xfs_icache.c 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36
#include "xfs_reflink.h"
37

38 39 40
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
41 42 43
/*
 * Allocate and initialise an xfs_inode.
 */
44
struct xfs_inode *
D
Dave Chinner 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
64 65 66
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

67
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
68 69 70 71 72 73 74 75 76
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
D
Darrick J. Wong 已提交
77 78 79
	ip->i_cowfp = NULL;
	ip->i_cnextents = 0;
	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
D
Dave Chinner 已提交
80 81 82
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
83
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
84 85 86 87 88 89 90 91 92 93 94

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
95
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
96 97 98 99 100 101 102 103 104
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
D
Darrick J. Wong 已提交
105 106
	if (ip->i_cowfp)
		xfs_idestroy_fork(ip, XFS_COW_FORK);
D
Dave Chinner 已提交
107 108 109 110 111 112 113

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

114 115 116
	kmem_zone_free(xfs_inode_zone, ip);
}

117 118 119 120 121 122 123 124 125 126 127
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

128 129 130 131
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
132 133
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
134 135 136 137 138 139 140 141 142 143 144
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

145
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
146 147
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

192
	lockdep_assert_held(&pag->pag_ici_lock);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

214
	lockdep_assert_held(&pag->pag_ici_lock);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static void
xfs_inew_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);

	do {
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		if (!xfs_iflags_test(ip, XFS_INEW))
			break;
		schedule();
	} while (true);
	finish_wait(wq, &wait.wait);
}

280 281 282 283
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
284
 * overwrite the values unconditionally. Hence we save the parameters we
285
 * need to retain across reinitialisation, and rewrite them into the VFS inode
286
 * after reinitialisation even if it fails.
287 288 289 290 291 292 293
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
294
	uint32_t	nlink = inode->i_nlink;
295
	uint32_t	generation = inode->i_generation;
296
	uint64_t	version = inode->i_version;
D
Dave Chinner 已提交
297
	umode_t		mode = inode->i_mode;
298 299 300

	error = inode_init_always(mp->m_super, inode);

301
	set_nlink(inode, nlink);
302
	inode->i_generation = generation;
303
	inode->i_version = version;
D
Dave Chinner 已提交
304
	inode->i_mode = mode;
305 306 307
	return error;
}

D
Dave Chinner 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
333
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
334
		error = -EAGAIN;
D
Dave Chinner 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
351
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
352
		error = -EAGAIN;
D
Dave Chinner 已提交
353 354 355 356 357 358
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
359
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
360
		error = -ENOENT;
D
Dave Chinner 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

382
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
383
		if (error) {
384
			bool wake;
D
Dave Chinner 已提交
385 386 387 388 389 390
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);
391
			wake = !!__xfs_iflags_test(ip, XFS_INEW);
D
Dave Chinner 已提交
392
			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
393 394
			if (wake)
				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
D
Dave Chinner 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
410
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
411 412
		inode->i_state = I_NEW;

413 414
		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
		init_rwsem(&inode->i_rwsem);
D
Dave Chinner 已提交
415 416 417 418 419 420 421

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
422
			error = -EAGAIN;
D
Dave Chinner 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
436
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
464
		return -ENOMEM;
D
Dave Chinner 已提交
465 466 467 468 469 470 471

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
472
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
473
		error = -ENOENT;
D
Dave Chinner 已提交
474 475 476 477 478 479 480 481 482 483
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
484
		error = -EAGAIN;
D
Dave Chinner 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
509 510
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
511
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
512 513 514 515 516 517 518
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
519
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
520
		error = -EAGAIN;
D
Dave Chinner 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
587
		return -EINVAL;
D
Dave Chinner 已提交
588

589
	XFS_STATS_INC(mp, xs_ig_attempts);
590

D
Dave Chinner 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
606
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
607 608 609 610 611 612 613 614 615 616 617

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
618
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
619 620
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
621
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
622
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
623 624 625
	return 0;

out_error_or_again:
D
Dave Chinner 已提交
626
	if (error == -EAGAIN) {
D
Dave Chinner 已提交
627 628 629 630 631 632 633
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

634 635 636 637 638 639 640 641
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

642 643
STATIC int
xfs_inode_ag_walk_grab(
644 645
	struct xfs_inode	*ip,
	int			flags)
646 647
{
	struct inode		*inode = VFS_I(ip);
648
	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
666 667
	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
668 669 670
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

671 672
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
673
		return -EFSCORRUPTED;
674 675 676

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
677
		return -ENOENT;
678 679 680

	/* inode is valid */
	return 0;
681 682 683

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
684
	return -ENOENT;
685 686
}

687 688 689
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
690
	struct xfs_perag	*pag,
691
	int			(*execute)(struct xfs_inode *ip, int flags,
692 693 694
					   void *args),
	int			flags,
	void			*args,
695 696
	int			tag,
	int			iter_flags)
697 698 699 700
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
701
	int			done;
702
	int			nr_found;
703 704

restart:
705
	done = 0;
706 707
	skipped = 0;
	first_index = 0;
708
	nr_found = 0;
709
	do {
710
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
711
		int		error = 0;
712
		int		i;
713

714
		rcu_read_lock();
715 716 717

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
718 719
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
720 721 722 723 724 725
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

726
		if (!nr_found) {
727
			rcu_read_unlock();
728
			break;
729
		}
730

731
		/*
732 733
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
734
		 */
735 736 737
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

738
			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
739 740 741
				batch[i] = NULL;

			/*
742 743 744 745 746 747 748 749 750 751
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
752
			 */
753 754
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
755 756 757
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
758
		}
759 760

		/* unlock now we've grabbed the inodes. */
761
		rcu_read_unlock();
762

763 764 765
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
766 767 768
			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
			    xfs_iflags_test(batch[i], XFS_INEW))
				xfs_inew_wait(batch[i]);
769
			error = execute(batch[i], flags, args);
770
			IRELE(batch[i]);
D
Dave Chinner 已提交
771
			if (error == -EAGAIN) {
772 773 774
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
775
			if (error && last_error != -EFSCORRUPTED)
776
				last_error = error;
777
		}
778 779

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
780
		if (error == -EFSCORRUPTED)
781 782
			break;

783 784
		cond_resched();

785
	} while (nr_found && !done);
786 787 788 789 790 791 792 793

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

794 795
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
796
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
797
 */
798
void
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Background scanning to trim preallocated CoW space. This is queued
 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 */
STATIC void
xfs_queue_cowblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_cowblocks_work,
				   msecs_to_jiffies(xfs_cowb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_cowblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_cowblocks_work);
	xfs_icache_free_cowblocks(mp, NULL);
	xfs_queue_cowblocks(mp);
}

847
int
848
xfs_inode_ag_iterator_flags(
849
	struct xfs_mount	*mp,
850
	int			(*execute)(struct xfs_inode *ip, int flags,
851 852
					   void *args),
	int			flags,
853 854
	void			*args,
	int			iter_flags)
855
{
856
	struct xfs_perag	*pag;
857 858 859 860
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

861
	ag = 0;
862 863
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
864 865
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
					  iter_flags);
866 867 868
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
869
			if (error == -EFSCORRUPTED)
870 871 872
				break;
		}
	}
E
Eric Sandeen 已提交
873
	return last_error;
874 875
}

876 877 878 879 880 881 882 883 884 885 886
int
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			flags,
	void			*args)
{
	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
}

887 888 889
int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
890
	int			(*execute)(struct xfs_inode *ip, int flags,
891 892 893 894 895 896 897 898 899 900 901 902 903
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
904 905
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
					  0);
D
Dave Chinner 已提交
906
		xfs_perag_put(pag);
907 908
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
909
			if (error == -EFSCORRUPTED)
910 911 912
				break;
		}
	}
E
Eric Sandeen 已提交
913
	return last_error;
914 915
}

D
Dave Chinner 已提交
916 917 918 919 920 921 922 923 924
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
925 926 927 928 929
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
930 931

	/*
932 933 934
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
935 936
	 */
	if ((flags & SYNC_TRYLOCK) &&
937
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
938 939 940 941 942 943
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
944 945 946 947 948
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
949 950
	 */
	spin_lock(&ip->i_flags_lock);
951 952 953
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
954 955 956 957 958 959 960 961
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

962
/*
963 964
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
965 966 967 968 969 970 971
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
972 973
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
974 975
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
976 977 978 979
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
980 981
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
982
 * the inode is clean.
983
 *
984 985 986 987 988 989
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
990
 *
991 992 993
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
994
 *	pinned, async	=> requeue
995
 *	pinned, sync	=> unpin
996 997
 *	stale		=> reclaim
 *	clean		=> reclaim
998
 *	dirty, async	=> requeue
999
 *	dirty, sync	=> flush, wait and reclaim
1000
 */
1001
STATIC int
1002
xfs_reclaim_inode(
1003 1004
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
1005
	int			sync_mode)
1006
{
1007
	struct xfs_buf		*bp = NULL;
1008
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1009
	int			error;
1010

1011 1012
restart:
	error = 0;
1013
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1014 1015 1016 1017 1018
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
1019

1020 1021
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
1022
		/* xfs_iflush_abort() drops the flush lock */
1023
		xfs_iflush_abort(ip, false);
1024 1025
		goto reclaim;
	}
1026
	if (xfs_ipincount(ip)) {
1027 1028
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
1029
		xfs_iunpin_wait(ip);
1030
	}
1031 1032
	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
1033
		goto reclaim;
1034
	}
1035

1036 1037 1038 1039 1040 1041 1042
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

1043 1044 1045
	/*
	 * Now we have an inode that needs flushing.
	 *
1046
	 * Note that xfs_iflush will never block on the inode buffer lock, as
1047
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1048
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1049 1050
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
1051 1052 1053 1054
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
1055 1056 1057
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
1058
	 */
1059
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
1060
	if (error == -EAGAIN) {
1061 1062 1063 1064
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
1065 1066
	}

1067 1068 1069 1070 1071
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

1072
reclaim:
1073 1074
	ASSERT(!xfs_isiflocked(ip));

1075 1076 1077
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
1078 1079 1080 1081 1082 1083
	 * We do this as early as possible under the ILOCK so that
	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
	 * XFS_ILOCK that it will see either a valid, flushable inode that will
	 * serialise correctly, or it will see a clean (and invalid) inode that
	 * it can skip.
1084 1085 1086 1087 1088 1089
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1090
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1091

1092
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1093 1094 1095 1096 1097 1098 1099
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1100
	spin_lock(&pag->pag_ici_lock);
1101
	if (!radix_tree_delete(&pag->pag_ici_root,
1102
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1103
		ASSERT(0);
1104
	xfs_perag_clear_reclaim_tag(pag);
1105
	spin_unlock(&pag->pag_ici_lock);
1106 1107 1108 1109 1110 1111 1112

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1113
	 * unlocked after the lookup before we go ahead and free it.
1114
	 */
1115
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1116
	xfs_qm_dqdetach(ip);
1117
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118

1119
	__xfs_inode_free(ip);
1120
	return error;
1121 1122 1123 1124 1125 1126 1127

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1128
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1129
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1130 1131 1132
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1133 1134
	 */
	return 0;
1135 1136
}

1137 1138 1139 1140 1141 1142
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1143
STATIC int
1144 1145 1146 1147 1148 1149 1150 1151 1152
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1153 1154
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1155

1156
restart:
1157
	ag = 0;
1158
	skipped = 0;
1159 1160 1161
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1162
		int		nr_found = 0;
1163 1164 1165

		ag = pag->pag_agno + 1;

1166 1167 1168
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1169
				xfs_perag_put(pag);
1170 1171 1172 1173 1174 1175
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1176
		do {
D
Dave Chinner 已提交
1177 1178
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1179

1180
			rcu_read_lock();
D
Dave Chinner 已提交
1181 1182 1183 1184
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1185 1186
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1187
				done = 1;
1188
				rcu_read_unlock();
1189 1190 1191 1192
				break;
			}

			/*
D
Dave Chinner 已提交
1193 1194
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1195
			 */
D
Dave Chinner 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1208 1209 1210 1211 1212 1213 1214
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1215
				 */
1216 1217 1218
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1219 1220 1221 1222
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1223

D
Dave Chinner 已提交
1224
			/* unlock now we've grabbed the inodes. */
1225
			rcu_read_unlock();
D
Dave Chinner 已提交
1226 1227 1228 1229 1230

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1231
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1232 1233 1234 1235
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1236

1237 1238
			cond_resched();

D
Dave Chinner 已提交
1239
		} while (nr_found && !done && *nr_to_scan > 0);
1240

1241 1242 1243 1244 1245
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1246 1247
		xfs_perag_put(pag);
	}
1248 1249 1250 1251 1252 1253 1254 1255

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1256
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1257 1258 1259
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1260
	return last_error;
1261 1262
}

1263 1264 1265 1266 1267
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1268 1269 1270
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1271 1272 1273
}

/*
1274
 * Scan a certain number of inodes for reclaim.
1275 1276
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1277
 * progress, while we will throttle the speed of reclaim via doing synchronous
1278 1279 1280
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1281
 */
1282
long
1283 1284 1285
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1286
{
1287
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1288
	xfs_reclaim_work_queue(mp);
1289
	xfs_ail_push_all(mp->m_ail);
1290

1291
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1292
}
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1305

1306 1307
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1308 1309
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1310 1311 1312 1313
	}
	return reclaimable;
}

1314 1315 1316 1317 1318
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1319 1320
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1321
		return 0;
1322

1323 1324
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1325 1326
		return 0;

1327
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1328 1329 1330 1331
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1358 1359 1360 1361 1362 1363
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
1364
	int ret = 0;
1365
	struct xfs_eofblocks *eofb = args;
1366
	int match;
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1383
	if (eofb) {
1384 1385 1386 1387 1388
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1389 1390 1391 1392 1393 1394 1395
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1396

1397 1398 1399 1400
	/*
	 * If the caller is waiting, return -EAGAIN to keep the background
	 * scanner moving and revisit the inode in a subsequent pass.
	 */
1401
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1402 1403 1404 1405 1406
		if (flags & SYNC_WAIT)
			ret = -EAGAIN;
		return ret;
	}
	ret = xfs_free_eofblocks(ip);
1407
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1408 1409 1410 1411

	return ret;
}

1412 1413
static int
__xfs_icache_free_eofblocks(
1414
	struct xfs_mount	*mp,
1415 1416 1417 1418
	struct xfs_eofblocks	*eofb,
	int			(*execute)(struct xfs_inode *ip, int flags,
					   void *args),
	int			tag)
1419
{
1420 1421 1422 1423 1424
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	return xfs_inode_ag_iterator_tag(mp, execute, flags,
					 eofb, tag);
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
1436 1437
}

1438 1439 1440 1441 1442 1443
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
1444 1445 1446 1447 1448
static int
__xfs_inode_free_quota_eofblocks(
	struct xfs_inode	*ip,
	int			(*execute)(struct xfs_mount *mp,
					   struct xfs_eofblocks	*eofb))
1449 1450 1451 1452 1453 1454
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	/*
1455
	 * Run a sync scan to increase effectiveness and use the union filter to
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
1479
		execute(ip->i_mount, &eofb);
1480 1481 1482 1483

	return scan;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
}

static void
__xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*execute)(struct xfs_mount *mp),
	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				  int error, unsigned long caller_ip),
	int		tag)
1498 1499 1500 1501 1502
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	/*
	 * Don't bother locking the AG and looking up in the radix trees
	 * if we already know that we have the tag set.
	 */
	if (ip->i_flags & XFS_IEOFBLOCKS)
		return;
	spin_lock(&ip->i_flags_lock);
	ip->i_flags |= XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1513 1514 1515
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

1516
	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1517
	radix_tree_tag_set(&pag->pag_ici_root,
1518
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1519 1520 1521 1522 1523
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1524
				   tag);
1525
		spin_unlock(&ip->i_mount->m_perag_lock);
1526 1527

		/* kick off background trimming */
1528
		execute(ip->i_mount);
1529

1530
		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1531 1532 1533 1534 1535 1536 1537
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
1538
xfs_inode_set_eofblocks_tag(
1539
	xfs_inode_t	*ip)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	trace_xfs_inode_set_eofblocks_tag(ip);
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
			trace_xfs_perag_set_eofblocks,
			XFS_ICI_EOFBLOCKS_TAG);
}

static void
__xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip,
	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
				    int error, unsigned long caller_ip),
	int		tag)
1553 1554 1555 1556
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

1557 1558 1559 1560
	spin_lock(&ip->i_flags_lock);
	ip->i_flags &= ~XFS_IEOFBLOCKS;
	spin_unlock(&ip->i_flags_lock);

1561 1562 1563 1564
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);

	radix_tree_tag_clear(&pag->pag_ici_root,
1565 1566
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1567 1568 1569 1570
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1571
				     tag);
1572
		spin_unlock(&ip->i_mount->m_perag_lock);
1573
		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1574 1575 1576 1577 1578 1579
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	trace_xfs_inode_clear_eofblocks_tag(ip);
	return __xfs_inode_clear_eofblocks_tag(ip,
			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
}

/*
 * Automatic CoW Reservation Freeing
 *
 * These functions automatically garbage collect leftover CoW reservations
 * that were made on behalf of a cowextsize hint when we start to run out
 * of quota or when the reservations sit around for too long.  If the file
 * has dirty pages or is undergoing writeback, its CoW reservations will
 * be retained.
 *
 * The actual garbage collection piggybacks off the same code that runs
 * the speculative EOF preallocation garbage collector.
 */
STATIC int
xfs_inode_free_cowblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
	struct xfs_eofblocks *eofb = args;
	int match;
1610
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1611

1612 1613 1614 1615 1616
	/*
	 * Just clear the tag if we have an empty cow fork or none at all. It's
	 * possible the inode was fully unshared since it was originally tagged.
	 */
	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1617 1618 1619 1620 1621 1622 1623 1624 1625
		trace_xfs_inode_free_cowblocks_invalid(ip);
		xfs_inode_clear_cowblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty or under writeback we cannot touch the
	 * CoW fork.  Leave it alone if we're in the midst of a directio.
	 */
1626 1627
	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
	    atomic_read(&VFS_I(ip)->i_dio_count))
		return 0;

	if (eofb) {
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}

	/* Free the CoW blocks */
1647 1648
	xfs_ilock(ip, XFS_IOLOCK_EXCL);
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1649

1650
	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1651

1652 1653
	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	return ret;
}

int
xfs_icache_free_cowblocks(
	struct xfs_mount	*mp,
	struct xfs_eofblocks	*eofb)
{
	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
			XFS_ICI_COWBLOCKS_TAG);
}

int
xfs_inode_free_quota_cowblocks(
	struct xfs_inode *ip)
{
	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
}

void
xfs_inode_set_cowblocks_tag(
	xfs_inode_t	*ip)
{
1678
	trace_xfs_inode_set_cowblocks_tag(ip);
1679
	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1680
			trace_xfs_perag_set_cowblocks,
1681 1682 1683 1684 1685 1686 1687
			XFS_ICI_COWBLOCKS_TAG);
}

void
xfs_inode_clear_cowblocks_tag(
	xfs_inode_t	*ip)
{
1688
	trace_xfs_inode_clear_cowblocks_tag(ip);
1689
	return __xfs_inode_clear_eofblocks_tag(ip,
1690
			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1691
}