xfs_icache.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39 40
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
41 42 43
/*
 * Allocate and initialise an xfs_inode.
 */
44
struct xfs_inode *
D
Dave Chinner 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
64 65 66
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

67
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
68 69 70 71 72 73 74 75 76
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
77 78 79
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
80 81 82
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
83
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
84 85 86 87 88 89 90 91 92 93 94

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
95
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
96 97 98 99 100 101 102 103 104
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
105 106
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
107 108 109 110 111 112 113

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

114 115 116
	kmem_zone_free(xfs_inode_zone, ip);
}

117 118 119 120 121 122 123 124 125 126 127
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

128 129 130 131
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
132 133
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
134 135 136 137 138 139 140 141 142 143 144
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

145
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
146 147
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

192
	lockdep_assert_held(&pag->pag_ici_lock);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

214
	lockdep_assert_held(&pag->pag_ici_lock);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

264 265 266 267 268 269 270 271
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
272
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 274 275 276
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
277
	finish_wait(wq, &wait.wq_entry);
278 279
}

280 281 282 283
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
284
 * overwrite the values unconditionally. Hence we save the parameters we
285
 * need to retain across reinitialisation, and rewrite them into the VFS inode
286
 * after reinitialisation even if it fails.
287 288 289 290 291 292 293
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
294
	uint32_t	nlink = inode->i_nlink;
295
	uint32_t	generation = inode->i_generation;
296
	uint64_t	version = inode->i_version;
D
Dave Chinner 已提交
297
	umode_t		mode = inode->i_mode;
298 299 300

	error = inode_init_always(mp->m_super, inode);

301
	set_nlink(inode, nlink);
302
	inode->i_generation = generation;
303
	inode->i_version = version;
D
Dave Chinner 已提交
304
	inode->i_mode = mode;
305 306 307
	return error;
}

D
Dave Chinner 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
333
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
334
		error = -EAGAIN;
D
Dave Chinner 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
351
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
352
		error = -EAGAIN;
D
Dave Chinner 已提交
353 354 355 356 357 358
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
359
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
360
		error = -ENOENT;
D
Dave Chinner 已提交
361 362 363 364 365 366 367 368 369 370
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

371 372 373 374 375
		if (flags & XFS_IGET_INCORE) {
			error = -EAGAIN;
			goto out_error;
		}

D
Dave Chinner 已提交
376 377 378 379 380 381 382 383 384 385 386
		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

387
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
388
		if (error) {
389
			bool wake;
D
Dave Chinner 已提交
390 391 392 393 394 395
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
396
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
397
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
398 399
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
415
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
416 417
		inode->i_state = I_NEW;

418 419
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
420 421 422 423 424 425 426

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
427
			error = -EAGAIN;
D
Dave Chinner 已提交
428 429 430 431 432 433 434 435 436 437 438 439
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

440 441
	if (!(flags & XFS_IGET_INCORE))
		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
442
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
470
		return -ENOMEM;
D
Dave Chinner 已提交
471 472 473 474 475 476 477

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
478
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
479
		error = -ENOENT;
D
Dave Chinner 已提交
480 481 482 483 484 485 486 487 488 489
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
490
		error = -EAGAIN;
D
Dave Chinner 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
515 516
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
517
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
518 519 520 521 522 523 524
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
525
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
526
		error = -EAGAIN;
D
Dave Chinner 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
593
		return -EINVAL;
D
Dave Chinner 已提交
594

595
	XFS_STATS_INC(mp, xs_ig_attempts);
596

D
Dave Chinner 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
612
		if (flags & XFS_IGET_INCORE) {
613
			error = -ENODATA;
614 615
			goto out_error_or_again;
		}
616
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
617 618 619 620 621 622 623 624 625 626 627

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
628
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
629 630
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
631
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
632
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
633 634 635
	return 0;

out_error_or_again:
636
	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
D
Dave Chinner 已提交
637 638 639 640 641 642 643
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * "Is this a cached inode that's also allocated?"
 *
 * Look up an inode by number in the given file system.  If the inode is
 * in cache and isn't in purgatory, return 1 if the inode is allocated
 * and 0 if it is not.  For all other cases (not in cache, being torn
 * down, etc.), return a negative error code.
 *
 * The caller has to prevent inode allocation and freeing activity,
 * presumably by locking the AGI buffer.   This is to ensure that an
 * inode cannot transition from allocated to freed until the caller is
 * ready to allow that.  If the inode is in an intermediate state (new,
 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 * inode is not in the cache, -ENOENT will be returned.  The caller must
 * deal with these scenarios appropriately.
 *
 * This is a specialized use case for the online scrubber; if you're
 * reading this, you probably want xfs_iget.
 */
int
xfs_icache_inode_is_allocated(
	struct xfs_mount	*mp,
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	bool			*inuse)
{
	struct xfs_inode	*ip;
	int			error;

	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
	if (error)
		return error;

	*inuse = !!(VFS_I(ip)->i_mode);
	IRELE(ip);
	return 0;
}

682 683 684 685 686 687 688 689
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

690 691
STATIC int
xfs_inode_ag_walk_grab(
692 693
	struct xfs_inode	*ip,
	int			flags)
694 695
{
	struct inode		*inode = VFS_I(ip);
696
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
714 715
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
716 717 718
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

719 720
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
721
		return -EFSCORRUPTED;
722 723 724

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
725
		return -ENOENT;
726 727 728

	/* inode is valid */
	return 0;
729 730 731

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
732
	return -ENOENT;
733 734
}

735 736 737
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
738
	struct xfs_perag	*pag,
739
	int			(*execute)(struct xfs_inode *ip, int flags,
740 741 742
					   void *args),
	int			flags,
	void			*args,
743 744
	int			tag,
	int			iter_flags)
745 746 747 748
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
749
	int			done;
750
	int			nr_found;
751 752

restart:
753
	done = 0;
754 755
	skipped = 0;
	first_index = 0;
756
	nr_found = 0;
757
	do {
758
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
759
		int		error = 0;
760
		int		i;
761

762
		rcu_read_lock();
763 764 765

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
766 767
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
768 769 770 771 772 773
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

774
		if (!nr_found) {
775
			rcu_read_unlock();
776
			break;
777
		}
778

779
		/*
780 781
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
782
		 */
783 784 785
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

786
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
787 788 789
				batch[i] = NULL;

			/*
790 791 792 793 794 795 796 797 798 799
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
800
			 */
801 802
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
803 804 805
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
806
		}
807 808

		/* unlock now we've grabbed the inodes. */
809
		rcu_read_unlock();
810

811 812 813
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
814 815 816
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
817
			error = execute(batch[i], flags, args);
818
			IRELE(batch[i]);
D
Dave Chinner 已提交
819
			if (error == -EAGAIN) {
820 821 822
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
823
			if (error && last_error != -EFSCORRUPTED)
824
				last_error = error;
825
		}
826 827

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
828
		if (error == -EFSCORRUPTED)
829 830
			break;

831 832
		cond_resched();

833
	} while (nr_found && !done);
834 835 836 837 838 839 840 841

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

842 843
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
844
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
845
 */
846
void
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

868 869 870 871 872
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
873
void
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

895
int
896
xfs_inode_ag_iterator_flags(
897
	struct xfs_mount	*mp,
898
	int			(*execute)(struct xfs_inode *ip, int flags,
899 900
					   void *args),
	int			flags,
901 902
	void			*args,
	int			iter_flags)
903
{
904
	struct xfs_perag	*pag;
905 906 907 908
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

909
	ag = 0;
910 911
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
912 913
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
914 915 916
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
917
			if (error == -EFSCORRUPTED)
918 919 920
				break;
		}
	}
E
Eric Sandeen 已提交
921
	return last_error;
922 923
}

924 925 926 927 928 929 930 931 932 933 934
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

935 936 937
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
938
	int			(*execute)(struct xfs_inode *ip, int flags,
939 940 941 942 943 944 945 946 947 948 949 950 951
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
952 953
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
954
		xfs_perag_put(pag);
955 956
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
957
			if (error == -EFSCORRUPTED)
958 959 960
				break;
		}
	}
E
Eric Sandeen 已提交
961
	return last_error;
962 963
}

D
Dave Chinner 已提交
964 965 966 967 968 969 970 971 972
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
973 974 975 976 977
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
978 979

	/*
980 981 982
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
983 984
	 */
	if ((flags & SYNC_TRYLOCK) &&
985
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
986 987 988 989 990 991
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
992 993 994 995 996
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
997 998
	 */
	spin_lock(&ip->i_flags_lock);
999 1000 1001
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
1002 1003 1004 1005 1006 1007 1008 1009
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

1010
/*
1011 1012
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
1013 1014 1015 1016 1017 1018 1019
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
1020 1021
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
1022 1023
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
1024 1025 1026 1027
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
1028 1029
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
1030
 * the inode is clean.
1031
 *
1032 1033 1034 1035 1036 1037
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
1038
 *
1039 1040 1041
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
1042
 *	pinned, async	=> requeue
1043
 *	pinned, sync	=> unpin
1044 1045
 *	stale		=> reclaim
 *	clean		=> reclaim
1046
 *	dirty, async	=> requeue
1047
 *	dirty, sync	=> flush, wait and reclaim
1048
 */
1049
STATIC int
1050
xfs_reclaim_inode(
1051 1052
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1053
	int			sync_mode)
1054
{
1055
	struct xfs_buf		*bp = NULL;
1056
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1057
	int			error;
1058

1059 1060
restart:
	error = 0;
1061
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1062 1063 1064 1065 1066
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1067

1068 1069
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1070
		/* xfs_iflush_abort() drops the flush lock */
1071
		xfs_iflush_abort(ip, false);
1072 1073
		goto reclaim;
	}
1074
	if (xfs_ipincount(ip)) {
1075 1076
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1077
		xfs_iunpin_wait(ip);
1078
	}
1079 1080
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1081
		goto reclaim;
1082
	}
1083

1084 1085 1086 1087 1088 1089 1090
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1091 1092 1093
	/*
	 * Now we have an inode that needs flushing.
	 *
1094
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1095
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1096
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1097 1098
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1099 1100 1101 1102
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1103 1104 1105
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1106
	 */
1107
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1108
	if (error == -EAGAIN) {
1109 1110 1111 1112
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1113 1114
	}

1115 1116 1117 1118 1119
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1120
reclaim:
1121 1122
	ASSERT(!xfs_isiflocked(ip));

1123 1124 1125
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1126
	 * We do this as early as possible under the ILOCK so that
1127 1128 1129 1130 1131
	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
	 * detect races with us here. By doing this, we guarantee that once
	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
	 * it will see either a valid inode that will serialise correctly, or it
	 * will see an invalid inode that it can skip.
1132 1133 1134 1135 1136 1137
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1138
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1139

1140
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1141 1142 1143 1144 1145 1146 1147
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1148
	spin_lock(&pag->pag_ici_lock);
1149
	if (!radix_tree_delete(&pag->pag_ici_root,
1150
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1151
		ASSERT(0);
1152
	xfs_perag_clear_reclaim_tag(pag);
1153
	spin_unlock(&pag->pag_ici_lock);
1154 1155 1156 1157 1158 1159 1160

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1161
	 * unlocked after the lookup before we go ahead and free it.
1162
	 */
1163
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1164
	xfs_qm_dqdetach(ip);
1165
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1166

1167
	__xfs_inode_free(ip);
1168
	return error;
1169 1170 1171 1172 1173 1174 1175

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1176
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1177
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1178 1179 1180
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1181 1182
	 */
	return 0;
1183 1184
}

1185 1186 1187 1188 1189 1190
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1191
STATIC int
1192 1193 1194 1195 1196 1197 1198 1199 1200
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1201 1202
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1203

1204
restart:
1205
	ag = 0;
1206
	skipped = 0;
1207 1208 1209
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1210
		int		nr_found = 0;
1211 1212 1213

		ag = pag->pag_agno + 1;

1214 1215 1216
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1217
				xfs_perag_put(pag);
1218 1219 1220 1221 1222 1223
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1224
		do {
D
Dave Chinner 已提交
1225 1226
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1227

1228
			rcu_read_lock();
D
Dave Chinner 已提交
1229 1230 1231 1232
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1233 1234
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1235
				done = 1;
1236
				rcu_read_unlock();
1237 1238 1239 1240
				break;
			}

			/*
D
Dave Chinner 已提交
1241 1242
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1243
			 */
D
Dave Chinner 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1256 1257 1258 1259 1260 1261 1262
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1263
				 */
1264 1265 1266
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1267 1268 1269 1270
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1271

D
Dave Chinner 已提交
1272
			/* unlock now we've grabbed the inodes. */
1273
			rcu_read_unlock();
D
Dave Chinner 已提交
1274 1275 1276 1277 1278

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1279
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1280 1281 1282 1283
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1284

1285 1286
			cond_resched();

D
Dave Chinner 已提交
1287
		} while (nr_found && !done && *nr_to_scan > 0);
1288

1289 1290 1291 1292 1293
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1294 1295
		xfs_perag_put(pag);
	}
1296 1297 1298 1299 1300 1301 1302 1303

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1304
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1305 1306 1307
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1308
	return last_error;
1309 1310
}

1311 1312 1313 1314 1315
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1316 1317 1318
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1319 1320 1321
}

/*
1322
 * Scan a certain number of inodes for reclaim.
1323 1324
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1325
 * progress, while we will throttle the speed of reclaim via doing synchronous
1326 1327 1328
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1329
 */
1330
long
1331 1332 1333
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1334
{
1335
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1336
	xfs_reclaim_work_queue(mp);
1337
	xfs_ail_push_all(mp->m_ail);
1338

1339
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1340
}
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1353

1354 1355
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1356 1357
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1358 1359 1360 1361
	}
	return reclaimable;
}

1362 1363 1364 1365 1366
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1367 1368
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1369
		return 0;
1370

1371 1372
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1373 1374
		return 0;

1375
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1376 1377 1378 1379
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1406 1407 1408 1409 1410 1411
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1412
	int ret = 0;
1413
	struct xfs_eofblocks *eofb = args;
1414
	int match;
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1431
	if (eofb) {
1432 1433 1434 1435 1436
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1437 1438 1439 1440 1441 1442 1443
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1444

1445 1446 1447 1448
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1449
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1450 1451 1452 1453 1454
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1455
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1456 1457 1458 1459

	return ret;
}

1460 1461
static int
__xfs_icache_free_eofblocks(
1462
	struct xfs_mount	*mp,
1463 1464 1465 1466
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1467
{
1468 1469 1470 1471 1472
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1484 1485
}

1486 1487 1488 1489 1490 1491
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1492 1493 1494 1495 1496
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1497 1498 1499 1500 1501 1502
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1503
	 * Run a sync scan to increase effectiveness and use the union filter to
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1527
		execute(ip->i_mount, &eofb);
1528 1529 1530 1531

	return scan;
}

1532 1533 1534 1535 1536 1537 1538
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static inline unsigned long
xfs_iflag_for_tag(
	int		tag)
{
	switch (tag) {
	case XFS_ICI_EOFBLOCKS_TAG:
		return XFS_IEOFBLOCKS;
	case XFS_ICI_COWBLOCKS_TAG:
		return XFS_ICOWBLOCKS;
	default:
		ASSERT(0);
		return 0;
	}
}

1554
static void
1555
__xfs_inode_set_blocks_tag(
1556 1557 1558 1559 1560
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1561 1562 1563 1564 1565
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1566 1567 1568 1569
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
1570
	if (ip->i_flags & xfs_iflag_for_tag(tag))
1571 1572
		return;
	spin_lock(&ip->i_flags_lock);
1573
	ip->i_flags |= xfs_iflag_for_tag(tag);
1574 1575
	spin_unlock(&ip->i_flags_lock);

1576 1577 1578
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1579
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1580
	radix_tree_tag_set(&pag->pag_ici_root,
1581
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1582 1583 1584 1585 1586
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1587
				   tag);
1588
		spin_unlock(&ip->i_mount->m_perag_lock);
1589 1590

		/* kick off background trimming */
1591
		execute(ip->i_mount);
1592

1593
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1594 1595 1596 1597 1598 1599 1600
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1601
xfs_inode_set_eofblocks_tag(
1602
	xfs_inode_t	*ip)
1603 1604
{
	trace_xfs_inode_set_eofblocks_tag(ip);
1605
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1606 1607 1608 1609 1610
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
1611
__xfs_inode_clear_blocks_tag(
1612 1613 1614 1615
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1616 1617 1618 1619
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1620
	spin_lock(&ip->i_flags_lock);
1621
	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1622 1623
	spin_unlock(&ip->i_flags_lock);

1624 1625 1626 1627
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1628 1629
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1630 1631 1632 1633
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1634
				     tag);
1635
		spin_unlock(&ip->i_mount->m_perag_lock);
1636
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1637 1638 1639 1640 1641 1642
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1643 1644 1645 1646 1647
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
1648
	return __xfs_inode_clear_blocks_tag(ip,
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
	struct xfs_eofblocks *eofb = args;
	int match;
1673
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1674

1675 1676 1677 1678 1679
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1680 1681 1682 1683 1684 1685 1686 1687 1688
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1689 1690
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1710 1711
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1712

1713
	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1714

1715 1716
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1741
	trace_xfs_inode_set_cowblocks_tag(ip);
1742
	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1743
			trace_xfs_perag_set_cowblocks,
1744 1745 1746 1747 1748 1749 1750
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1751
	trace_xfs_inode_clear_cowblocks_tag(ip);
1752
	return __xfs_inode_clear_blocks_tag(ip,
1753
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1754
}