Kconfig 28.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
comment "Processor Type"

# Select CPU types depending on the architecture selected.  This selects
# which CPUs we support in the kernel image, and the compiler instruction
# optimiser behaviour.

7 8
# ARM7TDMI
config CPU_ARM7TDMI
9
	bool
10
	depends on !MMU
11 12 13
	select CPU_32v4T
	select CPU_ABRT_LV4T
	select CPU_CACHE_V4
14
	select CPU_PABRT_LEGACY
15 16 17 18 19 20 21
	help
	  A 32-bit RISC microprocessor based on the ARM7 processor core
	  which has no memory control unit and cache.

	  Say Y if you want support for the ARM7TDMI processor.
	  Otherwise, say N.

L
Linus Torvalds 已提交
22 23
# ARM720T
config CPU_ARM720T
24
	bool
25
	select CPU_32v4T
L
Linus Torvalds 已提交
26 27 28
	select CPU_ABRT_LV4T
	select CPU_CACHE_V4
	select CPU_CACHE_VIVT
29
	select CPU_COPY_V4WT if MMU
30 31
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
32
	select CPU_THUMB_CAPABLE
33
	select CPU_TLB_V4WT if MMU
L
Linus Torvalds 已提交
34 35 36 37 38 39 40
	help
	  A 32-bit RISC processor with 8kByte Cache, Write Buffer and
	  MMU built around an ARM7TDMI core.

	  Say Y if you want support for the ARM720T processor.
	  Otherwise, say N.

41 42
# ARM740T
config CPU_ARM740T
43
	bool
44
	depends on !MMU
45 46
	select CPU_32v4T
	select CPU_ABRT_LV4T
47
	select CPU_CACHE_V4
48
	select CPU_CP15_MPU
49
	select CPU_PABRT_LEGACY
50
	select CPU_THUMB_CAPABLE
51 52 53 54 55 56 57 58
	help
	  A 32-bit RISC processor with 8KB cache or 4KB variants,
	  write buffer and MPU(Protection Unit) built around
	  an ARM7TDMI core.

	  Say Y if you want support for the ARM740T processor.
	  Otherwise, say N.

59 60
# ARM9TDMI
config CPU_ARM9TDMI
61
	bool
62
	depends on !MMU
63
	select CPU_32v4T
64
	select CPU_ABRT_NOMMU
65
	select CPU_CACHE_V4
66
	select CPU_PABRT_LEGACY
67 68 69 70 71 72 73
	help
	  A 32-bit RISC microprocessor based on the ARM9 processor core
	  which has no memory control unit and cache.

	  Say Y if you want support for the ARM9TDMI processor.
	  Otherwise, say N.

L
Linus Torvalds 已提交
74 75
# ARM920T
config CPU_ARM920T
76
	bool
77
	select CPU_32v4T
L
Linus Torvalds 已提交
78 79 80
	select CPU_ABRT_EV4T
	select CPU_CACHE_V4WT
	select CPU_CACHE_VIVT
81
	select CPU_COPY_V4WB if MMU
82 83
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
84
	select CPU_THUMB_CAPABLE
85
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
86 87
	help
	  The ARM920T is licensed to be produced by numerous vendors,
88
	  and is used in the Cirrus EP93xx and the Samsung S3C2410.
L
Linus Torvalds 已提交
89 90 91 92 93 94

	  Say Y if you want support for the ARM920T processor.
	  Otherwise, say N.

# ARM922T
config CPU_ARM922T
95
	bool
96
	select CPU_32v4T
L
Linus Torvalds 已提交
97 98 99
	select CPU_ABRT_EV4T
	select CPU_CACHE_V4WT
	select CPU_CACHE_VIVT
100
	select CPU_COPY_V4WB if MMU
101 102
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
103
	select CPU_THUMB_CAPABLE
104
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
105 106 107
	help
	  The ARM922T is a version of the ARM920T, but with smaller
	  instruction and data caches. It is used in Altera's
108
	  Excalibur XA device family and Micrel's KS8695 Centaur.
L
Linus Torvalds 已提交
109 110 111 112 113 114

	  Say Y if you want support for the ARM922T processor.
	  Otherwise, say N.

# ARM925T
config CPU_ARM925T
115
	bool
116
	select CPU_32v4T
L
Linus Torvalds 已提交
117 118 119
	select CPU_ABRT_EV4T
	select CPU_CACHE_V4WT
	select CPU_CACHE_VIVT
120
	select CPU_COPY_V4WB if MMU
121 122
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
123
	select CPU_THUMB_CAPABLE
124
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134
 	help
 	  The ARM925T is a mix between the ARM920T and ARM926T, but with
	  different instruction and data caches. It is used in TI's OMAP
 	  device family.

 	  Say Y if you want support for the ARM925T processor.
 	  Otherwise, say N.

# ARM926T
config CPU_ARM926T
135
	bool
L
Linus Torvalds 已提交
136 137 138
	select CPU_32v5
	select CPU_ABRT_EV5TJ
	select CPU_CACHE_VIVT
139
	select CPU_COPY_V4WB if MMU
140 141
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
142
	select CPU_THUMB_CAPABLE
143
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
	help
	  This is a variant of the ARM920.  It has slightly different
	  instruction sequences for cache and TLB operations.  Curiously,
	  there is no documentation on it at the ARM corporate website.

	  Say Y if you want support for the ARM926T processor.
	  Otherwise, say N.

P
Paulius Zaleckas 已提交
152 153 154 155 156 157
# FA526
config CPU_FA526
	bool
	select CPU_32v4
	select CPU_ABRT_EV4
	select CPU_CACHE_FA
158
	select CPU_CACHE_VIVT
P
Paulius Zaleckas 已提交
159
	select CPU_COPY_FA if MMU
160 161
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
P
Paulius Zaleckas 已提交
162 163 164 165 166 167 168 169
	select CPU_TLB_FA if MMU
	help
	  The FA526 is a version of the ARMv4 compatible processor with
	  Branch Target Buffer, Unified TLB and cache line size 16.

	  Say Y if you want support for the FA526 processor.
	  Otherwise, say N.

170 171
# ARM940T
config CPU_ARM940T
172
	bool
173
	depends on !MMU
174
	select CPU_32v4T
175
	select CPU_ABRT_NOMMU
176 177
	select CPU_CACHE_VIVT
	select CPU_CP15_MPU
178
	select CPU_PABRT_LEGACY
179
	select CPU_THUMB_CAPABLE
180 181
	help
	  ARM940T is a member of the ARM9TDMI family of general-
M
Matt LaPlante 已提交
182
	  purpose microprocessors with MPU and separate 4KB
183 184 185 186 187 188
	  instruction and 4KB data cases, each with a 4-word line
	  length.

	  Say Y if you want support for the ARM940T processor.
	  Otherwise, say N.

189 190
# ARM946E-S
config CPU_ARM946E
191
	bool
192
	depends on !MMU
193
	select CPU_32v5
194
	select CPU_ABRT_NOMMU
195 196
	select CPU_CACHE_VIVT
	select CPU_CP15_MPU
197
	select CPU_PABRT_LEGACY
198
	select CPU_THUMB_CAPABLE
199 200 201 202 203 204 205 206
	help
	  ARM946E-S is a member of the ARM9E-S family of high-
	  performance, 32-bit system-on-chip processor solutions.
	  The TCM and ARMv5TE 32-bit instruction set is supported.

	  Say Y if you want support for the ARM946E-S processor.
	  Otherwise, say N.

L
Linus Torvalds 已提交
207 208
# ARM1020 - needs validating
config CPU_ARM1020
209
	bool
L
Linus Torvalds 已提交
210 211 212 213
	select CPU_32v5
	select CPU_ABRT_EV4T
	select CPU_CACHE_V4WT
	select CPU_CACHE_VIVT
214
	select CPU_COPY_V4WB if MMU
215 216
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
217
	select CPU_THUMB_CAPABLE
218
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
219 220 221 222 223 224 225 226 227
	help
	  The ARM1020 is the 32K cached version of the ARM10 processor,
	  with an addition of a floating-point unit.

	  Say Y if you want support for the ARM1020 processor.
	  Otherwise, say N.

# ARM1020E - needs validating
config CPU_ARM1020E
228
	bool
229
	depends on n
L
Linus Torvalds 已提交
230 231 232 233
	select CPU_32v5
	select CPU_ABRT_EV4T
	select CPU_CACHE_V4WT
	select CPU_CACHE_VIVT
234
	select CPU_COPY_V4WB if MMU
235 236
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
237
	select CPU_THUMB_CAPABLE
238
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
239 240 241

# ARM1022E
config CPU_ARM1022
242
	bool
L
Linus Torvalds 已提交
243 244 245
	select CPU_32v5
	select CPU_ABRT_EV4T
	select CPU_CACHE_VIVT
246
	select CPU_COPY_V4WB if MMU # can probably do better
247 248
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
249
	select CPU_THUMB_CAPABLE
250
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
251 252 253 254 255 256 257 258 259 260
	help
	  The ARM1022E is an implementation of the ARMv5TE architecture
	  based upon the ARM10 integer core with a 16KiB L1 Harvard cache,
	  embedded trace macrocell, and a floating-point unit.

	  Say Y if you want support for the ARM1022E processor.
	  Otherwise, say N.

# ARM1026EJ-S
config CPU_ARM1026
261
	bool
L
Linus Torvalds 已提交
262 263 264
	select CPU_32v5
	select CPU_ABRT_EV5T # But need Jazelle, but EV5TJ ignores bit 10
	select CPU_CACHE_VIVT
265
	select CPU_COPY_V4WB if MMU # can probably do better
266 267
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
268
	select CPU_THUMB_CAPABLE
269
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278
	help
	  The ARM1026EJ-S is an implementation of the ARMv5TEJ architecture
	  based upon the ARM10 integer core.

	  Say Y if you want support for the ARM1026EJ-S processor.
	  Otherwise, say N.

# SA110
config CPU_SA110
A
Arnd Bergmann 已提交
279
	bool
L
Linus Torvalds 已提交
280 281 282 283 284
	select CPU_32v3 if ARCH_RPC
	select CPU_32v4 if !ARCH_RPC
	select CPU_ABRT_EV4
	select CPU_CACHE_V4WB
	select CPU_CACHE_VIVT
285
	select CPU_COPY_V4WB if MMU
286 287
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
288
	select CPU_TLB_V4WB if MMU
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	help
	  The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and
	  is available at five speeds ranging from 100 MHz to 233 MHz.
	  More information is available at
	  <http://developer.intel.com/design/strong/sa110.htm>.

	  Say Y if you want support for the SA-110 processor.
	  Otherwise, say N.

# SA1100
config CPU_SA1100
	bool
	select CPU_32v4
	select CPU_ABRT_EV4
	select CPU_CACHE_V4WB
	select CPU_CACHE_VIVT
305
	select CPU_CP15_MMU
306
	select CPU_PABRT_LEGACY
307
	select CPU_TLB_V4WB if MMU
L
Linus Torvalds 已提交
308 309 310 311 312 313 314

# XScale
config CPU_XSCALE
	bool
	select CPU_32v5
	select CPU_ABRT_EV5T
	select CPU_CACHE_VIVT
315
	select CPU_CP15_MMU
316
	select CPU_PABRT_LEGACY
317
	select CPU_THUMB_CAPABLE
318
	select CPU_TLB_V4WBI if MMU
L
Linus Torvalds 已提交
319

320 321 322 323 324 325
# XScale Core Version 3
config CPU_XSC3
	bool
	select CPU_32v5
	select CPU_ABRT_EV5T
	select CPU_CACHE_VIVT
326
	select CPU_CP15_MMU
327
	select CPU_PABRT_LEGACY
328
	select CPU_THUMB_CAPABLE
329
	select CPU_TLB_V4WBI if MMU
330 331
	select IO_36

332 333 334 335 336 337
# Marvell PJ1 (Mohawk)
config CPU_MOHAWK
	bool
	select CPU_32v5
	select CPU_ABRT_EV5T
	select CPU_CACHE_VIVT
338
	select CPU_COPY_V4WB if MMU
339
	select CPU_CP15_MMU
340
	select CPU_PABRT_LEGACY
341
	select CPU_THUMB_CAPABLE
342 343
	select CPU_TLB_V4WBI if MMU

344 345 346 347 348 349
# Feroceon
config CPU_FEROCEON
	bool
	select CPU_32v5
	select CPU_ABRT_EV5T
	select CPU_CACHE_VIVT
350
	select CPU_COPY_FEROCEON if MMU
351 352
	select CPU_CP15_MMU
	select CPU_PABRT_LEGACY
353
	select CPU_THUMB_CAPABLE
354
	select CPU_TLB_FEROCEON if MMU
355

356 357 358 359 360 361 362 363 364
config CPU_FEROCEON_OLD_ID
	bool "Accept early Feroceon cores with an ARM926 ID"
	depends on CPU_FEROCEON && !CPU_ARM926T
	default y
	help
	  This enables the usage of some old Feroceon cores
	  for which the CPU ID is equal to the ARM926 ID.
	  Relevant for Feroceon-1850 and early Feroceon-2850.

H
Haojian Zhuang 已提交
365 366 367 368
# Marvell PJ4
config CPU_PJ4
	bool
	select ARM_THUMBEE
369
	select CPU_V7
H
Haojian Zhuang 已提交
370

371 372 373 374
config CPU_PJ4B
	bool
	select CPU_V7

L
Linus Torvalds 已提交
375 376
# ARMv6
config CPU_V6
377
	bool
L
Linus Torvalds 已提交
378 379 380 381
	select CPU_32v6
	select CPU_ABRT_EV6
	select CPU_CACHE_V6
	select CPU_CACHE_VIPT
382
	select CPU_COPY_V6 if MMU
383
	select CPU_CP15_MMU
384
	select CPU_HAS_ASID if MMU
385
	select CPU_PABRT_V6
386
	select CPU_THUMB_CAPABLE
387
	select CPU_TLB_V6 if MMU
L
Linus Torvalds 已提交
388

389
# ARMv6k
390
config CPU_V6K
391
	bool
392
	select CPU_32v6
393
	select CPU_32v6K
394 395 396
	select CPU_ABRT_EV6
	select CPU_CACHE_V6
	select CPU_CACHE_VIPT
397
	select CPU_COPY_V6 if MMU
398 399
	select CPU_CP15_MMU
	select CPU_HAS_ASID if MMU
400
	select CPU_PABRT_V6
401
	select CPU_THUMB_CAPABLE
402
	select CPU_TLB_V6 if MMU
403

404 405
# ARMv7
config CPU_V7
406
	bool
407
	select CPU_32v6K
408 409 410 411
	select CPU_32v7
	select CPU_ABRT_EV7
	select CPU_CACHE_V7
	select CPU_CACHE_VIPT
412
	select CPU_COPY_V6 if MMU
413 414
	select CPU_CP15_MMU if MMU
	select CPU_CP15_MPU if !MMU
415
	select CPU_HAS_ASID if MMU
416
	select CPU_PABRT_V7
417
	select CPU_THUMB_CAPABLE
418
	select CPU_TLB_V7 if MMU
419

420 421 422 423 424
# ARMv7M
config CPU_V7M
	bool
	select CPU_32v7M
	select CPU_ABRT_NOMMU
425
	select CPU_CACHE_V7M
426 427 428 429
	select CPU_CACHE_NOP
	select CPU_PABRT_LEGACY
	select CPU_THUMBONLY

430 431
config CPU_THUMBONLY
	bool
432
	select CPU_THUMB_CAPABLE
433 434 435 436 437
	# There are no CPUs available with MMU that don't implement an ARM ISA:
	depends on !MMU
	help
	  Select this if your CPU doesn't support the 32 bit ARM instructions.

438 439 440 441 442
config CPU_THUMB_CAPABLE
	bool
	help
	  Select this if your CPU can support Thumb mode.

L
Linus Torvalds 已提交
443 444 445 446
# Figure out what processor architecture version we should be using.
# This defines the compiler instruction set which depends on the machine type.
config CPU_32v3
	bool
447
	select CPU_USE_DOMAINS if MMU
448
	select NEED_KUSER_HELPERS
449
	select TLS_REG_EMUL if SMP || !MMU
450
	select CPU_NO_EFFICIENT_FFS
L
Linus Torvalds 已提交
451 452 453

config CPU_32v4
	bool
454
	select CPU_USE_DOMAINS if MMU
455
	select NEED_KUSER_HELPERS
456
	select TLS_REG_EMUL if SMP || !MMU
457
	select CPU_NO_EFFICIENT_FFS
L
Linus Torvalds 已提交
458

459 460
config CPU_32v4T
	bool
461
	select CPU_USE_DOMAINS if MMU
462
	select NEED_KUSER_HELPERS
463
	select TLS_REG_EMUL if SMP || !MMU
464
	select CPU_NO_EFFICIENT_FFS
465

L
Linus Torvalds 已提交
466 467
config CPU_32v5
	bool
468
	select CPU_USE_DOMAINS if MMU
469
	select NEED_KUSER_HELPERS
470
	select TLS_REG_EMUL if SMP || !MMU
L
Linus Torvalds 已提交
471 472 473

config CPU_32v6
	bool
474
	select TLS_REG_EMUL if !CPU_32v6K && !MMU
L
Linus Torvalds 已提交
475

476
config CPU_32v6K
477
	bool
L
Linus Torvalds 已提交
478

479 480 481
config CPU_32v7
	bool

482 483 484
config CPU_32v7M
	bool

L
Linus Torvalds 已提交
485
# The abort model
486 487 488
config CPU_ABRT_NOMMU
	bool

L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
config CPU_ABRT_EV4
	bool

config CPU_ABRT_EV4T
	bool

config CPU_ABRT_LV4T
	bool

config CPU_ABRT_EV5T
	bool

config CPU_ABRT_EV5TJ
	bool

config CPU_ABRT_EV6
	bool

507 508 509
config CPU_ABRT_EV7
	bool

510
config CPU_PABRT_LEGACY
P
Paul Brook 已提交
511 512
	bool

513 514 515 516
config CPU_PABRT_V6
	bool

config CPU_PABRT_V7
P
Paul Brook 已提交
517 518
	bool

L
Linus Torvalds 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531
# The cache model
config CPU_CACHE_V4
	bool

config CPU_CACHE_V4WT
	bool

config CPU_CACHE_V4WB
	bool

config CPU_CACHE_V6
	bool

532 533 534
config CPU_CACHE_V7
	bool

535 536 537
config CPU_CACHE_NOP
	bool

L
Linus Torvalds 已提交
538 539 540 541 542 543
config CPU_CACHE_VIVT
	bool

config CPU_CACHE_VIPT
	bool

P
Paulius Zaleckas 已提交
544 545 546
config CPU_CACHE_FA
	bool

547 548 549
config CPU_CACHE_V7M
	bool

550
if MMU
L
Linus Torvalds 已提交
551 552 553 554 555 556 557
# The copy-page model
config CPU_COPY_V4WT
	bool

config CPU_COPY_V4WB
	bool

558 559 560
config CPU_COPY_FEROCEON
	bool

P
Paulius Zaleckas 已提交
561 562 563
config CPU_COPY_FA
	bool

L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
config CPU_COPY_V6
	bool

# This selects the TLB model
config CPU_TLB_V4WT
	bool
	help
	  ARM Architecture Version 4 TLB with writethrough cache.

config CPU_TLB_V4WB
	bool
	help
	  ARM Architecture Version 4 TLB with writeback cache.

config CPU_TLB_V4WBI
	bool
	help
	  ARM Architecture Version 4 TLB with writeback cache and invalidate
	  instruction cache entry.

584 585 586 587 588
config CPU_TLB_FEROCEON
	bool
	help
	  Feroceon TLB (v4wbi with non-outer-cachable page table walks).

P
Paulius Zaleckas 已提交
589 590 591 592 593 594 595
config CPU_TLB_FA
	bool
	help
	  Faraday ARM FA526 architecture, unified TLB with writeback cache
	  and invalidate instruction cache entry. Branch target buffer is
	  also supported.

L
Linus Torvalds 已提交
596 597 598
config CPU_TLB_V6
	bool

599 600 601
config CPU_TLB_V7
	bool

602 603
config VERIFY_PERMISSION_FAULT
	bool
604 605
endif

606 607 608 609 610 611
config CPU_HAS_ASID
	bool
	help
	  This indicates whether the CPU has the ASID register; used to
	  tag TLB and possibly cache entries.

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
config CPU_CP15
	bool
	help
	  Processor has the CP15 register.

config CPU_CP15_MMU
	bool
	select CPU_CP15
	help
	  Processor has the CP15 register, which has MMU related registers.

config CPU_CP15_MPU
	bool
	select CPU_CP15
	help
	  Processor has the CP15 register, which has MPU related registers.

629 630 631 632 633 634
config CPU_USE_DOMAINS
	bool
	help
	  This option enables or disables the use of domain switching
	  via the set_fs() function.

635 636 637 638 639
config CPU_V7M_NUM_IRQ
	int "Number of external interrupts connected to the NVIC"
	depends on CPU_V7M
	default 90 if ARCH_STM32
	default 38 if ARCH_EFM32
640
	default 112 if SOC_VF610
641 642 643 644 645 646 647 648 649 650
	default 240
	help
	  This option indicates the number of interrupts connected to the NVIC.
	  The value can be larger than the real number of interrupts supported
	  by the system, but must not be lower.
	  The default value is 240, corresponding to the maximum number of
	  interrupts supported by the NVIC on Cortex-M family.

	  If unsure, keep default value.

651 652 653 654 655 656
#
# CPU supports 36-bit I/O
#
config IO_36
	bool

L
Linus Torvalds 已提交
657 658
comment "Processor Features"

659 660
config ARM_LPAE
	bool "Support for the Large Physical Address Extension"
661 662
	depends on MMU && CPU_32v7 && !CPU_32v6 && !CPU_32v5 && \
		!CPU_32v4 && !CPU_32v3
663 664 665 666 667 668 669 670
	help
	  Say Y if you have an ARMv7 processor supporting the LPAE page
	  table format and you would like to access memory beyond the
	  4GB limit. The resulting kernel image will not run on
	  processors without the LPA extension.

	  If unsure, say N.

671 672 673 674
config ARM_PV_FIXUP
	def_bool y
	depends on ARM_LPAE && ARM_PATCH_PHYS_VIRT && ARCH_KEYSTONE

675 676 677 678 679 680
config ARCH_PHYS_ADDR_T_64BIT
	def_bool ARM_LPAE

config ARCH_DMA_ADDR_T_64BIT
	bool

L
Linus Torvalds 已提交
681
config ARM_THUMB
682
	bool "Support Thumb user binaries" if !CPU_THUMBONLY && EXPERT
683
	depends on CPU_THUMB_CAPABLE
L
Linus Torvalds 已提交
684 685 686 687 688 689 690 691 692
	default y
	help
	  Say Y if you want to include kernel support for running user space
	  Thumb binaries.

	  The Thumb instruction set is a compressed form of the standard ARM
	  instruction set resulting in smaller binaries at the expense of
	  slightly less efficient code.

693 694 695 696
	  If this option is disabled, and you run userspace that switches to
	  Thumb mode, signal handling will not work correctly, resulting in
	  segmentation faults or illegal instruction aborts.

L
Linus Torvalds 已提交
697 698
	  If you don't know what this all is, saying Y is a safe choice.

699 700 701 702 703 704 705
config ARM_THUMBEE
	bool "Enable ThumbEE CPU extension"
	depends on CPU_V7
	help
	  Say Y here if you have a CPU with the ThumbEE extension and code to
	  make use of it. Say N for code that can run on CPUs without ThumbEE.

706
config ARM_VIRT_EXT
707 708 709
	bool
	depends on MMU
	default y if CPU_V7
710 711 712 713 714 715 716 717 718
	help
	  Enable the kernel to make use of the ARM Virtualization
	  Extensions to install hypervisors without run-time firmware
	  assistance.

	  A compliant bootloader is required in order to make maximum
	  use of this feature.  Refer to Documentation/arm/Booting for
	  details.

719
config SWP_EMULATE
720
	bool "Emulate SWP/SWPB instructions" if !SMP
721
	depends on CPU_V7
722
	default y if SMP
723
	select HAVE_PROC_CPU if PROC_FS
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	help
	  ARMv6 architecture deprecates use of the SWP/SWPB instructions.
	  ARMv7 multiprocessing extensions introduce the ability to disable
	  these instructions, triggering an undefined instruction exception
	  when executed. Say Y here to enable software emulation of these
	  instructions for userspace (not kernel) using LDREX/STREX.
	  Also creates /proc/cpu/swp_emulation for statistics.

	  In some older versions of glibc [<=2.8] SWP is used during futex
	  trylock() operations with the assumption that the code will not
	  be preempted. This invalid assumption may be more likely to fail
	  with SWP emulation enabled, leading to deadlock of the user
	  application.

	  NOTE: when accessing uncached shared regions, LDREX/STREX rely
	  on an external transaction monitoring block called a global
	  monitor to maintain update atomicity. If your system does not
	  implement a global monitor, this option can cause programs that
	  perform SWP operations to uncached memory to deadlock.

	  If unsure, say Y.

L
Linus Torvalds 已提交
746 747 748 749 750 751 752 753 754
config CPU_BIG_ENDIAN
	bool "Build big-endian kernel"
	depends on ARCH_SUPPORTS_BIG_ENDIAN
	help
	  Say Y if you plan on running a kernel in big-endian mode.
	  Note that your board must be properly built and your board
	  port must properly enable any big-endian related features
	  of your chipset/board/processor.

755 756 757
config CPU_ENDIAN_BE8
	bool
	depends on CPU_BIG_ENDIAN
758
	default CPU_V6 || CPU_V6K || CPU_V7
759 760 761 762 763 764 765 766 767 768
	help
	  Support for the BE-8 (big-endian) mode on ARMv6 and ARMv7 processors.

config CPU_ENDIAN_BE32
	bool
	depends on CPU_BIG_ENDIAN
	default !CPU_ENDIAN_BE8
	help
	  Support for the BE-32 (big-endian) mode on pre-ARMv6 processors.

769
config CPU_HIGH_VECTOR
770
	depends on !MMU && CPU_CP15 && !CPU_ARM740T
771 772 773
	bool "Select the High exception vector"
	help
	  Say Y here to select high exception vector(0xFFFF0000~).
774
	  The exception vector can vary depending on the platform
775 776 777 778 779
	  design in nommu mode. If your platform needs to select
	  high exception vector, say Y.
	  Otherwise or if you are unsure, say N, and the low exception
	  vector (0x00000000~) will be used.

L
Linus Torvalds 已提交
780
config CPU_ICACHE_DISABLE
781
	bool "Disable I-Cache (I-bit)"
782
	depends on (CPU_CP15 && !(CPU_ARM720T || CPU_ARM740T || CPU_XSCALE || CPU_XSC3)) || CPU_V7M
L
Linus Torvalds 已提交
783 784 785 786 787
	help
	  Say Y here to disable the processor instruction cache. Unless
	  you have a reason not to or are unsure, say N.

config CPU_DCACHE_DISABLE
788
	bool "Disable D-Cache (C-bit)"
789
	depends on (CPU_CP15 && !SMP) || CPU_V7M
L
Linus Torvalds 已提交
790 791 792 793
	help
	  Say Y here to disable the processor data cache. Unless
	  you have a reason not to or are unsure, say N.

794 795 796 797 798 799 800 801 802 803 804 805 806
config CPU_DCACHE_SIZE
	hex
	depends on CPU_ARM740T || CPU_ARM946E
	default 0x00001000 if CPU_ARM740T
	default 0x00002000 # default size for ARM946E-S
	help
	  Some cores are synthesizable to have various sized cache. For
	  ARM946E-S case, it can vary from 0KB to 1MB.
	  To support such cache operations, it is efficient to know the size
	  before compile time.
	  If your SoC is configured to have a different size, define the value
	  here with proper conditions.

L
Linus Torvalds 已提交
807 808
config CPU_DCACHE_WRITETHROUGH
	bool "Force write through D-cache"
P
Paulius Zaleckas 已提交
809
	depends on (CPU_ARM740T || CPU_ARM920T || CPU_ARM922T || CPU_ARM925T || CPU_ARM926T || CPU_ARM940T || CPU_ARM946E || CPU_ARM1020 || CPU_FA526) && !CPU_DCACHE_DISABLE
L
Linus Torvalds 已提交
810 811 812 813 814 815 816
	default y if CPU_ARM925T
	help
	  Say Y here to use the data cache in writethrough mode. Unless you
	  specifically require this or are unsure, say N.

config CPU_CACHE_ROUND_ROBIN
	bool "Round robin I and D cache replacement algorithm"
817
	depends on (CPU_ARM926T || CPU_ARM946E || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE)
L
Linus Torvalds 已提交
818 819 820 821 822 823
	help
	  Say Y here to use the predictable round-robin cache replacement
	  policy.  Unless you specifically require this or are unsure, say N.

config CPU_BPREDICT_DISABLE
	bool "Disable branch prediction"
824
	depends on CPU_ARM1020 || CPU_V6 || CPU_V6K || CPU_MOHAWK || CPU_XSC3 || CPU_V7 || CPU_FA526 || CPU_V7M
L
Linus Torvalds 已提交
825 826
	help
	  Say Y here to disable branch prediction.  If unsure, say N.
827

828 829
config TLS_REG_EMUL
	bool
830
	select NEED_KUSER_HELPERS
831
	help
832 833 834
	  An SMP system using a pre-ARMv6 processor (there are apparently
	  a few prototypes like that in existence) and therefore access to
	  that required register must be emulated.
835

836 837 838 839 840
config NEED_KUSER_HELPERS
	bool

config KUSER_HELPERS
	bool "Enable kuser helpers in vector page" if !NEED_KUSER_HELPERS
841
	depends on MMU
842 843 844 845 846 847 848 849 850 851
	default y
	help
	  Warning: disabling this option may break user programs.

	  Provide kuser helpers in the vector page.  The kernel provides
	  helper code to userspace in read only form at a fixed location
	  in the high vector page to allow userspace to be independent of
	  the CPU type fitted to the system.  This permits binaries to be
	  run on ARMv4 through to ARMv7 without modification.

852 853
	  See Documentation/arm/kernel_user_helpers.txt for details.

854 855 856 857 858 859
	  However, the fixed address nature of these helpers can be used
	  by ROP (return orientated programming) authors when creating
	  exploits.

	  If all of the binaries and libraries which run on your platform
	  are built specifically for your platform, and make no use of
860 861 862 863
	  these helpers, then you can turn this option off to hinder
	  such exploits. However, in that case, if a binary or library
	  relying on those helpers is run, it will receive a SIGILL signal,
	  which will terminate the program.
864 865 866 867

	  Say N here only if you are absolutely certain that you do not
	  need these helpers; otherwise, the safe option is to say Y.

868 869
config VDSO
	bool "Enable VDSO for acceleration of some system calls"
870
	depends on AEABI && MMU && CPU_V7
871 872 873 874 875 876 877 878 879 880 881
	default y if ARM_ARCH_TIMER
	select GENERIC_TIME_VSYSCALL
	help
	  Place in the process address space an ELF shared object
	  providing fast implementations of gettimeofday and
	  clock_gettime.  Systems that implement the ARM architected
	  timer will receive maximum benefit.

	  You must have glibc 2.22 or later for programs to seamlessly
	  take advantage of this.

882 883
config DMA_CACHE_RWFO
	bool "Enable read/write for ownership DMA cache maintenance"
884
	depends on CPU_V6K && SMP
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	default y
	help
	  The Snoop Control Unit on ARM11MPCore does not detect the
	  cache maintenance operations and the dma_{map,unmap}_area()
	  functions may leave stale cache entries on other CPUs. By
	  enabling this option, Read or Write For Ownership in the ARMv6
	  DMA cache maintenance functions is performed. These LDR/STR
	  instructions change the cache line state to shared or modified
	  so that the cache operation has the desired effect.

	  Note that the workaround is only valid on processors that do
	  not perform speculative loads into the D-cache. For such
	  processors, if cache maintenance operations are not broadcast
	  in hardware, other workarounds are needed (e.g. cache
	  maintenance broadcasting in software via FIQ).

901 902
config OUTER_CACHE
	bool
903

904 905
config OUTER_CACHE_SYNC
	bool
906
	select ARM_HEAVY_MB
907 908 909 910
	help
	  The outer cache has a outer_cache_fns.sync function pointer
	  that can be used to drain the write buffer of the outer cache.

911 912
config CACHE_FEROCEON_L2
	bool "Enable the Feroceon L2 cache controller"
913
	depends on ARCH_MV78XX0 || ARCH_MVEBU
914 915 916 917 918
	default y
	select OUTER_CACHE
	help
	  This option enables the Feroceon L2 cache controller.

919 920 921 922 923 924 925
config CACHE_FEROCEON_L2_WRITETHROUGH
	bool "Force Feroceon L2 cache write through"
	depends on CACHE_FEROCEON_L2
	help
	  Say Y here to use the Feroceon L2 cache in writethrough mode.
	  Unless you specifically require this, say N for writeback mode.

926 927 928 929 930 931 932 933 934 935 936 937 938 939
config MIGHT_HAVE_CACHE_L2X0
	bool
	help
	  This option should be selected by machines which have a L2x0
	  or PL310 cache controller, but where its use is optional.

	  The only effect of this option is to make CACHE_L2X0 and
	  related options available to the user for configuration.

	  Boards or SoCs which always require the cache controller
	  support to be present should select CACHE_L2X0 directly
	  instead of this option, thus preventing the user from
	  inadvertently configuring a broken kernel.

940
config CACHE_L2X0
941 942
	bool "Enable the L2x0 outer cache controller" if MIGHT_HAVE_CACHE_L2X0
	default MIGHT_HAVE_CACHE_L2X0
943
	select OUTER_CACHE
944
	select OUTER_CACHE_SYNC
945 946
	help
	  This option enables the L2x0 PrimeCell.
947

948 949 950 951 952 953 954
config CACHE_L2X0_PMU
	bool "L2x0 performance monitor support" if CACHE_L2X0
	depends on PERF_EVENTS
	help
	  This option enables support for the performance monitoring features
	  of the L220 and PL310 outer cache controllers.

955 956
if CACHE_L2X0

957 958 959 960 961 962 963 964 965
config PL310_ERRATA_588369
	bool "PL310 errata: Clean & Invalidate maintenance operations do not invalidate clean lines"
	help
	   The PL310 L2 cache controller implements three types of Clean &
	   Invalidate maintenance operations: by Physical Address
	   (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC).
	   They are architecturally defined to behave as the execution of a
	   clean operation followed immediately by an invalidate operation,
	   both performing to the same memory location. This functionality
966 967
	   is not correctly implemented in PL310 prior to r2p0 (fixed in r2p0)
	   as clean lines are not invalidated as a result of these operations.
968 969 970 971 972 973 974 975 976

config PL310_ERRATA_727915
	bool "PL310 errata: Background Clean & Invalidate by Way operation can cause data corruption"
	help
	  PL310 implements the Clean & Invalidate by Way L2 cache maintenance
	  operation (offset 0x7FC). This operation runs in background so that
	  PL310 can handle normal accesses while it is in progress. Under very
	  rare circumstances, due to this erratum, write data can be lost when
	  PL310 treats a cacheable write transaction during a Clean &
977 978
	  Invalidate by Way operation.  Revisions prior to r3p1 are affected by
	  this errata (fixed in r3p1).
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

config PL310_ERRATA_753970
	bool "PL310 errata: cache sync operation may be faulty"
	help
	  This option enables the workaround for the 753970 PL310 (r3p0) erratum.

	  Under some condition the effect of cache sync operation on
	  the store buffer still remains when the operation completes.
	  This means that the store buffer is always asked to drain and
	  this prevents it from merging any further writes. The workaround
	  is to replace the normal offset of cache sync operation (0x730)
	  by another offset targeting an unmapped PL310 register 0x740.
	  This has the same effect as the cache sync operation: store buffer
	  drain and waiting for all buffers empty.

config PL310_ERRATA_769419
	bool "PL310 errata: no automatic Store Buffer drain"
	help
	  On revisions of the PL310 prior to r3p2, the Store Buffer does
	  not automatically drain. This can cause normal, non-cacheable
	  writes to be retained when the memory system is idle, leading
	  to suboptimal I/O performance for drivers using coherent DMA.
	  This option adds a write barrier to the cpu_idle loop so that,
	  on systems with an outer cache, the store buffer is drained
	  explicitly.

1005 1006
endif

1007 1008
config CACHE_TAUROS2
	bool "Enable the Tauros2 L2 cache controller"
H
Haojian Zhuang 已提交
1009
	depends on (ARCH_DOVE || ARCH_MMP || CPU_PJ4)
1010 1011 1012 1013 1014 1015
	default y
	select OUTER_CACHE
	help
	  This option enables the Tauros2 L2 cache controller (as
	  found on PJ1/PJ4).

1016 1017 1018
config CACHE_UNIPHIER
	bool "Enable the UniPhier outer cache controller"
	depends on ARCH_UNIPHIER
1019
	select ARM_L1_CACHE_SHIFT_7
1020 1021 1022 1023 1024 1025
	select OUTER_CACHE
	select OUTER_CACHE_SYNC
	help
	  This option enables the UniPhier outer cache (system cache)
	  controller.

1026 1027 1028 1029 1030 1031 1032
config CACHE_XSC3L2
	bool "Enable the L2 cache on XScale3"
	depends on CPU_XSC3
	default y
	select OUTER_CACHE
	help
	  This option enables the L2 cache on XScale3.
1033

1034 1035
config ARM_L1_CACHE_SHIFT_6
	bool
1036
	default y if CPU_V7
1037 1038 1039
	help
	  Setting ARM L1 cache line size to 64 Bytes.

1040 1041 1042 1043 1044
config ARM_L1_CACHE_SHIFT_7
	bool
	help
	  Setting ARM L1 cache line size to 128 Bytes.

1045 1046
config ARM_L1_CACHE_SHIFT
	int
1047
	default 7 if ARM_L1_CACHE_SHIFT_7
1048
	default 6 if ARM_L1_CACHE_SHIFT_6
1049
	default 5
1050 1051

config ARM_DMA_MEM_BUFFERABLE
1052 1053
	bool "Use non-cacheable memory for DMA" if (CPU_V6 || CPU_V6K || CPU_V7M) && !CPU_V7
	default y if CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	help
	  Historically, the kernel has used strongly ordered mappings to
	  provide DMA coherent memory.  With the advent of ARMv7, mapping
	  memory with differing types results in unpredictable behaviour,
	  so on these CPUs, this option is forced on.

	  Multiple mappings with differing attributes is also unpredictable
	  on ARMv6 CPUs, but since they do not have aggressive speculative
	  prefetch, no harm appears to occur.

	  However, drivers may be missing the necessary barriers for ARMv6,
	  and therefore turning this on may result in unpredictable driver
	  behaviour.  Therefore, we offer this as an option.

1068 1069 1070 1071
	  On some of the beefier ARMv7-M machines (with DMA and write
	  buffers) you likely want this enabled, while those that
	  didn't need it until now also won't need it in the future.

1072
	  You are recommended say 'Y' here and debug any affected drivers.
1073

1074 1075 1076
config ARM_HEAVY_MB
	bool

1077 1078 1079 1080 1081
config ARCH_SUPPORTS_BIG_ENDIAN
	bool
	help
	  This option specifies the architecture can support big endian
	  operation.
1082

1083 1084
config DEBUG_ALIGN_RODATA
	bool "Make rodata strictly non-executable"
1085
	depends on STRICT_KERNEL_RWX
1086 1087
	default y
	help
1088 1089 1090 1091 1092 1093
	  If this is set, rodata will be made explicitly non-executable. This
	  provides protection on the rare chance that attackers might find and
	  use ROP gadgets that exist in the rodata section. This adds an
	  additional section-aligned split of rodata from kernel text so it
	  can be made explicitly non-executable. This padding may waste memory
	  space to gain the additional protection.