xfs_icache.c 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39 40
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
41 42 43
/*
 * Allocate and initialise an xfs_inode.
 */
44
struct xfs_inode *
D
Dave Chinner 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
64 65 66
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

67
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
68 69 70 71 72 73 74 75 76 77 78 79
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
80 81 82
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
83 84 85
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
86
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
87 88 89 90 91 92 93 94 95 96 97

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
98
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
99 100 101 102 103 104 105 106 107
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
108 109
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
110 111 112 113 114 115 116

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

117 118 119
	kmem_zone_free(xfs_inode_zone, ip);
}

120 121 122 123 124 125 126 127 128 129 130 131
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

132 133 134 135
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
D
Dave Chinner 已提交
136 137 138 139 140 141 142 143 144 145 146
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

147
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

266 267 268 269
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
270
 * overwrite the values unconditionally. Hence we save the parameters we
271
 * need to retain across reinitialisation, and rewrite them into the VFS inode
272
 * after reinitialisation even if it fails.
273 274 275 276 277 278 279
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
280
	uint32_t	nlink = inode->i_nlink;
281
	uint32_t	generation = inode->i_generation;
282
	uint64_t	version = inode->i_version;
D
Dave Chinner 已提交
283
	umode_t		mode = inode->i_mode;
284 285 286

	error = inode_init_always(mp->m_super, inode);

287
	set_nlink(inode, nlink);
288
	inode->i_generation = generation;
289
	inode->i_version = version;
D
Dave Chinner 已提交
290
	inode->i_mode = mode;
291 292 293
	return error;
}

D
Dave Chinner 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
319
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
320
		error = -EAGAIN;
D
Dave Chinner 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
337
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
338
		error = -EAGAIN;
D
Dave Chinner 已提交
339 340 341 342 343 344
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
345
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
346
		error = -ENOENT;
D
Dave Chinner 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

368
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
393
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
394 395 396 397 398 399 400 401 402 403 404
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
405
			error = -EAGAIN;
D
Dave Chinner 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
419
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
447
		return -ENOMEM;
D
Dave Chinner 已提交
448 449 450 451 452 453 454

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
455
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
456
		error = -ENOENT;
D
Dave Chinner 已提交
457 458 459 460 461 462 463 464 465 466
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
467
		error = -EAGAIN;
D
Dave Chinner 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
492 493
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
494
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
495 496 497 498 499 500 501
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
502
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
503
		error = -EAGAIN;
D
Dave Chinner 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
570
		return -EINVAL;
D
Dave Chinner 已提交
571

572
	XFS_STATS_INC(mp, xs_ig_attempts);
573

D
Dave Chinner 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
589
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
590 591 592 593 594 595 596 597 598 599 600

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
601
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
602 603
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
604
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
605
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
606 607 608
	return 0;

out_error_or_again:
D
Dave Chinner 已提交
609
	if (error == -EAGAIN) {
D
Dave Chinner 已提交
610 611 612 613 614 615 616
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

617 618 619 620 621 622 623 624
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

625 626 627 628 629 630
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

651 652
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
653
		return -EFSCORRUPTED;
654 655 656

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
657
		return -ENOENT;
658 659 660

	/* inode is valid */
	return 0;
661 662 663

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
664
	return -ENOENT;
665 666
}

667 668 669
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
670
	struct xfs_perag	*pag,
671
	int			(*execute)(struct xfs_inode *ip, int flags,
672 673 674 675
					   void *args),
	int			flags,
	void			*args,
	int			tag)
676 677 678 679
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
680
	int			done;
681
	int			nr_found;
682 683

restart:
684
	done = 0;
685 686
	skipped = 0;
	first_index = 0;
687
	nr_found = 0;
688
	do {
689
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
690
		int		error = 0;
691
		int		i;
692

693
		rcu_read_lock();
694 695 696

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
697 698
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
699 700 701 702 703 704
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

705
		if (!nr_found) {
706
			rcu_read_unlock();
707
			break;
708
		}
709

710
		/*
711 712
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
713
		 */
714 715 716 717 718 719 720
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
721 722 723 724 725 726 727 728 729 730
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
731
			 */
732 733
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
734 735 736
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
737
		}
738 739

		/* unlock now we've grabbed the inodes. */
740
		rcu_read_unlock();
741

742 743 744
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
745
			error = execute(batch[i], flags, args);
746
			IRELE(batch[i]);
D
Dave Chinner 已提交
747
			if (error == -EAGAIN) {
748 749 750
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
751
			if (error && last_error != -EFSCORRUPTED)
752
				last_error = error;
753
		}
754 755

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
756
		if (error == -EFSCORRUPTED)
757 758
			break;

759 760
		cond_resched();

761
	} while (nr_found && !done);
762 763 764 765 766 767 768 769

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

770 771
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
772
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
773
 */
774
void
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
STATIC void
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

823
int
824 825
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
826
	int			(*execute)(struct xfs_inode *ip, int flags,
827 828 829
					   void *args),
	int			flags,
	void			*args)
830
{
831
	struct xfs_perag	*pag;
832 833 834 835
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

836
	ag = 0;
837 838
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
839 840 841 842
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
843
			if (error == -EFSCORRUPTED)
844 845 846
				break;
		}
	}
E
Eric Sandeen 已提交
847
	return last_error;
848 849 850 851 852
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
853
	int			(*execute)(struct xfs_inode *ip, int flags,
854 855 856 857 858 859 860 861 862 863 864 865 866 867
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
868
		xfs_perag_put(pag);
869 870
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
871
			if (error == -EFSCORRUPTED)
872 873 874
				break;
		}
	}
E
Eric Sandeen 已提交
875
	return last_error;
876 877
}

D
Dave Chinner 已提交
878 879 880 881 882 883 884 885 886
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
887 888 889 890 891
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
892 893

	/*
894 895 896
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
897 898
	 */
	if ((flags & SYNC_TRYLOCK) &&
899
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
900 901 902 903 904 905
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
906 907 908 909 910
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
911 912
	 */
	spin_lock(&ip->i_flags_lock);
913 914 915
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
916 917 918 919 920 921 922 923
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

924
/*
925 926
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
927 928 929 930 931 932 933
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
934 935
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
936 937
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
938 939 940 941
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
942 943
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
944
 * the inode is clean.
945
 *
946 947 948 949 950 951
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
952
 *
953 954 955
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
956
 *	pinned, async	=> requeue
957
 *	pinned, sync	=> unpin
958 959
 *	stale		=> reclaim
 *	clean		=> reclaim
960
 *	dirty, async	=> requeue
961
 *	dirty, sync	=> flush, wait and reclaim
962
 */
963
STATIC int
964
xfs_reclaim_inode(
965 966
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
967
	int			sync_mode)
968
{
969
	struct xfs_buf		*bp = NULL;
970
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
971
	int			error;
972

973 974
restart:
	error = 0;
975
	xfs_ilock(ip, XFS_ILOCK_EXCL);
976 977 978 979 980
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
981

982 983
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
984
		xfs_iflush_abort(ip, false);
985 986
		goto reclaim;
	}
987
	if (xfs_ipincount(ip)) {
988 989
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
990
		xfs_iunpin_wait(ip);
991
	}
992 993 994 995 996
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

997 998 999 1000 1001 1002 1003
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1004 1005 1006
	/*
	 * Now we have an inode that needs flushing.
	 *
1007
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1008
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1010 1011
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1012 1013 1014 1015
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1016 1017 1018
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1019
	 */
1020
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1021
	if (error == -EAGAIN) {
1022 1023 1024 1025
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1026 1027
	}

1028 1029 1030 1031 1032 1033
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
1034
reclaim:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
	 * We do this as early as possible under the ILOCK and flush lock so
	 * that xfs_iflush_cluster() can be guaranteed to detect races with us
	 * here. By doing this, we guarantee that once xfs_iflush_cluster has
	 * locked both the XFS_ILOCK and the flush lock that it will see either
	 * a valid, flushable inode that will serialise correctly against the
	 * locks below, or it will see a clean (and invalid) inode that it can
	 * skip.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1051
	xfs_ifunlock(ip);
1052
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1053

1054
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1055 1056 1057 1058 1059 1060 1061
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1062
	spin_lock(&pag->pag_ici_lock);
1063
	if (!radix_tree_delete(&pag->pag_ici_root,
1064
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1065
		ASSERT(0);
1066
	xfs_perag_clear_reclaim_tag(pag);
1067
	spin_unlock(&pag->pag_ici_lock);
1068 1069 1070 1071 1072 1073 1074

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1075
	 * unlocked after the lookup before we go ahead and free it.
1076
	 */
1077
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1078
	xfs_qm_dqdetach(ip);
1079
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1080

1081
	__xfs_inode_free(ip);
1082
	return error;
1083 1084 1085 1086 1087 1088 1089

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1090
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1091
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1092 1093 1094
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1095 1096
	 */
	return 0;
1097 1098
}

1099 1100 1101 1102 1103 1104
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1105
STATIC int
1106 1107 1108 1109 1110 1111 1112 1113 1114
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1115 1116
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1117

1118
restart:
1119
	ag = 0;
1120
	skipped = 0;
1121 1122 1123
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1124
		int		nr_found = 0;
1125 1126 1127

		ag = pag->pag_agno + 1;

1128 1129 1130
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1131
				xfs_perag_put(pag);
1132 1133 1134 1135 1136 1137
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1138
		do {
D
Dave Chinner 已提交
1139 1140
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1141

1142
			rcu_read_lock();
D
Dave Chinner 已提交
1143 1144 1145 1146
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1147 1148
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1149
				done = 1;
1150
				rcu_read_unlock();
1151 1152 1153 1154
				break;
			}

			/*
D
Dave Chinner 已提交
1155 1156
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1157
			 */
D
Dave Chinner 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1170 1171 1172 1173 1174 1175 1176
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1177
				 */
1178 1179 1180
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1181 1182 1183 1184
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1185

D
Dave Chinner 已提交
1186
			/* unlock now we've grabbed the inodes. */
1187
			rcu_read_unlock();
D
Dave Chinner 已提交
1188 1189 1190 1191 1192

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1193
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1194 1195 1196 1197
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1198

1199 1200
			cond_resched();

D
Dave Chinner 已提交
1201
		} while (nr_found && !done && *nr_to_scan > 0);
1202

1203 1204 1205 1206 1207
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1208 1209
		xfs_perag_put(pag);
	}
1210 1211 1212 1213 1214 1215 1216 1217

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1218
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1219 1220 1221
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1222
	return last_error;
1223 1224
}

1225 1226 1227 1228 1229
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1230 1231 1232
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1233 1234 1235
}

/*
1236
 * Scan a certain number of inodes for reclaim.
1237 1238
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1239
 * progress, while we will throttle the speed of reclaim via doing synchronous
1240 1241 1242
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1243
 */
1244
long
1245 1246 1247
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1248
{
1249
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1250
	xfs_reclaim_work_queue(mp);
1251
	xfs_ail_push_all(mp->m_ail);
1252

1253
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1254
}
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1267

1268 1269
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1270 1271
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1272 1273 1274 1275
	}
	return reclaimable;
}

1276 1277 1278 1279 1280
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1281 1282
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1283
		return 0;
1284

1285 1286
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1287 1288
		return 0;

1289
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1290 1291 1292 1293
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1294 1295
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1320 1321 1322 1323 1324 1325 1326
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
1327
	struct xfs_eofblocks *eofb = args;
1328
	bool need_iolock = true;
1329
	int match;
1330 1331

	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1348
	if (eofb) {
1349 1350 1351 1352 1353
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1354 1355 1356 1357 1358 1359
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
1360 1361 1362 1363 1364 1365 1366 1367

		/*
		 * A scan owner implies we already hold the iolock. Skip it in
		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
		 * the possibility of EAGAIN being returned.
		 */
		if (eofb->eof_scan_owner == ip->i_ino)
			need_iolock = false;
1368
	}
1369

1370
	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1371 1372

	/* don't revisit the inode if we're not waiting */
D
Dave Chinner 已提交
1373
	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1374 1375 1376 1377 1378
		ret = 0;

	return ret;
}

1379 1380
static int
__xfs_icache_free_eofblocks(
1381
	struct xfs_mount	*mp,
1382 1383 1384 1385
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1386
{
1387 1388 1389 1390 1391
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1403 1404
}

1405 1406 1407 1408 1409 1410
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1411 1412 1413 1414 1415
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));

	/*
	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
	 * can repeatedly trylock on the inode we're currently processing. We
	 * run a sync scan to increase effectiveness and use the union filter to
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_scan_owner = ip->i_ino;
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1451
		execute(ip->i_mount, &eofb);
1452 1453 1454 1455

	return scan;
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

static void
__xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1470 1471 1472 1473 1474
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
	if (ip->i_flags & XFS_IEOFBLOCKS)
		return;
	spin_lock(&ip->i_flags_lock);
	ip->i_flags |= XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1485 1486 1487
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1488
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1489
	radix_tree_tag_set(&pag->pag_ici_root,
1490
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1491 1492 1493 1494 1495
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1496
				   tag);
1497
		spin_unlock(&ip->i_mount->m_perag_lock);
1498 1499

		/* kick off background trimming */
1500
		execute(ip->i_mount);
1501

1502
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1503 1504 1505 1506 1507 1508 1509
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1510
xfs_inode_set_eofblocks_tag(
1511
	xfs_inode_t	*ip)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	trace_xfs_inode_set_eofblocks_tag(ip);
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
__xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1525 1526 1527 1528
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1529 1530 1531 1532
	spin_lock(&ip->i_flags_lock);
	ip->i_flags &= ~XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1533 1534 1535 1536
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1537 1538
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1539 1540 1541 1542
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1543
				     tag);
1544
		spin_unlock(&ip->i_mount->m_perag_lock);
1545
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1546 1547 1548 1549 1550 1551
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
	return __xfs_inode_clear_eofblocks_tag(ip,
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
	struct xfs_eofblocks *eofb = args;
	bool need_iolock = true;
	int match;

	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));

	if (!xfs_reflink_has_real_cow_blocks(ip)) {
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
	if (mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;

		/*
		 * A scan owner implies we already hold the iolock. Skip it in
		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
		 * the possibility of EAGAIN being returned.
		 */
		if (eofb->eof_scan_owner == ip->i_ino)
			need_iolock = false;
	}

	/* Free the CoW blocks */
	if (need_iolock) {
		xfs_ilock(ip, XFS_IOLOCK_EXCL);
		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	}

	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF);

	if (need_iolock) {
		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
		xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	}

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_set_eofblocks_tag(ip);
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
	return __xfs_inode_clear_eofblocks_tag(ip,
			trace_xfs_perag_clear_eofblocks, XFS_ICI_COWBLOCKS_TAG);
}