xfs_icache.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26 27 28
#include "xfs_inum.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
29 30
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
31
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
32
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
33
#include "xfs_trace.h"
34
#include "xfs_icache.h"
D
Dave Chinner 已提交
35
#include "xfs_bmap_util.h"
36

37 38 39
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
40 41 42 43 44 45
STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
				struct xfs_perag *pag, struct xfs_inode *ip);

/*
 * Allocate and initialise an xfs_inode.
 */
46
struct xfs_inode *
D
Dave Chinner 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

	kmem_zone_free(xfs_inode_zone, ip);
}

96
void
D
Dave Chinner 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
xfs_inode_free(
	struct xfs_inode	*ip)
{
	switch (ip->i_d.di_mode & S_IFMT) {
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

128 129 130 131
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));

D
Dave Chinner 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
		XFS_STATS_INC(xs_ig_frecycle);
		error = EAGAIN;
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

		error = -inode_init_always(mp->m_super, inode);
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
			error = EAGAIN;
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
	XFS_STATS_INC(xs_ig_found);

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
		return ENOMEM;

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
		error = ENOENT;
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
		error = EAGAIN;
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
333 334
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
335
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
		XFS_STATS_INC(xs_ig_dup);
		error = EAGAIN;
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
		return EINVAL;

	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
		XFS_STATS_INC(xs_ig_missed);

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
		xfs_setup_inode(ip);
	return 0;

out_error_or_again:
	if (error == EAGAIN) {
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

456 457 458 459 460 461 462 463
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

464 465 466 467 468 469
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

490 491 492 493 494 495 496 497 498 499
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return EFSCORRUPTED;

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		return ENOENT;

	/* inode is valid */
	return 0;
500 501 502 503

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
	return ENOENT;
504 505
}

506 507 508
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
509
	struct xfs_perag	*pag,
510
	int			(*execute)(struct xfs_inode *ip, int flags,
511 512 513 514
					   void *args),
	int			flags,
	void			*args,
	int			tag)
515 516 517 518
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
519
	int			done;
520
	int			nr_found;
521 522

restart:
523
	done = 0;
524 525
	skipped = 0;
	first_index = 0;
526
	nr_found = 0;
527
	do {
528
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
529
		int		error = 0;
530
		int		i;
531

532
		rcu_read_lock();
533 534 535

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
536 537
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
538 539 540 541 542 543
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

544
		if (!nr_found) {
545
			rcu_read_unlock();
546
			break;
547
		}
548

549
		/*
550 551
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
552
		 */
553 554 555 556 557 558 559
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
560 561 562 563 564 565 566 567 568 569
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
570
			 */
571 572
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
573 574 575
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
576
		}
577 578

		/* unlock now we've grabbed the inodes. */
579
		rcu_read_unlock();
580

581 582 583
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
584
			error = execute(batch[i], flags, args);
585 586 587 588 589 590 591
			IRELE(batch[i]);
			if (error == EAGAIN) {
				skipped++;
				continue;
			}
			if (error && last_error != EFSCORRUPTED)
				last_error = error;
592
		}
593 594

		/* bail out if the filesystem is corrupted.  */
595 596 597
		if (error == EFSCORRUPTED)
			break;

598 599
		cond_resched();

600
	} while (nr_found && !done);
601 602 603 604 605 606 607 608

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

609 610
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
611
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 */
STATIC void
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

635
int
636 637
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
638
	int			(*execute)(struct xfs_inode *ip, int flags,
639 640 641
					   void *args),
	int			flags,
	void			*args)
642
{
643
	struct xfs_perag	*pag;
644 645 646 647
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

648
	ag = 0;
649 650
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
651 652 653 654 655 656 657 658 659 660 661 662 663 664
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
665
	int			(*execute)(struct xfs_inode *ip, int flags,
666 667 668 669 670 671 672 673 674 675 676 677 678 679
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
680
		xfs_perag_put(pag);
681 682 683 684 685 686 687 688 689
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

690 691 692
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
D
Dave Chinner 已提交
693
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
694 695 696 697
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
D
Dave Chinner 已提交
698
xfs_reclaim_work_queue(
699
	struct xfs_mount        *mp)
700 701
{

702 703
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
D
Dave Chinner 已提交
704
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
705
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
706
	}
707 708
	rcu_read_unlock();
}
709

710 711 712 713 714 715 716
/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
D
Dave Chinner 已提交
717
void
718 719 720 721 722 723 724
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
D
Dave Chinner 已提交
725
	xfs_reclaim_work_queue(mp);
726 727
}

D
Dave Chinner 已提交
728
static void
729 730 731 732 733 734 735
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
736 737 738 739 740 741 742 743

	if (!pag->pag_ici_reclaimable) {
		/* propagate the reclaim tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
744 745

		/* schedule periodic background inode reclaim */
D
Dave Chinner 已提交
746
		xfs_reclaim_work_queue(ip->i_mount);
747

748 749 750
		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
751
	pag->pag_ici_reclaimable++;
752 753
}

D
David Chinner 已提交
754 755 756 757 758
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
759 760 761 762
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
763 764
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
765

D
Dave Chinner 已提交
766
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
767
	spin_lock(&pag->pag_ici_lock);
768
	spin_lock(&ip->i_flags_lock);
769
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
770
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
771
	spin_unlock(&ip->i_flags_lock);
772
	spin_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
773
	xfs_perag_put(pag);
774 775
}

776 777
STATIC void
__xfs_inode_clear_reclaim(
778 779 780
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
781
	pag->pag_ici_reclaimable--;
782 783 784 785 786 787 788 789 790 791
	if (!pag->pag_ici_reclaimable) {
		/* clear the reclaim tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				XFS_ICI_RECLAIM_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
							-1, _RET_IP_);
	}
792 793
}

D
Dave Chinner 已提交
794
STATIC void
795 796 797 798 799 800 801 802 803 804
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
	__xfs_inode_clear_reclaim(pag, ip);
}

D
Dave Chinner 已提交
805 806 807 808 809 810 811 812 813
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
814 815 816 817 818
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
819 820

	/*
821 822 823
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
824 825
	 */
	if ((flags & SYNC_TRYLOCK) &&
826
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
827 828 829 830 831 832
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
833 834 835 836 837
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
838 839
	 */
	spin_lock(&ip->i_flags_lock);
840 841 842
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
843 844 845 846 847 848 849 850
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

851
/*
852 853
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
854 855 856 857 858 859 860
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
861 862
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
863 864
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
865 866 867 868
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
869 870
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
871
 * the inode is clean.
872
 *
873 874 875 876 877 878
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
879
 *
880 881 882
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
883
 *	pinned, async	=> requeue
884
 *	pinned, sync	=> unpin
885 886
 *	stale		=> reclaim
 *	clean		=> reclaim
887
 *	dirty, async	=> requeue
888
 *	dirty, sync	=> flush, wait and reclaim
889
 */
890
STATIC int
891
xfs_reclaim_inode(
892 893
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
894
	int			sync_mode)
895
{
896 897
	struct xfs_buf		*bp = NULL;
	int			error;
898

899 900
restart:
	error = 0;
901
	xfs_ilock(ip, XFS_ILOCK_EXCL);
902 903 904 905 906
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
907

908 909
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
910
		xfs_iflush_abort(ip, false);
911 912
		goto reclaim;
	}
913
	if (xfs_ipincount(ip)) {
914 915
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
916
		xfs_iunpin_wait(ip);
917
	}
918 919 920 921 922
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

923 924 925 926 927 928 929
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

930 931 932
	/*
	 * Now we have an inode that needs flushing.
	 *
933
	 * Note that xfs_iflush will never block on the inode buffer lock, as
934
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
935
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
936 937
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
938 939 940 941
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
942 943 944
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
945
	 */
946
	error = xfs_iflush(ip, &bp);
947 948 949 950 951
	if (error == EAGAIN) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
952 953
	}

954 955 956 957 958 959
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
960 961
reclaim:
	xfs_ifunlock(ip);
962
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
963 964 965 966 967 968 969 970 971

	XFS_STATS_INC(xs_ig_reclaims);
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
972
	spin_lock(&pag->pag_ici_lock);
973 974 975
	if (!radix_tree_delete(&pag->pag_ici_root,
				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
		ASSERT(0);
976
	__xfs_inode_clear_reclaim(pag, ip);
977
	spin_unlock(&pag->pag_ici_lock);
978 979 980 981 982 983 984

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
985
	 * unlocked after the lookup before we go ahead and free it.
986
	 */
987
	xfs_ilock(ip, XFS_ILOCK_EXCL);
988
	xfs_qm_dqdetach(ip);
989
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
990 991

	xfs_inode_free(ip);
992
	return error;
993 994 995 996 997 998 999 1000 1001

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1002 1003 1004
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1005 1006
	 */
	return 0;
1007 1008
}

1009 1010 1011 1012 1013 1014
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1015
STATIC int
1016 1017 1018 1019 1020 1021 1022 1023 1024
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1025 1026
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1027

1028
restart:
1029
	ag = 0;
1030
	skipped = 0;
1031 1032 1033
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1034
		int		nr_found = 0;
1035 1036 1037

		ag = pag->pag_agno + 1;

1038 1039 1040
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1041
				xfs_perag_put(pag);
1042 1043 1044 1045 1046 1047
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1048
		do {
D
Dave Chinner 已提交
1049 1050
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1051

1052
			rcu_read_lock();
D
Dave Chinner 已提交
1053 1054 1055 1056
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1057 1058
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1059
				done = 1;
1060
				rcu_read_unlock();
1061 1062 1063 1064
				break;
			}

			/*
D
Dave Chinner 已提交
1065 1066
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1067
			 */
D
Dave Chinner 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1080 1081 1082 1083 1084 1085 1086
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1087
				 */
1088 1089 1090
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1091 1092 1093 1094
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1095

D
Dave Chinner 已提交
1096
			/* unlock now we've grabbed the inodes. */
1097
			rcu_read_unlock();
D
Dave Chinner 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
				if (error && last_error != EFSCORRUPTED)
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1108

1109 1110
			cond_resched();

D
Dave Chinner 已提交
1111
		} while (nr_found && !done && *nr_to_scan > 0);
1112

1113 1114 1115 1116 1117
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1118 1119
		xfs_perag_put(pag);
	}
1120 1121 1122 1123 1124 1125 1126 1127

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1128
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1129 1130 1131
		trylock = 0;
		goto restart;
	}
1132 1133 1134
	return XFS_ERROR(last_error);
}

1135 1136 1137 1138 1139
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1140 1141 1142
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1143 1144 1145
}

/*
1146
 * Scan a certain number of inodes for reclaim.
1147 1148
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1149
 * progress, while we will throttle the speed of reclaim via doing synchronous
1150 1151 1152
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1153
 */
1154
long
1155 1156 1157
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1158
{
1159
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1160
	xfs_reclaim_work_queue(mp);
1161
	xfs_ail_push_all(mp->m_ail);
1162

1163
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1164
}
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1177

1178 1179
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1180 1181
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1182 1183 1184 1185
	}
	return reclaimable;
}

1186 1187 1188 1189 1190
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1191 1192
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1193
		return 0;
1194

1195 1196
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1197 1198
		return 0;

1199
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1200 1201 1202 1203
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1204 1205
}

1206 1207 1208 1209 1210 1211 1212
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
1213
	struct xfs_eofblocks *eofb = args;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (eofb) {
		if (!xfs_inode_match_id(ip, eofb))
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
	}
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	ret = xfs_free_eofblocks(ip->i_mount, ip, true);

	/* don't revisit the inode if we're not waiting */
	if (ret == EAGAIN && !(flags & SYNC_WAIT))
		ret = 0;

	return ret;
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
1252
	struct xfs_eofblocks	*eofb)
1253
{
1254 1255 1256 1257 1258
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1259
	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1260
					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
void
xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_set_eofblocks_tag(ip);

	tagged = radix_tree_tagged(&pag->pag_ici_root,
				   XFS_ICI_EOFBLOCKS_TAG);
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_EOFBLOCKS_TAG);
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				   XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
1287 1288 1289

		/* kick off background trimming */
		xfs_queue_eofblocks(ip->i_mount);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
					      -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_clear_eofblocks_tag(ip);

	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			     XFS_ICI_EOFBLOCKS_TAG);
	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				     XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
					       -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}