
1123
	}
1124

1125 1126 1127 1128 1129 1130 1131
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1132 1133 1134
	/*
	 * Now we have an inode that needs flushing.
	 *
1135
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1136
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1137
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1138 1139
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1140 1141 1142 1143
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1144 1145 1146
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1147
	 */
1148
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1149
	if (error == -EAGAIN) {
1150 1151 1152 1153
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1154 1155
	}

1156 1157 1158 1159 1160
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1161
reclaim:
1162 1163
	ASSERT(!xfs_isiflocked(ip));

1164 1165 1166
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1167
	 * We do this as early as possible under the ILOCK so that
1168 1169 1170 1171 1172
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1173 1174 1175 1176 1177 1178
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1179
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1180

1181
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1182 1183 1184 1185 1186 1187 1188
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1189
	spin_lock(&pag->pag_ici_lock);
1190
	if (!radix_tree_delete(&pag->pag_ici_root,
1191
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1192
		ASSERT(0);
1193
	xfs_perag_clear_reclaim_tag(pag);
1194
	spin_unlock(&pag->pag_ici_lock);
1195 1196 1197 1198 1199 1200 1201

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1202
	 * unlocked after the lookup before we go ahead and free it.
1203
	 */
1204
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1205
	xfs_qm_dqdetach(ip);
1206
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1207

1208
	__xfs_inode_free(ip);
1209
	return error;
1210 1211 1212 1213 1214 1215 1216

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1217
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1218
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1219 1220 1221
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1222 1223
	 */
	return 0;
1224 1225
}

1226 1227 1228 1229 1230 1231
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1232
STATIC int
1233 1234 1235 1236 1237 1238 1239 1240 1241
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1242 1243
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1244

1245
restart:
1246
	ag = 0;
1247
	skipped = 0;
1248 1249 1250
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1251
		int		nr_found = 0;
1252 1253 1254

		ag = pag->pag_agno + 1;

1255 1256 1257
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1258
				xfs_perag_put(pag);
1259 1260 1261 1262 1263 1264
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1265
		do {
D
Dave Chinner 已提交
1266 1267
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1268

1269
			rcu_read_lock();
D
Dave Chinner 已提交
1270 1271 1272 1273
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1274 1275
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1276
				done = 1;
1277
				rcu_read_unlock();
1278 1279 1280 1281
				break;
			}

			/*
D
Dave Chinner 已提交
1282 1283
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1284
			 */
D
Dave Chinner 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1297 1298 1299 1300 1301 1302 1303
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1304
				 */
1305 1306 1307
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1308 1309 1310 1311
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1312

D
Dave Chinner 已提交
1313
			/* unlock now we've grabbed the inodes. */
1314
			rcu_read_unlock();
D
Dave Chinner 已提交
1315 1316 1317 1318 1319

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1320
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1321 1322 1323 1324
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1325

1326 1327
			cond_resched();

D
Dave Chinner 已提交
1328
		} while (nr_found && !done && *nr_to_scan > 0);
1329

1330 1331 1332 1333 1334
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1335 1336
		xfs_perag_put(pag);
	}
1337 1338 1339 1340 1341 1342 1343 1344

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1345
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1346 1347 1348
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1349
	return last_error;
1350 1351
}

1352 1353 1354 1355 1356
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1357 1358 1359
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1360 1361 1362
}

/*
1363
 * Scan a certain number of inodes for reclaim.
1364 1365
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1366
 * progress, while we will throttle the speed of reclaim via doing synchronous
1367 1368 1369
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1370
 */
1371
long
1372 1373 1374
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1375
{
1376
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1377
	xfs_reclaim_work_queue(mp);
1378
	xfs_ail_push_all(mp->m_ail);
1379

1380
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1381
}
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1394

1395 1396
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1397 1398
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1399 1400 1401 1402
	}
	return reclaimable;
}

1403 1404 1405 1406 1407
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1408 1409
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1410
		return 0;
1411

1412 1413
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1414 1415
		return 0;

1416
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1417 1418 1419 1420
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1447 1448 1449 1450 1451 1452
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1453
	int ret = 0;
1454
	struct xfs_eofblocks *eofb = args;
1455
	int match;
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1472
	if (eofb) {
1473 1474 1475 1476 1477
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1478 1479 1480 1481 1482 1483 1484
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1485

1486 1487 1488 1489
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1490
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1491 1492 1493 1494 1495
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1496
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1497 1498 1499 1500

	return ret;
}

1501 1502
static int
__xfs_icache_free_eofblocks(
1503
	struct xfs_mount	*mp,
1504 1505 1506 1507
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1508
{
1509 1510 1511 1512 1513
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1525 1526
}

1527 1528 1529 1530 1531 1532
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1533 1534 1535 1536 1537
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1538 1539 1540 1541 1542 1543
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1544
	 * Run a sync scan to increase effectiveness and use the union filter to
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1568
		execute(ip->i_mount, &eofb);
1569 1570 1571 1572

	return scan;
}

1573 1574 1575 1576 1577 1578 1579
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1595
static void
1596
__xfs_inode_set_blocks_tag(
1597 1598 1599 1600 1601
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1602 1603 1604 1605 1606
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1607 1608 1609 1610
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1611
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1612 1613
		return;
	spin_lock(&ip->i_flags_lock);
1614
	ip->i_flags |= xfs_iflag_for_tag(tag);
1615 1616
	spin_unlock(&ip->i_flags_lock);

1617 1618 1619
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1620
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1621
	radix_tree_tag_set(&pag->pag_ici_root,
1622
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1623 1624 1625 1626 1627
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1628
				   tag);
1629
		spin_unlock(&ip->i_mount->m_perag_lock);
1630 1631

		/* kick off background trimming */
1632
		execute(ip->i_mount);
1633

1634
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1635 1636 1637 1638 1639 1640 1641
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1642
xfs_inode_set_eofblocks_tag(
1643
	xfs_inode_t	*ip)
1644 1645
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1646
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1647 1648 1649 1650 1651
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1652
__xfs_inode_clear_blocks_tag(
1653 1654 1655 1656
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1657 1658 1659 1660
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1661
	spin_lock(&ip->i_flags_lock);
1662
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1663 1664
	spin_unlock(&ip->i_flags_lock);

1665 1666 1667 1668
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1669 1670
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1671 1672 1673 1674
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1675
				     tag);
1676
		spin_unlock(&ip->i_mount->m_perag_lock);
1677
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1678 1679 1680 1681 1682 1683
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1684 1685 1686 1687 1688
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1689
	return __xfs_inode_clear_blocks_tag(ip,
1690 1691 1692 1693
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
1694 1695 1696
 * Set ourselves up to free CoW blocks from this file.  If it's already clean
 * then we can bail out quickly, but otherwise we must back off if the file
 * is undergoing some kind of write.
1697
 */
1698 1699
static bool
xfs_prep_free_cowblocks(
1700
	struct xfs_inode	*ip,
1701
	struct xfs_ifork	*ifp)
1702
{
1703 1704 1705 1706 1707
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1708 1709
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
1710
		return false;
1711 1712 1713 1714 1715 1716
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1717 1718
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1719 1720
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		return false;

	return true;
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	struct xfs_eofblocks	*eofb = args;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	int			match;
	int			ret = 0;

	if (!xfs_prep_free_cowblocks(ip, ifp))
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1767 1768
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1769

1770 1771 1772 1773 1774 1775
	/*
	 * Check again, nobody else should be able to dirty blocks or change
	 * the reflink iflag now that we have the first two locks held.
	 */
	if (xfs_prep_free_cowblocks(ip, ifp))
		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1776

1777 1778
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1803
	trace_xfs_inode_set_cowblocks_tag(ip);
1804
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1805
			trace_xfs_perag_set_cowblocks,
1806 1807 1808 1809 1810 1811 1812
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1813
	trace_xfs_inode_clear_cowblocks_tag(ip);
1814
	return __xfs_inode_clear_blocks_tag(ip,
1815
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1816
}
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

/* Disable post-EOF and CoW block auto-reclamation. */
void
xfs_icache_disable_reclaim(
	struct xfs_mount	*mp)
{
	cancel_delayed_work_sync(&mp->m_eofblocks_work);
	cancel_delayed_work_sync(&mp->m_cowblocks_work);
}

/* Enable post-EOF and CoW block auto-reclamation. */
void
xfs_icache_enable_reclaim(
	struct xfs_mount	*mp)
{
	xfs_queue_eofblocks(mp);
	xfs_queue_cowblocks(mp);
}