xfs_icache.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
20
#include "xfs_format.h"
21 22
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
23 24 25 26
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_error.h"
27 28
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
29
#include "xfs_inode_item.h"
C
Christoph Hellwig 已提交
30
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
31
#include "xfs_trace.h"
32
#include "xfs_icache.h"
D
Dave Chinner 已提交
33
#include "xfs_bmap_util.h"
34 35
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
36

37 38 39
#include <linux/kthread.h>
#include <linux/freezer.h>

D
Dave Chinner 已提交
40 41 42
/*
 * Allocate and initialise an xfs_inode.
 */
43
struct xfs_inode *
D
Dave Chinner 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
xfs_inode_alloc(
	struct xfs_mount	*mp,
	xfs_ino_t		ino)
{
	struct xfs_inode	*ip;

	/*
	 * if this didn't occur in transactions, we could use
	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
	 * code up to do this anyway.
	 */
	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
	if (!ip)
		return NULL;
	if (inode_init_always(mp->m_super, VFS_I(ip))) {
		kmem_zone_free(xfs_inode_zone, ip);
		return NULL;
	}

D
Dave Chinner 已提交
63 64 65
	/* VFS doesn't initialise i_mode! */
	VFS_I(ip)->i_mode = 0;

66
	XFS_STATS_INC(mp, vn_active);
D
Dave Chinner 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!spin_is_locked(&ip->i_flags_lock));
	ASSERT(!xfs_isiflocked(ip));
	ASSERT(ip->i_ino == 0);

	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

	/* initialise the xfs inode */
	ip->i_ino = ino;
	ip->i_mount = mp;
	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
	ip->i_afp = NULL;
	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
	ip->i_flags = 0;
	ip->i_delayed_blks = 0;
82
	memset(&ip->i_d, 0, sizeof(ip->i_d));
D
Dave Chinner 已提交
83 84 85 86 87 88 89 90 91 92 93

	return ip;
}

STATIC void
xfs_inode_free_callback(
	struct rcu_head		*head)
{
	struct inode		*inode = container_of(head, struct inode, i_rcu);
	struct xfs_inode	*ip = XFS_I(inode);

D
Dave Chinner 已提交
94
	switch (VFS_I(ip)->i_mode & S_IFMT) {
D
Dave Chinner 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	case S_IFREG:
	case S_IFDIR:
	case S_IFLNK:
		xfs_idestroy_fork(ip, XFS_DATA_FORK);
		break;
	}

	if (ip->i_afp)
		xfs_idestroy_fork(ip, XFS_ATTR_FORK);

	if (ip->i_itemp) {
		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
		xfs_inode_item_destroy(ip);
		ip->i_itemp = NULL;
	}

111 112 113
	kmem_zone_free(xfs_inode_zone, ip);
}

114 115 116 117 118 119 120 121 122 123 124 125
static void
__xfs_inode_free(
	struct xfs_inode	*ip)
{
	/* asserts to verify all state is correct here */
	ASSERT(atomic_read(&ip->i_pincount) == 0);
	ASSERT(!xfs_isiflocked(ip));
	XFS_STATS_DEC(ip->i_mount, vn_active);

	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}

126 127 128 129
void
xfs_inode_free(
	struct xfs_inode	*ip)
{
D
Dave Chinner 已提交
130 131 132 133 134 135 136 137 138 139 140
	/*
	 * Because we use RCU freeing we need to ensure the inode always
	 * appears to be reclaimed with an invalid inode number when in the
	 * free state. The ip->i_flags_lock provides the barrier against lookup
	 * races.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

141
	__xfs_inode_free(ip);
D
Dave Chinner 已提交
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 * isn't a reclaim pass already in progress. By default it runs every 5s based
 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 * tunable, but that can be done if this method proves to be ineffective or too
 * aggressive.
 */
static void
xfs_reclaim_work_queue(
	struct xfs_mount        *mp)
{

	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
	}
	rcu_read_unlock();
}

/*
 * This is a fast pass over the inode cache to try to get reclaim moving on as
 * many inodes as possible in a short period of time. It kicks itself every few
 * seconds, as well as being kicked by the inode cache shrinker when memory
 * goes low. It scans as quickly as possible avoiding locked inodes or those
 * already being flushed, and once done schedules a future pass.
 */
void
xfs_reclaim_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
					struct xfs_mount, m_reclaim_work);

	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
	xfs_reclaim_work_queue(mp);
}

static void
xfs_perag_set_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (pag->pag_ici_reclaimable++)
		return;

	/* propagate the reclaim tag up into the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
			   XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);

	/* schedule periodic background inode reclaim */
	xfs_reclaim_work_queue(mp);

	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}

static void
xfs_perag_clear_reclaim_tag(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;

	ASSERT(spin_is_locked(&pag->pag_ici_lock));
	if (--pag->pag_ici_reclaimable)
		return;

	/* clear the reclaim tag from the perag radix tree */
	spin_lock(&mp->m_perag_lock);
	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
			     XFS_ICI_RECLAIM_TAG);
	spin_unlock(&mp->m_perag_lock);
	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}


/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
void
xfs_inode_set_reclaim_tag(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);

	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
	xfs_perag_set_reclaim_tag(pag);
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);

	spin_unlock(&ip->i_flags_lock);
	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

STATIC void
xfs_inode_clear_reclaim_tag(
	struct xfs_perag	*pag,
	xfs_ino_t		ino)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
			     XFS_ICI_RECLAIM_TAG);
	xfs_perag_clear_reclaim_tag(pag);
}

260 261 262 263
/*
 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 * part of the structure. This is made more complex by the fact we store
 * information about the on-disk values in the VFS inode and so we can't just
264
 * overwrite the values unconditionally. Hence we save the parameters we
265
 * need to retain across reinitialisation, and rewrite them into the VFS inode
266
 * after reinitialisation even if it fails.
267 268 269 270 271 272 273
 */
static int
xfs_reinit_inode(
	struct xfs_mount	*mp,
	struct inode		*inode)
{
	int		error;
274
	uint32_t	nlink = inode->i_nlink;
275
	uint32_t	generation = inode->i_generation;
276
	uint64_t	version = inode->i_version;
D
Dave Chinner 已提交
277
	umode_t		mode = inode->i_mode;
278 279 280

	error = inode_init_always(mp->m_super, inode);

281
	set_nlink(inode, nlink);
282
	inode->i_generation = generation;
283
	inode->i_version = version;
D
Dave Chinner 已提交
284
	inode->i_mode = mode;
285 286 287
	return error;
}

D
Dave Chinner 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Check the validity of the inode we just found it the cache
 */
static int
xfs_iget_cache_hit(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip,
	xfs_ino_t		ino,
	int			flags,
	int			lock_flags) __releases(RCU)
{
	struct inode		*inode = VFS_I(ip);
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	/*
	 * check for re-use of an inode within an RCU grace period due to the
	 * radix tree nodes not being updated yet. We monitor for this by
	 * setting the inode number to zero before freeing the inode structure.
	 * If the inode has been reallocated and set up, then the inode number
	 * will not match, so check for that, too.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != ino) {
		trace_xfs_iget_skip(ip);
313
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
314
		error = -EAGAIN;
D
Dave Chinner 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
		goto out_error;
	}


	/*
	 * If we are racing with another cache hit that is currently
	 * instantiating this inode or currently recycling it out of
	 * reclaimabe state, wait for the initialisation to complete
	 * before continuing.
	 *
	 * XXX(hch): eventually we should do something equivalent to
	 *	     wait_on_inode to wait for these flags to be cleared
	 *	     instead of polling for it.
	 */
	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
		trace_xfs_iget_skip(ip);
331
		XFS_STATS_INC(mp, xs_ig_frecycle);
D
Dave Chinner 已提交
332
		error = -EAGAIN;
D
Dave Chinner 已提交
333 334 335 336 337 338
		goto out_error;
	}

	/*
	 * If lookup is racing with unlink return an error immediately.
	 */
D
Dave Chinner 已提交
339
	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
340
		error = -ENOENT;
D
Dave Chinner 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		goto out_error;
	}

	/*
	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
	 * Need to carefully get it back into useable state.
	 */
	if (ip->i_flags & XFS_IRECLAIMABLE) {
		trace_xfs_iget_reclaim(ip);

		/*
		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
		 * from stomping over us while we recycle the inode.  We can't
		 * clear the radix tree reclaimable tag yet as it requires
		 * pag_ici_lock to be held exclusive.
		 */
		ip->i_flags |= XFS_IRECLAIM;

		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();

362
		error = xfs_reinit_inode(mp, inode);
D
Dave Chinner 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		if (error) {
			/*
			 * Re-initializing the inode failed, and we are in deep
			 * trouble.  Try to re-add it to the reclaim list.
			 */
			rcu_read_lock();
			spin_lock(&ip->i_flags_lock);

			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
			trace_xfs_iget_reclaim_fail(ip);
			goto out_error;
		}

		spin_lock(&pag->pag_ici_lock);
		spin_lock(&ip->i_flags_lock);

		/*
		 * Clear the per-lifetime state in the inode as we are now
		 * effectively a new inode and need to return to the initial
		 * state before reuse occurs.
		 */
		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
		ip->i_flags |= XFS_INEW;
387
		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
D
Dave Chinner 已提交
388 389 390 391 392 393 394 395 396 397 398
		inode->i_state = I_NEW;

		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);

		spin_unlock(&ip->i_flags_lock);
		spin_unlock(&pag->pag_ici_lock);
	} else {
		/* If the VFS inode is being torn down, pause and try again. */
		if (!igrab(inode)) {
			trace_xfs_iget_skip(ip);
D
Dave Chinner 已提交
399
			error = -EAGAIN;
D
Dave Chinner 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412
			goto out_error;
		}

		/* We've got a live one. */
		spin_unlock(&ip->i_flags_lock);
		rcu_read_unlock();
		trace_xfs_iget_hit(ip);
	}

	if (lock_flags != 0)
		xfs_ilock(ip, lock_flags);

	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
413
	XFS_STATS_INC(mp, xs_ig_found);
D
Dave Chinner 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	return 0;

out_error:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
	return error;
}


static int
xfs_iget_cache_miss(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	xfs_trans_t		*tp,
	xfs_ino_t		ino,
	struct xfs_inode	**ipp,
	int			flags,
	int			lock_flags)
{
	struct xfs_inode	*ip;
	int			error;
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
	int			iflags;

	ip = xfs_inode_alloc(mp, ino);
	if (!ip)
D
Dave Chinner 已提交
441
		return -ENOMEM;
D
Dave Chinner 已提交
442 443 444 445 446 447 448

	error = xfs_iread(mp, tp, ip, flags);
	if (error)
		goto out_destroy;

	trace_xfs_iget_miss(ip);

D
Dave Chinner 已提交
449
	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
D
Dave Chinner 已提交
450
		error = -ENOENT;
D
Dave Chinner 已提交
451 452 453 454 455 456 457 458 459 460
		goto out_destroy;
	}

	/*
	 * Preload the radix tree so we can insert safely under the
	 * write spinlock. Note that we cannot sleep inside the preload
	 * region. Since we can be called from transaction context, don't
	 * recurse into the file system.
	 */
	if (radix_tree_preload(GFP_NOFS)) {
D
Dave Chinner 已提交
461
		error = -EAGAIN;
D
Dave Chinner 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		goto out_destroy;
	}

	/*
	 * Because the inode hasn't been added to the radix-tree yet it can't
	 * be found by another thread, so we can do the non-sleeping lock here.
	 */
	if (lock_flags) {
		if (!xfs_ilock_nowait(ip, lock_flags))
			BUG();
	}

	/*
	 * These values must be set before inserting the inode into the radix
	 * tree as the moment it is inserted a concurrent lookup (allowed by the
	 * RCU locking mechanism) can find it and that lookup must see that this
	 * is an inode currently under construction (i.e. that XFS_INEW is set).
	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
	 * memory barrier that ensures this detection works correctly at lookup
	 * time.
	 */
	iflags = XFS_INEW;
	if (flags & XFS_IGET_DONTCACHE)
		iflags |= XFS_IDONTCACHE;
486 487
	ip->i_udquot = NULL;
	ip->i_gdquot = NULL;
488
	ip->i_pdquot = NULL;
D
Dave Chinner 已提交
489 490 491 492 493 494 495
	xfs_iflags_set(ip, iflags);

	/* insert the new inode */
	spin_lock(&pag->pag_ici_lock);
	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
	if (unlikely(error)) {
		WARN_ON(error != -EEXIST);
496
		XFS_STATS_INC(mp, xs_ig_dup);
D
Dave Chinner 已提交
497
		error = -EAGAIN;
D
Dave Chinner 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		goto out_preload_end;
	}
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();

	*ipp = ip;
	return 0;

out_preload_end:
	spin_unlock(&pag->pag_ici_lock);
	radix_tree_preload_end();
	if (lock_flags)
		xfs_iunlock(ip, lock_flags);
out_destroy:
	__destroy_inode(VFS_I(ip));
	xfs_inode_free(ip);
	return error;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the cache held in each AG.
 * If the inode is found in the cache, initialise the vfs inode
 * if necessary.
 *
 * If it is not in core, read it in from the file system's device,
 * add it to the cache and initialise the vfs inode.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		flags,
	uint		lock_flags,
	xfs_inode_t	**ipp)
{
	xfs_inode_t	*ip;
	int		error;
	xfs_perag_t	*pag;
	xfs_agino_t	agino;

	/*
	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
	 * doesn't get freed while it's being referenced during a
	 * radix tree traversal here.  It assumes this function
	 * aqcuires only the ILOCK (and therefore it has no need to
	 * involve the IOLOCK in this synchronization).
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);

	/* reject inode numbers outside existing AGs */
	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
D
Dave Chinner 已提交
564
		return -EINVAL;
D
Dave Chinner 已提交
565

566
	XFS_STATS_INC(mp, xs_ig_attempts);
567

D
Dave Chinner 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/* get the perag structure and ensure that it's inode capable */
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
	agino = XFS_INO_TO_AGINO(mp, ino);

again:
	error = 0;
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);

	if (ip) {
		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
		if (error)
			goto out_error_or_again;
	} else {
		rcu_read_unlock();
583
		XFS_STATS_INC(mp, xs_ig_missed);
D
Dave Chinner 已提交
584 585 586 587 588 589 590 591 592 593 594

		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
							flags, lock_flags);
		if (error)
			goto out_error_or_again;
	}
	xfs_perag_put(pag);

	*ipp = ip;

	/*
595
	 * If we have a real type for an on-disk inode, we can setup the inode
D
Dave Chinner 已提交
596 597
	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
	 */
D
Dave Chinner 已提交
598
	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
599
		xfs_setup_existing_inode(ip);
D
Dave Chinner 已提交
600 601 602
	return 0;

out_error_or_again:
D
Dave Chinner 已提交
603
	if (error == -EAGAIN) {
D
Dave Chinner 已提交
604 605 606 607 608 609 610
		delay(1);
		goto again;
	}
	xfs_perag_put(pag);
	return error;
}

611 612 613 614 615 616 617 618
/*
 * The inode lookup is done in batches to keep the amount of lock traffic and
 * radix tree lookups to a minimum. The batch size is a trade off between
 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 * be too greedy.
 */
#define XFS_LOOKUP_BATCH	32

619 620 621 622 623 624
STATIC int
xfs_inode_ag_walk_grab(
	struct xfs_inode	*ip)
{
	struct inode		*inode = VFS_I(ip);

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	ASSERT(rcu_read_lock_held());

	/*
	 * check for stale RCU freed inode
	 *
	 * If the inode has been reallocated, it doesn't matter if it's not in
	 * the AG we are walking - we are walking for writeback, so if it
	 * passes all the "valid inode" checks and is dirty, then we'll write
	 * it back anyway.  If it has been reallocated and still being
	 * initialised, the XFS_INEW check below will catch it.
	 */
	spin_lock(&ip->i_flags_lock);
	if (!ip->i_ino)
		goto out_unlock_noent;

	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock_noent;
	spin_unlock(&ip->i_flags_lock);

645 646
	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
D
Dave Chinner 已提交
647
		return -EFSCORRUPTED;
648 649 650

	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
D
Dave Chinner 已提交
651
		return -ENOENT;
652 653 654

	/* inode is valid */
	return 0;
655 656 657

out_unlock_noent:
	spin_unlock(&ip->i_flags_lock);
D
Dave Chinner 已提交
658
	return -ENOENT;
659 660
}

661 662 663
STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
664
	struct xfs_perag	*pag,
665
	int			(*execute)(struct xfs_inode *ip, int flags,
666 667 668 669
					   void *args),
	int			flags,
	void			*args,
	int			tag)
670 671 672 673
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;
674
	int			done;
675
	int			nr_found;
676 677

restart:
678
	done = 0;
679 680
	skipped = 0;
	first_index = 0;
681
	nr_found = 0;
682
	do {
683
		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
684
		int		error = 0;
685
		int		i;
686

687
		rcu_read_lock();
688 689 690

		if (tag == -1)
			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
691 692
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH);
693 694 695 696 697 698
		else
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **) batch, first_index,
					XFS_LOOKUP_BATCH, tag);

699
		if (!nr_found) {
700
			rcu_read_unlock();
701
			break;
702
		}
703

704
		/*
705 706
		 * Grab the inodes before we drop the lock. if we found
		 * nothing, nr == 0 and the loop will be skipped.
707
		 */
708 709 710 711 712 713 714
		for (i = 0; i < nr_found; i++) {
			struct xfs_inode *ip = batch[i];

			if (done || xfs_inode_ag_walk_grab(ip))
				batch[i] = NULL;

			/*
715 716 717 718 719 720 721 722 723 724
			 * Update the index for the next lookup. Catch
			 * overflows into the next AG range which can occur if
			 * we have inodes in the last block of the AG and we
			 * are currently pointing to the last inode.
			 *
			 * Because we may see inodes that are from the wrong AG
			 * due to RCU freeing and reallocation, only update the
			 * index if it lies in this AG. It was a race that lead
			 * us to see this inode, so another lookup from the
			 * same index will not find it again.
725
			 */
726 727
			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
				continue;
728 729 730
			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
				done = 1;
731
		}
732 733

		/* unlock now we've grabbed the inodes. */
734
		rcu_read_unlock();
735

736 737 738
		for (i = 0; i < nr_found; i++) {
			if (!batch[i])
				continue;
739
			error = execute(batch[i], flags, args);
740
			IRELE(batch[i]);
D
Dave Chinner 已提交
741
			if (error == -EAGAIN) {
742 743 744
				skipped++;
				continue;
			}
D
Dave Chinner 已提交
745
			if (error && last_error != -EFSCORRUPTED)
746
				last_error = error;
747
		}
748 749

		/* bail out if the filesystem is corrupted.  */
D
Dave Chinner 已提交
750
		if (error == -EFSCORRUPTED)
751 752
			break;

753 754
		cond_resched();

755
	} while (nr_found && !done);
756 757 758 759 760 761 762 763

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

764 765
/*
 * Background scanning to trim post-EOF preallocated space. This is queued
766
 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
767
 */
768
void
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
xfs_queue_eofblocks(
	struct xfs_mount *mp)
{
	rcu_read_lock();
	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
		queue_delayed_work(mp->m_eofblocks_workqueue,
				   &mp->m_eofblocks_work,
				   msecs_to_jiffies(xfs_eofb_secs * 1000));
	rcu_read_unlock();
}

void
xfs_eofblocks_worker(
	struct work_struct *work)
{
	struct xfs_mount *mp = container_of(to_delayed_work(work),
				struct xfs_mount, m_eofblocks_work);
	xfs_icache_free_eofblocks(mp, NULL);
	xfs_queue_eofblocks(mp);
}

790
int
791 792
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
793
	int			(*execute)(struct xfs_inode *ip, int flags,
794 795 796
					   void *args),
	int			flags,
	void			*args)
797
{
798
	struct xfs_perag	*pag;
799 800 801 802
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

803
	ag = 0;
804 805
	while ((pag = xfs_perag_get(mp, ag))) {
		ag = pag->pag_agno + 1;
806 807 808 809
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
		xfs_perag_put(pag);
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
810
			if (error == -EFSCORRUPTED)
811 812 813
				break;
		}
	}
E
Eric Sandeen 已提交
814
	return last_error;
815 816 817 818 819
}

int
xfs_inode_ag_iterator_tag(
	struct xfs_mount	*mp,
820
	int			(*execute)(struct xfs_inode *ip, int flags,
821 822 823 824 825 826 827 828 829 830 831 832 833 834
					   void *args),
	int			flags,
	void			*args,
	int			tag)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	ag = 0;
	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
		ag = pag->pag_agno + 1;
		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
D
Dave Chinner 已提交
835
		xfs_perag_put(pag);
836 837
		if (error) {
			last_error = error;
D
Dave Chinner 已提交
838
			if (error == -EFSCORRUPTED)
839 840 841
				break;
		}
	}
E
Eric Sandeen 已提交
842
	return last_error;
843 844
}

D
Dave Chinner 已提交
845 846 847 848 849 850 851 852 853
/*
 * Grab the inode for reclaim exclusively.
 * Return 0 if we grabbed it, non-zero otherwise.
 */
STATIC int
xfs_reclaim_inode_grab(
	struct xfs_inode	*ip,
	int			flags)
{
854 855 856 857 858
	ASSERT(rcu_read_lock_held());

	/* quick check for stale RCU freed inode */
	if (!ip->i_ino)
		return 1;
D
Dave Chinner 已提交
859 860

	/*
861 862 863
	 * If we are asked for non-blocking operation, do unlocked checks to
	 * see if the inode already is being flushed or in reclaim to avoid
	 * lock traffic.
D
Dave Chinner 已提交
864 865
	 */
	if ((flags & SYNC_TRYLOCK) &&
866
	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
D
Dave Chinner 已提交
867 868 869 870 871 872
		return 1;

	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
873 874 875 876 877
	 *
	 * Due to RCU lookup, we may find inodes that have been freed and only
	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
	 * aren't candidates for reclaim at all, so we must check the
	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
D
Dave Chinner 已提交
878 879
	 */
	spin_lock(&ip->i_flags_lock);
880 881 882
	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* not a reclaim candidate. */
D
Dave Chinner 已提交
883 884 885 886 887 888 889 890
		spin_unlock(&ip->i_flags_lock);
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	return 0;
}

891
/*
892 893
 * Inodes in different states need to be treated differently. The following
 * table lists the inode states and the reclaim actions necessary:
894 895 896 897 898 899 900
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
901 902
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
903 904
 *	dirty, async		-		requeue
 *	dirty, sync		0		reclaim
905 906 907 908
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
909 910
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
911
 * the inode is clean.
912
 *
913 914 915 916 917 918
 * Note that because the inode is flushed delayed write by AIL pushing, the
 * flush lock may already be held here and waiting on it can result in very
 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 * the caller should push the AIL first before trying to reclaim inodes to
 * minimise the amount of time spent waiting.  For background relaim, we only
 * bother to reclaim clean inodes anyway.
919
 *
920 921 922
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
923
 *	pinned, async	=> requeue
924
 *	pinned, sync	=> unpin
925 926
 *	stale		=> reclaim
 *	clean		=> reclaim
927
 *	dirty, async	=> requeue
928
 *	dirty, sync	=> flush, wait and reclaim
929
 */
930
STATIC int
931
xfs_reclaim_inode(
932 933
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
934
	int			sync_mode)
935
{
936
	struct xfs_buf		*bp = NULL;
937
	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
938
	int			error;
939

940 941
restart:
	error = 0;
942
	xfs_ilock(ip, XFS_ILOCK_EXCL);
943 944 945 946 947
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
948

949 950
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
951
		xfs_iflush_abort(ip, false);
952 953
		goto reclaim;
	}
954
	if (xfs_ipincount(ip)) {
955 956
		if (!(sync_mode & SYNC_WAIT))
			goto out_ifunlock;
957
		xfs_iunpin_wait(ip);
958
	}
959 960 961 962 963
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

964 965 966 967 968 969 970
	/*
	 * Never flush out dirty data during non-blocking reclaim, as it would
	 * just contend with AIL pushing trying to do the same job.
	 */
	if (!(sync_mode & SYNC_WAIT))
		goto out_ifunlock;

971 972 973
	/*
	 * Now we have an inode that needs flushing.
	 *
974
	 * Note that xfs_iflush will never block on the inode buffer lock, as
975
	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
976
	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
977 978
	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
	 * result in an ABBA deadlock with xfs_ifree_cluster().
979 980 981 982
	 *
	 * As xfs_ifree_cluser() must gather all inodes that are active in the
	 * cache to mark them stale, if we hit this case we don't actually want
	 * to do IO here - we want the inode marked stale so we can simply
983 984 985
	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
	 * inode, back off and try again.  Hopefully the next pass through will
	 * see the stale flag set on the inode.
986
	 */
987
	error = xfs_iflush(ip, &bp);
D
Dave Chinner 已提交
988
	if (error == -EAGAIN) {
989 990 991 992
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		/* backoff longer than in xfs_ifree_cluster */
		delay(2);
		goto restart;
993 994
	}

995 996 997 998 999 1000
	if (!error) {
		error = xfs_bwrite(bp);
		xfs_buf_relse(bp);
	}

	xfs_iflock(ip);
1001
reclaim:
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * Because we use RCU freeing we need to ensure the inode always appears
	 * to be reclaimed with an invalid inode number when in the free state.
	 * We do this as early as possible under the ILOCK and flush lock so
	 * that xfs_iflush_cluster() can be guaranteed to detect races with us
	 * here. By doing this, we guarantee that once xfs_iflush_cluster has
	 * locked both the XFS_ILOCK and the flush lock that it will see either
	 * a valid, flushable inode that will serialise correctly against the
	 * locks below, or it will see a clean (and invalid) inode that it can
	 * skip.
	 */
	spin_lock(&ip->i_flags_lock);
	ip->i_flags = XFS_IRECLAIM;
	ip->i_ino = 0;
	spin_unlock(&ip->i_flags_lock);

1018
	xfs_ifunlock(ip);
1019
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1020

1021
	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1022 1023 1024 1025 1026 1027 1028
	/*
	 * Remove the inode from the per-AG radix tree.
	 *
	 * Because radix_tree_delete won't complain even if the item was never
	 * added to the tree assert that it's been there before to catch
	 * problems with the inode life time early on.
	 */
1029
	spin_lock(&pag->pag_ici_lock);
1030
	if (!radix_tree_delete(&pag->pag_ici_root,
1031
				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1032
		ASSERT(0);
1033
	xfs_perag_clear_reclaim_tag(pag);
1034
	spin_unlock(&pag->pag_ici_lock);
1035 1036 1037 1038 1039 1040 1041

	/*
	 * Here we do an (almost) spurious inode lock in order to coordinate
	 * with inode cache radix tree lookups.  This is because the lookup
	 * can reference the inodes in the cache without taking references.
	 *
	 * We make that OK here by ensuring that we wait until the inode is
1042
	 * unlocked after the lookup before we go ahead and free it.
1043
	 */
1044
	xfs_ilock(ip, XFS_ILOCK_EXCL);
1045
	xfs_qm_dqdetach(ip);
1046
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1047

1048
	__xfs_inode_free(ip);
1049
	return error;
1050 1051 1052 1053 1054 1055 1056

out_ifunlock:
	xfs_ifunlock(ip);
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
D
Dave Chinner 已提交
1057
	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1058
	 * a short while. However, this just burns CPU time scanning the tree
D
Dave Chinner 已提交
1059 1060 1061
	 * waiting for IO to complete and the reclaim work never goes back to
	 * the idle state. Instead, return 0 to let the next scheduled
	 * background reclaim attempt to reclaim the inode again.
1062 1063
	 */
	return 0;
1064 1065
}

1066 1067 1068 1069 1070 1071
/*
 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
 * corrupted, we still want to try to reclaim all the inodes. If we don't,
 * then a shut down during filesystem unmount reclaim walk leak all the
 * unreclaimed inodes.
 */
D
Dave Chinner 已提交
1072
STATIC int
1073 1074 1075 1076 1077 1078 1079 1080 1081
xfs_reclaim_inodes_ag(
	struct xfs_mount	*mp,
	int			flags,
	int			*nr_to_scan)
{
	struct xfs_perag	*pag;
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
1082 1083
	int			trylock = flags & SYNC_TRYLOCK;
	int			skipped;
1084

1085
restart:
1086
	ag = 0;
1087
	skipped = 0;
1088 1089 1090
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		unsigned long	first_index = 0;
		int		done = 0;
D
Dave Chinner 已提交
1091
		int		nr_found = 0;
1092 1093 1094

		ag = pag->pag_agno + 1;

1095 1096 1097
		if (trylock) {
			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
				skipped++;
1098
				xfs_perag_put(pag);
1099 1100 1101 1102 1103 1104
				continue;
			}
			first_index = pag->pag_ici_reclaim_cursor;
		} else
			mutex_lock(&pag->pag_ici_reclaim_lock);

1105
		do {
D
Dave Chinner 已提交
1106 1107
			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
			int	i;
1108

1109
			rcu_read_lock();
D
Dave Chinner 已提交
1110 1111 1112 1113
			nr_found = radix_tree_gang_lookup_tag(
					&pag->pag_ici_root,
					(void **)batch, first_index,
					XFS_LOOKUP_BATCH,
1114 1115
					XFS_ICI_RECLAIM_TAG);
			if (!nr_found) {
1116
				done = 1;
1117
				rcu_read_unlock();
1118 1119 1120 1121
				break;
			}

			/*
D
Dave Chinner 已提交
1122 1123
			 * Grab the inodes before we drop the lock. if we found
			 * nothing, nr == 0 and the loop will be skipped.
1124
			 */
D
Dave Chinner 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			for (i = 0; i < nr_found; i++) {
				struct xfs_inode *ip = batch[i];

				if (done || xfs_reclaim_inode_grab(ip, flags))
					batch[i] = NULL;

				/*
				 * Update the index for the next lookup. Catch
				 * overflows into the next AG range which can
				 * occur if we have inodes in the last block of
				 * the AG and we are currently pointing to the
				 * last inode.
1137 1138 1139 1140 1141 1142 1143
				 *
				 * Because we may see inodes that are from the
				 * wrong AG due to RCU freeing and
				 * reallocation, only update the index if it
				 * lies in this AG. It was a race that lead us
				 * to see this inode, so another lookup from
				 * the same index will not find it again.
D
Dave Chinner 已提交
1144
				 */
1145 1146 1147
				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
								pag->pag_agno)
					continue;
D
Dave Chinner 已提交
1148 1149 1150 1151
				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
					done = 1;
			}
1152

D
Dave Chinner 已提交
1153
			/* unlock now we've grabbed the inodes. */
1154
			rcu_read_unlock();
D
Dave Chinner 已提交
1155 1156 1157 1158 1159

			for (i = 0; i < nr_found; i++) {
				if (!batch[i])
					continue;
				error = xfs_reclaim_inode(batch[i], pag, flags);
D
Dave Chinner 已提交
1160
				if (error && last_error != -EFSCORRUPTED)
D
Dave Chinner 已提交
1161 1162 1163 1164
					last_error = error;
			}

			*nr_to_scan -= XFS_LOOKUP_BATCH;
1165

1166 1167
			cond_resched();

D
Dave Chinner 已提交
1168
		} while (nr_found && !done && *nr_to_scan > 0);
1169

1170 1171 1172 1173 1174
		if (trylock && !done)
			pag->pag_ici_reclaim_cursor = first_index;
		else
			pag->pag_ici_reclaim_cursor = 0;
		mutex_unlock(&pag->pag_ici_reclaim_lock);
1175 1176
		xfs_perag_put(pag);
	}
1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * if we skipped any AG, and we still have scan count remaining, do
	 * another pass this time using blocking reclaim semantics (i.e
	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
	 * ensure that when we get more reclaimers than AGs we block rather
	 * than spin trying to execute reclaim.
	 */
1185
	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1186 1187 1188
		trylock = 0;
		goto restart;
	}
E
Eric Sandeen 已提交
1189
	return last_error;
1190 1191
}

1192 1193 1194 1195 1196
int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
1197 1198 1199
	int		nr_to_scan = INT_MAX;

	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1200 1201 1202
}

/*
1203
 * Scan a certain number of inodes for reclaim.
1204 1205
 *
 * When called we make sure that there is a background (fast) inode reclaim in
1206
 * progress, while we will throttle the speed of reclaim via doing synchronous
1207 1208 1209
 * reclaim of inodes. That means if we come across dirty inodes, we wait for
 * them to be cleaned, which we hope will not be very long due to the
 * background walker having already kicked the IO off on those dirty inodes.
1210
 */
1211
long
1212 1213 1214
xfs_reclaim_inodes_nr(
	struct xfs_mount	*mp,
	int			nr_to_scan)
1215
{
1216
	/* kick background reclaimer and push the AIL */
D
Dave Chinner 已提交
1217
	xfs_reclaim_work_queue(mp);
1218
	xfs_ail_push_all(mp->m_ail);
1219

1220
	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1221
}
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/*
 * Return the number of reclaimable inodes in the filesystem for
 * the shrinker to determine how much to reclaim.
 */
int
xfs_reclaim_inodes_count(
	struct xfs_mount	*mp)
{
	struct xfs_perag	*pag;
	xfs_agnumber_t		ag = 0;
	int			reclaimable = 0;
1234

1235 1236
	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
		ag = pag->pag_agno + 1;
1237 1238
		reclaimable += pag->pag_ici_reclaimable;
		xfs_perag_put(pag);
1239 1240 1241 1242
	}
	return reclaimable;
}

1243 1244 1245 1246 1247
STATIC int
xfs_inode_match_id(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
1248 1249
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1250
		return 0;
1251

1252 1253
	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1254 1255
		return 0;

1256
	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1257 1258 1259 1260
	    xfs_get_projid(ip) != eofb->eof_prid)
		return 0;

	return 1;
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * A union-based inode filtering algorithm. Process the inode if any of the
 * criteria match. This is for global/internal scans only.
 */
STATIC int
xfs_inode_match_id_union(
	struct xfs_inode	*ip,
	struct xfs_eofblocks	*eofb)
{
	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
		return 1;

	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
	    xfs_get_projid(ip) == eofb->eof_prid)
		return 1;

	return 0;
}

1287 1288 1289 1290 1291 1292 1293
STATIC int
xfs_inode_free_eofblocks(
	struct xfs_inode	*ip,
	int			flags,
	void			*args)
{
	int ret;
1294
	struct xfs_eofblocks *eofb = args;
1295
	bool need_iolock = true;
1296
	int match;
1297 1298

	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	if (!xfs_can_free_eofblocks(ip, false)) {
		/* inode could be preallocated or append-only */
		trace_xfs_inode_free_eofblocks_invalid(ip);
		xfs_inode_clear_eofblocks_tag(ip);
		return 0;
	}

	/*
	 * If the mapping is dirty the operation can block and wait for some
	 * time. Unless we are waiting, skip it.
	 */
	if (!(flags & SYNC_WAIT) &&
	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
		return 0;

1315
	if (eofb) {
1316 1317 1318 1319 1320
		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
			match = xfs_inode_match_id_union(ip, eofb);
		else
			match = xfs_inode_match_id(ip, eofb);
		if (!match)
1321 1322 1323 1324 1325 1326
			return 0;

		/* skip the inode if the file size is too small */
		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
			return 0;
1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * A scan owner implies we already hold the iolock. Skip it in
		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
		 * the possibility of EAGAIN being returned.
		 */
		if (eofb->eof_scan_owner == ip->i_ino)
			need_iolock = false;
1335
	}
1336

1337
	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1338 1339

	/* don't revisit the inode if we're not waiting */
D
Dave Chinner 已提交
1340
	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1341 1342 1343 1344 1345 1346 1347 1348
		ret = 0;

	return ret;
}

int
xfs_icache_free_eofblocks(
	struct xfs_mount	*mp,
1349
	struct xfs_eofblocks	*eofb)
1350
{
1351 1352 1353 1354 1355
	int flags = SYNC_TRYLOCK;

	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
		flags = SYNC_WAIT;

1356
	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1357
					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
 * multiple quotas, we don't know exactly which quota caused an allocation
 * failure. We make a best effort by including each quota under low free space
 * conditions (less than 1% free space) in the scan.
 */
int
xfs_inode_free_quota_eofblocks(
	struct xfs_inode *ip)
{
	int scan = 0;
	struct xfs_eofblocks eofb = {0};
	struct xfs_dquot *dq;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));

	/*
	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
	 * can repeatedly trylock on the inode we're currently processing. We
	 * run a sync scan to increase effectiveness and use the union filter to
	 * cover all applicable quotas in a single scan.
	 */
	eofb.eof_scan_owner = ip->i_ino;
	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;

	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_uid = VFS_I(ip)->i_uid;
			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
			scan = 1;
		}
	}

	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
		if (dq && xfs_dquot_lowsp(dq)) {
			eofb.eof_gid = VFS_I(ip)->i_gid;
			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
			scan = 1;
		}
	}

	if (scan)
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);

	return scan;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
void
xfs_inode_set_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
	int tagged;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_set_eofblocks_tag(ip);

	tagged = radix_tree_tagged(&pag->pag_ici_root,
				   XFS_ICI_EOFBLOCKS_TAG);
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_EOFBLOCKS_TAG);
	if (!tagged) {
		/* propagate the eofblocks tag up into the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				   XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
1433 1434 1435

		/* kick off background trimming */
		xfs_queue_eofblocks(ip->i_mount);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
					      -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}

void
xfs_inode_clear_eofblocks_tag(
	xfs_inode_t	*ip)
{
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	spin_lock(&pag->pag_ici_lock);
	trace_xfs_inode_clear_eofblocks_tag(ip);

	radix_tree_tag_clear(&pag->pag_ici_root,
			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			     XFS_ICI_EOFBLOCKS_TAG);
	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
		/* clear the eofblocks tag from the perag radix tree */
		spin_lock(&ip->i_mount->m_perag_lock);
		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
				     XFS_ICI_EOFBLOCKS_TAG);
		spin_unlock(&ip->i_mount->m_perag_lock);
		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
					       -1, _RET_IP_);
	}

	spin_unlock(&pag->pag_ici_lock);
	xfs_perag_put(pag);
}