futex.c 76.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67

68
#include <asm/futex.h>
L
Linus Torvalds 已提交
69

70
#include "locking/rtmutex_common.h"
71

72 73 74 75 76 77
/*
 * Basic futex operation and ordering guarantees:
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
78 79 80
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
81 82
 *
 * The waker side modifies the user space value of the futex and calls
83 84 85
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
86
 *
87 88 89 90 91
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
113 114 115 116 117
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
118 119 120
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
121 122 123 124 125 126 127 128 129 130 131 132
 *
 *   waiters++;
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
133
 *   if (uval == val)
134
 *     queue();
135
 *     unlock(hash_bucket(futex));
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
 *                                           wake_waiters(futex);
 *                                           unlock(hash_bucket(futex));
 *
 * Where (A) orders the waiters increment and the futex value read -- this
 * is guaranteed by the head counter in the hb spinlock; and where (B)
 * orders the write to futex and the waiters read -- this is done by the
 * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
 * depending on the futex type.
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
158 159
 */

160
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161
int __read_mostly futex_cmpxchg_enabled;
162
#endif
163

164 165 166 167 168 169 170 171
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

193 194
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
195
 * @list:		priority-sorted list of tasks waiting on this futex
196 197 198 199 200 201 202 203 204
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
205 206 207
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
208
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209
 * The order of wakeup is always to make the first condition true, then
210 211 212 213
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
214 215
 */
struct futex_q {
P
Pierre Peiffer 已提交
216
	struct plist_node list;
L
Linus Torvalds 已提交
217

218
	struct task_struct *task;
L
Linus Torvalds 已提交
219 220
	spinlock_t *lock_ptr;
	union futex_key key;
221
	struct futex_pi_state *pi_state;
222
	struct rt_mutex_waiter *rt_waiter;
223
	union futex_key *requeue_pi_key;
224
	u32 bitset;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
233
/*
D
Darren Hart 已提交
234 235 236
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
237 238
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
239 240
	spinlock_t lock;
	struct plist_head chain;
241
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
242

243 244 245
static unsigned long __read_mostly futex_hashsize;

static struct futex_hash_bucket *futex_queues;
L
Linus Torvalds 已提交
246

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
	smp_mb__after_atomic_inc();
}

static inline bool hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	/*
	 * Tasks trying to enter the critical region are most likely
	 * potential waiters that will be added to the plist. Ensure
	 * that wakers won't miss to-be-slept tasks in the window between
	 * the wait call and the actual plist_add.
	 */
	if (spin_is_locked(&hb->lock))
		return true;
	smp_rmb(); /* Make sure we check the lock state first */

	return !plist_head_empty(&hb->chain);
#else
	return true;
#endif
}

L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
285
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
286 287 288 289 290 291 292
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
293 294
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
295 296 297 298
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

299 300 301 302 303 304 305 306 307 308 309 310
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
311
		ihold(key->shared.inode); /* implies MB (B) */
312 313
		break;
	case FUT_OFF_MMSHARED:
314
		futex_get_mm(key); /* implies MB (B) */
315 316 317 318 319 320 321 322 323 324
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
325 326 327
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
328
		return;
329
	}
330 331 332 333 334 335 336 337 338 339 340

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
341
/**
342 343 344 345
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
346 347
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
348
 *
349 350
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
351
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
352
 *
A
Al Viro 已提交
353
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
354 355 356
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
357
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
358
 */
359
static int
360
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
361
{
362
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
363
	struct mm_struct *mm = current->mm;
364
	struct page *page, *page_head;
365
	int err, ro = 0;
L
Linus Torvalds 已提交
366 367 368 369

	/*
	 * The futex address must be "naturally" aligned.
	 */
370
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
371
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
372
		return -EINVAL;
373
	address -= key->both.offset;
L
Linus Torvalds 已提交
374

375 376 377
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

E
Eric Dumazet 已提交
378 379 380 381 382 383 384 385 386 387
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
388
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
389 390
		return 0;
	}
L
Linus Torvalds 已提交
391

392
again:
393
	err = get_user_pages_fast(address, 1, 1, &page);
394 395 396 397 398 399 400 401
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
402 403
	if (err < 0)
		return err;
404 405
	else
		err = 0;
406

407 408 409
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
410
		put_page(page);
411 412
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
413
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
460
	if (!page_head->mapping) {
461
		int shmem_swizzled = PageSwapCache(page_head);
462 463
		unlock_page(page_head);
		put_page(page_head);
464 465 466
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
467
	}
L
Linus Torvalds 已提交
468 469 470 471 472 473

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
474
	 * the object not the particular process.
L
Linus Torvalds 已提交
475
	 */
476
	if (PageAnon(page_head)) {
477 478 479 480 481 482 483 484 485
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

486
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
487
		key->private.mm = mm;
488
		key->private.address = address;
489 490
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
491
		key->shared.inode = page_head->mapping->host;
492
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
493 494
	}

495
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
496

497
out:
498 499
	unlock_page(page_head);
	put_page(page_head);
500
	return err;
L
Linus Torvalds 已提交
501 502
}

503
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
504
{
505
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
506 507
}

508 509
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
510 511 512 513 514
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
515
 * We have no generic implementation of a non-destructive write to the
516 517 518 519 520 521
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
522 523 524 525
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
526 527
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
528 529
	up_read(&mm->mmap_sem);

530 531 532
	return ret < 0 ? ret : 0;
}

533 534
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
535 536
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

552 553
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
554
{
555
	int ret;
T
Thomas Gleixner 已提交
556 557

	pagefault_disable();
558
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
559 560
	pagefault_enable();

561
	return ret;
T
Thomas Gleixner 已提交
562 563 564
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
565 566 567
{
	int ret;

568
	pagefault_disable();
569
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
570
	pagefault_enable();
L
Linus Torvalds 已提交
571 572 573 574

	return ret ? -EFAULT : 0;
}

575 576 577 578 579 580 581 582 583 584 585

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

586
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
587 588 589 590 591 592 593 594

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
595
	pi_state->key = FUTEX_KEY_INIT;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
622
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
623
		list_del_init(&pi_state->list);
624
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

651
	rcu_read_lock();
652
	p = find_task_by_vpid(pid);
653 654
	if (p)
		get_task_struct(p);
655

656
	rcu_read_unlock();
657 658 659 660 661 662 663 664 665 666 667 668 669

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
670
	struct futex_hash_bucket *hb;
671
	union futex_key key = FUTEX_KEY_INIT;
672

673 674
	if (!futex_cmpxchg_enabled)
		return;
675 676 677
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
678
	 * versus waiters unqueueing themselves:
679
	 */
680
	raw_spin_lock_irq(&curr->pi_lock);
681 682 683 684 685
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
686
		hb = hash_futex(&key);
687
		raw_spin_unlock_irq(&curr->pi_lock);
688 689 690

		spin_lock(&hb->lock);

691
		raw_spin_lock_irq(&curr->pi_lock);
692 693 694 695
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
696 697 698 699 700 701
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
702 703
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
704
		pi_state->owner = NULL;
705
		raw_spin_unlock_irq(&curr->pi_lock);
706 707 708 709 710

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

711
		raw_spin_lock_irq(&curr->pi_lock);
712
	}
713
	raw_spin_unlock_irq(&curr->pi_lock);
714 715 716
}

static int
P
Pierre Peiffer 已提交
717 718
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
719 720 721 722
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
	struct task_struct *p;
723
	pid_t pid = uval & FUTEX_TID_MASK;
724

J
Jason Low 已提交
725
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
P
Pierre Peiffer 已提交
726
		if (match_futex(&this->key, key)) {
727 728 729 730 731
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
732
			/*
733
			 * Userspace might have messed up non-PI and PI futexes
734 735 736 737
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

738
			WARN_ON(!atomic_read(&pi_state->refcount));
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
758

759
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
760
			*ps = pi_state;
761 762 763 764 765 766

			return 0;
		}
	}

	/*
767
	 * We are the first waiter - try to look up the real owner and attach
768
	 * the new pi_state to it, but bail out when TID = 0
769
	 */
770
	if (!pid)
771
		return -ESRCH;
772
	p = futex_find_get_task(pid);
773 774
	if (!p)
		return -ESRCH;
775 776 777 778 779 780 781

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
782
	raw_spin_lock_irq(&p->pi_lock);
783 784 785 786 787 788 789 790
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

791
		raw_spin_unlock_irq(&p->pi_lock);
792 793 794
		put_task_struct(p);
		return ret;
	}
795 796 797 798 799 800 801 802 803 804

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
805
	pi_state->key = *key;
806

807
	WARN_ON(!list_empty(&pi_state->list));
808 809
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
810
	raw_spin_unlock_irq(&p->pi_lock);
811 812 813

	put_task_struct(p);

P
Pierre Peiffer 已提交
814
	*ps = pi_state;
815 816 817 818

	return 0;
}

819
/**
820
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
821 822 823 824 825 826 827 828
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
829
 *
830 831 832
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
833 834 835 836 837 838 839
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
840
				struct task_struct *task, int set_waiters)
841
{
842
	int lock_taken, ret, force_take = 0;
843
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
844 845 846 847 848 849 850 851 852

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
853
	newval = vpid;
854 855
	if (set_waiters)
		newval |= FUTEX_WAITERS;
856

857
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
858 859 860 861 862
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
863
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
881
	 * Should we force take the futex? See below.
882
	 */
883 884 885 886 887
	if (unlikely(force_take)) {
		/*
		 * Keep the OWNER_DIED and the WAITERS bit and set the
		 * new TID value.
		 */
888
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
889
		force_take = 0;
890 891 892
		lock_taken = 1;
	}

893
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
894 895 896 897 898
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
899
	 * We took the lock due to forced take over.
900 901 902 903 904 905 906 907 908 909 910 911 912 913
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
914 915 916 917 918 919 920 921
			 * We failed to find an owner for this
			 * futex. So we have no pi_state to block
			 * on. This can happen in two cases:
			 *
			 * 1) The owner died
			 * 2) A stale FUTEX_WAITERS bit
			 *
			 * Re-read the futex value.
922 923 924 925 926
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
927 928 929
			 * If the owner died or we have a stale
			 * WAITERS bit the owner TID in the user space
			 * futex is 0.
930
			 */
931 932
			if (!(curval & FUTEX_TID_MASK)) {
				force_take = 1;
933 934 935 936 937 938 939 940 941 942
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

943 944 945 946 947 948 949 950 951 952
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

953 954
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
955 956 957 958 959 960
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
}

L
Linus Torvalds 已提交
961 962 963 964 965 966
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
967 968
	struct task_struct *p = q->task;

969 970 971
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
972
	/*
T
Thomas Gleixner 已提交
973
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
974 975
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
976 977
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
978
	 */
T
Thomas Gleixner 已提交
979 980
	get_task_struct(p);

981
	__unqueue_futex(q);
L
Linus Torvalds 已提交
982
	/*
T
Thomas Gleixner 已提交
983 984 985 986
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
987
	 */
988
	smp_wmb();
L
Linus Torvalds 已提交
989
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
990 991 992

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
993 994
}

995 996 997 998
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
999
	u32 uninitialized_var(curval), newval;
1000 1001 1002 1003

	if (!pi_state)
		return -EINVAL;

1004 1005 1006 1007 1008 1009 1010
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1011
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1012 1013 1014
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1015 1016 1017
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1018 1019 1020 1021 1022 1023 1024 1025 1026
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
1027
	if (!(uval & FUTEX_OWNER_DIED)) {
1028 1029
		int ret = 0;

1030
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1031

1032
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1033
			ret = -EFAULT;
1034
		else if (curval != uval)
1035 1036
			ret = -EINVAL;
		if (ret) {
1037
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1038 1039
			return ret;
		}
1040
	}
1041

1042
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1043 1044
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1045
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1046

1047
	raw_spin_lock_irq(&new_owner->pi_lock);
1048
	WARN_ON(!list_empty(&pi_state->list));
1049 1050
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1051
	raw_spin_unlock_irq(&new_owner->pi_lock);
1052

1053
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1054 1055 1056 1057 1058 1059 1060
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
1061
	u32 uninitialized_var(oldval);
1062 1063 1064 1065 1066

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
1067 1068
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
1069 1070 1071 1072 1073 1074
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1091 1092 1093
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1094
	spin_unlock(&hb1->lock);
1095 1096
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1097 1098
}

L
Linus Torvalds 已提交
1099
/*
D
Darren Hart 已提交
1100
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1101
 */
1102 1103
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1104
{
1105
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1106
	struct futex_q *this, *next;
1107
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1108 1109
	int ret;

1110 1111 1112
	if (!bitset)
		return -EINVAL;

1113
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1114 1115 1116
	if (unlikely(ret != 0))
		goto out;

1117
	hb = hash_futex(&key);
1118 1119 1120 1121 1122

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1123
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1124

J
Jason Low 已提交
1125
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1126
		if (match_futex (&this->key, &key)) {
1127
			if (this->pi_state || this->rt_waiter) {
1128 1129 1130
				ret = -EINVAL;
				break;
			}
1131 1132 1133 1134 1135

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1142
	spin_unlock(&hb->lock);
1143
out_put_key:
1144
	put_futex_key(&key);
1145
out:
L
Linus Torvalds 已提交
1146 1147 1148
	return ret;
}

1149 1150 1151 1152
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1153
static int
1154
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1155
	      int nr_wake, int nr_wake2, int op)
1156
{
1157
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1158
	struct futex_hash_bucket *hb1, *hb2;
1159
	struct futex_q *this, *next;
D
Darren Hart 已提交
1160
	int ret, op_ret;
1161

D
Darren Hart 已提交
1162
retry:
1163
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1164 1165
	if (unlikely(ret != 0))
		goto out;
1166
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1167
	if (unlikely(ret != 0))
1168
		goto out_put_key1;
1169

1170 1171
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1172

D
Darren Hart 已提交
1173
retry_private:
T
Thomas Gleixner 已提交
1174
	double_lock_hb(hb1, hb2);
1175
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1176 1177
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1178
		double_unlock_hb(hb1, hb2);
1179

1180
#ifndef CONFIG_MMU
1181 1182 1183 1184
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1185
		ret = op_ret;
1186
		goto out_put_keys;
1187 1188
#endif

1189 1190
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1191
			goto out_put_keys;
1192 1193
		}

1194
		ret = fault_in_user_writeable(uaddr2);
1195
		if (ret)
1196
			goto out_put_keys;
1197

1198
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1199 1200
			goto retry_private;

1201 1202
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1203
		goto retry;
1204 1205
	}

J
Jason Low 已提交
1206
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1207
		if (match_futex (&this->key, &key1)) {
1208 1209 1210 1211
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1212 1213 1214 1215 1216 1217 1218 1219
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1220
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1221
			if (match_futex (&this->key, &key2)) {
1222 1223 1224 1225
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1226 1227 1228 1229 1230 1231 1232 1233
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1234
out_unlock:
D
Darren Hart 已提交
1235
	double_unlock_hb(hb1, hb2);
1236
out_put_keys:
1237
	put_futex_key(&key2);
1238
out_put_key1:
1239
	put_futex_key(&key1);
1240
out:
1241 1242 1243
	return ret;
}

D
Darren Hart 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1269 1270
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1271 1272 1273
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1274 1275 1276 1277 1278
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1279 1280 1281
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1282 1283
 */
static inline
1284 1285
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1286 1287 1288 1289
{
	get_futex_key_refs(key);
	q->key = *key;

1290
	__unqueue_futex(q);
1291 1292 1293 1294

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1295 1296
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1297
	wake_up_state(q->task, TASK_NORMAL);
1298 1299 1300 1301
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1302 1303 1304 1305 1306 1307 1308
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1309 1310
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1311 1312 1313
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1314
 *
1315 1316 1317
 * Return:
 *  0 - failed to acquire the lock atomically;
 *  1 - acquired the lock;
1318 1319 1320 1321 1322 1323
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1324
				 struct futex_pi_state **ps, int set_waiters)
1325
{
1326
	struct futex_q *top_waiter = NULL;
1327 1328 1329 1330 1331 1332
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1341 1342 1343 1344 1345 1346
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1347 1348 1349 1350
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1351
	/*
1352 1353 1354
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1355
	 */
1356 1357
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1358
	if (ret == 1)
1359
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1360 1361 1362 1363 1364 1365

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1366
 * @uaddr1:	source futex user address
1367
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1368 1369 1370 1371 1372
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1373
 *		pi futex (pi to pi requeue is not supported)
1374 1375 1376 1377
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1378 1379
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1380
 *  <0 - on error
L
Linus Torvalds 已提交
1381
 */
1382 1383 1384
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1385
{
1386
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1387 1388
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1389
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1390
	struct futex_q *this, *next;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1413

1414
retry:
1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1424
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1425 1426
	if (unlikely(ret != 0))
		goto out;
1427 1428
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1429
	if (unlikely(ret != 0))
1430
		goto out_put_key1;
L
Linus Torvalds 已提交
1431

1432 1433
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1434

D
Darren Hart 已提交
1435
retry_private:
I
Ingo Molnar 已提交
1436
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1437

1438 1439
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1440

1441
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1442 1443

		if (unlikely(ret)) {
D
Darren Hart 已提交
1444
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1445

1446
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1447 1448
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1449

1450
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1451
				goto retry_private;
L
Linus Torvalds 已提交
1452

1453 1454
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1455
			goto retry;
L
Linus Torvalds 已提交
1456
		}
1457
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1458 1459 1460 1461 1462
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1463
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1464 1465 1466 1467 1468 1469
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1470
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1471
						 &key2, &pi_state, nr_requeue);
1472 1473 1474 1475 1476 1477 1478 1479 1480

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1481
			drop_count++;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1494 1495
			put_futex_key(&key2);
			put_futex_key(&key1);
1496
			ret = fault_in_user_writeable(uaddr2);
1497 1498 1499 1500 1501 1502
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1503 1504
			put_futex_key(&key2);
			put_futex_key(&key1);
1505 1506 1507 1508 1509 1510 1511
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1512
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1513 1514 1515 1516
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1517
			continue;
1518

1519 1520 1521
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1522 1523 1524
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1525 1526
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1527 1528
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1529 1530 1531
			ret = -EINVAL;
			break;
		}
1532 1533 1534 1535 1536 1537 1538

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1539
			wake_futex(this);
1540 1541
			continue;
		}
L
Linus Torvalds 已提交
1542

1543 1544 1545 1546 1547 1548
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1562
				requeue_pi_wake_futex(this, &key2, hb2);
1563
				drop_count++;
1564 1565 1566 1567 1568 1569 1570
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1571
		}
1572 1573
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1574 1575 1576
	}

out_unlock:
D
Darren Hart 已提交
1577
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1578

1579 1580 1581 1582 1583 1584
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1585
	while (--drop_count >= 0)
1586
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1587

1588
out_put_keys:
1589
	put_futex_key(&key2);
1590
out_put_key1:
1591
	put_futex_key(&key1);
1592
out:
1593 1594 1595
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1596 1597 1598
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1599
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1600
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1601
{
1602
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1603

1604 1605
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1606

1607
	spin_lock(&hb->lock); /* implies MB (A) */
1608
	return hb;
L
Linus Torvalds 已提交
1609 1610
}

1611
static inline void
J
Jason Low 已提交
1612
queue_unlock(struct futex_hash_bucket *hb)
1613
	__releases(&hb->lock)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1630
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1631
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1632
{
P
Pierre Peiffer 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1647
	q->task = current;
1648
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1658 1659
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1660
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1661 1662 1663 1664
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1665
	int ret = 0;
L
Linus Torvalds 已提交
1666 1667

	/* In the common case we don't take the spinlock, which is nice. */
1668
retry:
L
Linus Torvalds 已提交
1669
	lock_ptr = q->lock_ptr;
1670
	barrier();
1671
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1690
		__unqueue_futex(q);
1691 1692 1693

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1694 1695 1696 1697
		spin_unlock(lock_ptr);
		ret = 1;
	}

1698
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1699 1700 1701
	return ret;
}

1702 1703
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1704 1705
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1706
 */
P
Pierre Peiffer 已提交
1707
static void unqueue_me_pi(struct futex_q *q)
1708
	__releases(q->lock_ptr)
1709
{
1710
	__unqueue_futex(q);
1711 1712 1713 1714 1715

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1716
	spin_unlock(q->lock_ptr);
1717 1718
}

P
Pierre Peiffer 已提交
1719
/*
1720
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1721
 *
1722 1723
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1724
 */
1725
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1726
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1727
{
1728
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1729
	struct futex_pi_state *pi_state = q->pi_state;
1730
	struct task_struct *oldowner = pi_state->owner;
1731
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1732
	int ret;
P
Pierre Peiffer 已提交
1733 1734

	/* Owner died? */
1735 1736 1737 1738 1739
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1740 1741 1742 1743
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1744
	 *
D
Darren Hart 已提交
1745 1746 1747
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1762
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1773
	if (pi_state->owner != NULL) {
1774
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1775 1776
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1777
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1778
	}
P
Pierre Peiffer 已提交
1779

1780
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1781

1782
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1783
	WARN_ON(!list_empty(&pi_state->list));
1784
	list_add(&pi_state->list, &newowner->pi_state_list);
1785
	raw_spin_unlock_irq(&newowner->pi_lock);
1786
	return 0;
P
Pierre Peiffer 已提交
1787 1788

	/*
1789
	 * To handle the page fault we need to drop the hash bucket
1790 1791
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1792 1793 1794 1795 1796
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1797
	 */
1798 1799
handle_fault:
	spin_unlock(q->lock_ptr);
1800

1801
	ret = fault_in_user_writeable(uaddr);
1802

1803
	spin_lock(q->lock_ptr);
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1815 1816
}

N
Nick Piggin 已提交
1817
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
1829 1830 1831
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
1832 1833
 * <0 - on error (-EFAULT)
 */
1834
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1845
			ret = fixup_pi_state_owner(uaddr, q, current);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
1867
		 * rt_mutex. Too late.
1868
		 */
1869
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1870
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1871 1872 1873
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1874
		ret = fixup_pi_state_owner(uaddr, q, owner);
1875 1876 1877 1878 1879
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
1880
	 * the owner of the rt_mutex.
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1892 1893 1894 1895 1896 1897 1898
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1899
				struct hrtimer_sleeper *timeout)
1900
{
1901 1902 1903 1904 1905 1906
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1907
	set_current_state(TASK_INTERRUPTIBLE);
1908
	queue_me(q, hb);
1909 1910 1911 1912 1913 1914 1915 1916 1917

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1918 1919
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1920 1921 1922 1923 1924 1925 1926 1927
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
1928
			freezable_schedule();
1929 1930 1931 1932
	}
	__set_current_state(TASK_RUNNING);
}

1933 1934 1935 1936
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1937
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1938 1939 1940 1941 1942 1943 1944 1945
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
1946 1947
 * Return:
 *  0 - uaddr contains val and hb has been locked;
1948
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1949
 */
1950
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1951
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1952
{
1953 1954
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1955 1956

	/*
D
Darren Hart 已提交
1957
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1965 1966
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
1967 1968
	 * cond(var) false, which would violate the guarantee.
	 *
1969 1970 1971 1972
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
1973
	 */
1974
retry:
1975
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1976
	if (unlikely(ret != 0))
1977
		return ret;
1978 1979 1980 1981

retry_private:
	*hb = queue_lock(q);

1982
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1983

1984
	if (ret) {
J
Jason Low 已提交
1985
		queue_unlock(*hb);
L
Linus Torvalds 已提交
1986

1987
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1988
		if (ret)
1989
			goto out;
L
Linus Torvalds 已提交
1990

1991
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1992 1993
			goto retry_private;

1994
		put_futex_key(&q->key);
D
Darren Hart 已提交
1995
		goto retry;
L
Linus Torvalds 已提交
1996
	}
1997

1998
	if (uval != val) {
J
Jason Low 已提交
1999
		queue_unlock(*hb);
2000
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2001
	}
L
Linus Torvalds 已提交
2002

2003 2004
out:
	if (ret)
2005
		put_futex_key(&q->key);
2006 2007 2008
	return ret;
}

2009 2010
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2011 2012 2013 2014
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2015
	struct futex_q q = futex_q_init;
2016 2017 2018 2019 2020 2021 2022 2023 2024
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2025 2026 2027
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2028 2029 2030 2031 2032
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2033
retry:
2034 2035 2036 2037
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2038
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2039 2040 2041
	if (ret)
		goto out;

2042
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2043
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2044 2045

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2046
	ret = 0;
2047
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2048
	if (!unqueue_me(&q))
2049
		goto out;
P
Peter Zijlstra 已提交
2050
	ret = -ETIMEDOUT;
2051
	if (to && !to->task)
2052
		goto out;
N
Nick Piggin 已提交
2053

2054
	/*
T
Thomas Gleixner 已提交
2055 2056
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2057
	 */
2058
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2059 2060
		goto retry;

P
Peter Zijlstra 已提交
2061
	ret = -ERESTARTSYS;
2062
	if (!abs_time)
2063
		goto out;
L
Linus Torvalds 已提交
2064

P
Peter Zijlstra 已提交
2065 2066
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
2067
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2068 2069 2070
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2071
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2072

P
Peter Zijlstra 已提交
2073 2074
	ret = -ERESTART_RESTARTBLOCK;

2075
out:
2076 2077 2078 2079
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2080 2081 2082
	return ret;
}

N
Nick Piggin 已提交
2083 2084 2085

static long futex_wait_restart(struct restart_block *restart)
{
2086
	u32 __user *uaddr = restart->futex.uaddr;
2087
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2088

2089 2090 2091 2092
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2093
	restart->fn = do_no_restart_syscall;
2094 2095 2096

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2097 2098 2099
}


2100 2101 2102 2103 2104 2105
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2106 2107
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
2108
{
2109
	struct hrtimer_sleeper timeout, *to = NULL;
2110
	struct futex_hash_bucket *hb;
2111
	struct futex_q q = futex_q_init;
2112
	int res, ret;
2113 2114 2115 2116

	if (refill_pi_state_cache())
		return -ENOMEM;

2117
	if (time) {
2118
		to = &timeout;
2119 2120
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2121
		hrtimer_init_sleeper(to, current);
2122
		hrtimer_set_expires(&to->timer, *time);
2123 2124
	}

2125
retry:
2126
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2127
	if (unlikely(ret != 0))
2128
		goto out;
2129

D
Darren Hart 已提交
2130
retry_private:
E
Eric Sesterhenn 已提交
2131
	hb = queue_lock(&q);
2132

2133
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2134
	if (unlikely(ret)) {
2135
		switch (ret) {
2136 2137 2138 2139 2140 2141
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2142 2143 2144 2145 2146
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
J
Jason Low 已提交
2147
			queue_unlock(hb);
2148
			put_futex_key(&q.key);
2149 2150 2151
			cond_resched();
			goto retry;
		default:
2152
			goto out_unlock_put_key;
2153 2154 2155 2156 2157 2158
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2159
	queue_me(&q, hb);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2173
	spin_lock(q.lock_ptr);
2174 2175 2176 2177
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2178
	res = fixup_owner(uaddr, &q, !ret);
2179 2180 2181 2182 2183 2184
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2185

2186
	/*
2187 2188
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2189 2190 2191 2192
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2193 2194
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2195

2196
	goto out_put_key;
2197

2198
out_unlock_put_key:
J
Jason Low 已提交
2199
	queue_unlock(hb);
2200

2201
out_put_key:
2202
	put_futex_key(&q.key);
2203
out:
2204 2205
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2206
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2207

2208
uaddr_faulted:
J
Jason Low 已提交
2209
	queue_unlock(hb);
2210

2211
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2212 2213
	if (ret)
		goto out_put_key;
2214

2215
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2216 2217
		goto retry_private;

2218
	put_futex_key(&q.key);
D
Darren Hart 已提交
2219
	goto retry;
2220 2221 2222 2223 2224 2225 2226
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2227
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2228 2229 2230
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
2231
	union futex_key key = FUTEX_KEY_INIT;
2232
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2233
	int ret;
2234 2235 2236 2237 2238 2239 2240

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2241
	if ((uval & FUTEX_TID_MASK) != vpid)
2242 2243
		return -EPERM;

2244
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
2256 2257
	if (!(uval & FUTEX_OWNER_DIED) &&
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2258 2259 2260 2261 2262
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2263
	if (unlikely(uval == vpid))
2264 2265 2266 2267 2268 2269
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
J
Jason Low 已提交
2270
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2286 2287 2288 2289 2290
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2291 2292 2293

out_unlock:
	spin_unlock(&hb->lock);
2294
	put_futex_key(&key);
2295

2296
out:
2297 2298 2299
	return ret;

pi_faulted:
2300
	spin_unlock(&hb->lock);
2301
	put_futex_key(&key);
2302

2303
	ret = fault_in_user_writeable(uaddr);
2304
	if (!ret)
2305 2306
		goto retry;

L
Linus Torvalds 已提交
2307 2308 2309
	return ret;
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2322 2323 2324
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2346
		plist_del(&q->list, &hb->chain);
2347

T
Thomas Gleixner 已提交
2348
		/* Handle spurious wakeups gracefully */
2349
		ret = -EWOULDBLOCK;
2350 2351
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2352
		else if (signal_pending(current))
2353
			ret = -ERESTARTNOINTR;
2354 2355 2356 2357 2358 2359
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2360
 * @uaddr:	the futex we initially wait on (non-pi)
2361
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2362 2363 2364
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2365
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2366 2367 2368
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2369 2370 2371 2372 2373
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2374 2375
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2376
 * via the following--
2377
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2378 2379 2380
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2381
 *
2382
 * If 3, cleanup and return -ERESTARTNOINTR.
2383 2384 2385 2386 2387 2388 2389
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2390
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2391 2392 2393
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2394 2395
 * Return:
 *  0 - On success;
2396 2397
 * <0 - On error
 */
2398
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2399
				 u32 val, ktime_t *abs_time, u32 bitset,
2400
				 u32 __user *uaddr2)
2401 2402 2403 2404 2405
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2406 2407
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2408 2409
	int res, ret;

2410 2411 2412
	if (uaddr == uaddr2)
		return -EINVAL;

2413 2414 2415 2416 2417
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2418 2419 2420
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2431 2432
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2433 2434
	rt_waiter.task = NULL;

2435
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2436 2437 2438
	if (unlikely(ret != 0))
		goto out;

2439 2440 2441 2442
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2443 2444 2445 2446
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2447
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2448 2449
	if (ret)
		goto out_key2;
2450 2451

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2452
	futex_wait_queue_me(hb, &q, to);
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2464 2465 2466
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2477
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2478 2479 2480 2481 2482 2483 2484 2485
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2486
		WARN_ON(!q.pi_state);
2487 2488 2489 2490 2491 2492 2493 2494 2495
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2496
		res = fixup_owner(uaddr2, &q, !ret);
2497 2498
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2499
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2513
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2514 2515 2516
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2517 2518 2519 2520 2521
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2522
		 */
2523
		ret = -EWOULDBLOCK;
2524 2525 2526
	}

out_put_keys:
2527
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2528
out_key2:
2529
	put_futex_key(&key2);
2530 2531 2532 2533 2534 2535 2536 2537 2538

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2539 2540 2541 2542 2543 2544 2545
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2546
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2547 2548 2549 2550 2551 2552 2553 2554
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2555 2556 2557
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2558
 */
2559 2560
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2561
{
2562 2563
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2576 2577 2578 2579
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2580
 */
2581 2582 2583
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2584
{
A
Al Viro 已提交
2585
	struct robust_list_head __user *head;
2586
	unsigned long ret;
2587
	struct task_struct *p;
2588

2589 2590 2591
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2592 2593 2594
	rcu_read_lock();

	ret = -ESRCH;
2595
	if (!pid)
2596
		p = current;
2597
	else {
2598
		p = find_task_by_vpid(pid);
2599 2600 2601 2602
		if (!p)
			goto err_unlock;
	}

2603 2604 2605 2606 2607 2608 2609
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2610 2611 2612 2613 2614
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2615
	rcu_read_unlock();
2616 2617 2618 2619 2620 2621 2622 2623

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2624
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2625
{
2626
	u32 uval, uninitialized_var(nval), mval;
2627

2628 2629
retry:
	if (get_user(uval, uaddr))
2630 2631
		return -1;

2632
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2643
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2658
		if (nval != uval)
2659
			goto retry;
2660

2661 2662 2663 2664
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2665
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2666
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2667 2668 2669 2670
	}
	return 0;
}

2671 2672 2673 2674
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2675
				     struct robust_list __user * __user *head,
2676
				     unsigned int *pi)
2677 2678 2679
{
	unsigned long uentry;

A
Al Viro 已提交
2680
	if (get_user(uentry, (unsigned long __user *)head))
2681 2682
		return -EFAULT;

A
Al Viro 已提交
2683
	*entry = (void __user *)(uentry & ~1UL);
2684 2685 2686 2687 2688
	*pi = uentry & 1;

	return 0;
}

2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2698
	struct robust_list __user *entry, *next_entry, *pending;
2699 2700
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2701
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2702
	int rc;
2703

2704 2705 2706
	if (!futex_cmpxchg_enabled)
		return;

2707 2708 2709 2710
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2711
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2722
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2723
		return;
2724

M
Martin Schwidefsky 已提交
2725
	next_entry = NULL;	/* avoid warning with gcc */
2726
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2727 2728 2729 2730 2731
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2732 2733
		/*
		 * A pending lock might already be on the list, so
2734
		 * don't process it twice:
2735 2736
		 */
		if (entry != pending)
A
Al Viro 已提交
2737
			if (handle_futex_death((void __user *)entry + futex_offset,
2738
						curr, pi))
2739
				return;
M
Martin Schwidefsky 已提交
2740
		if (rc)
2741
			return;
M
Martin Schwidefsky 已提交
2742 2743
		entry = next_entry;
		pi = next_pi;
2744 2745 2746 2747 2748 2749 2750 2751
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2752 2753 2754 2755

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2756 2757
}

2758
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2759
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2760
{
T
Thomas Gleixner 已提交
2761
	int cmd = op & FUTEX_CMD_MASK;
2762
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2763 2764

	if (!(op & FUTEX_PRIVATE_FLAG))
2765
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2766

2767 2768 2769 2770 2771
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2772

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2783
	switch (cmd) {
L
Linus Torvalds 已提交
2784
	case FUTEX_WAIT:
2785 2786
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2787
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2788
	case FUTEX_WAKE:
2789 2790
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2791
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2792
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2793
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2794
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2795
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2796
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2797
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2798
	case FUTEX_LOCK_PI:
T
Thomas Gleixner 已提交
2799
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2800
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2801
		return futex_unlock_pi(uaddr, flags);
2802
	case FUTEX_TRYLOCK_PI:
T
Thomas Gleixner 已提交
2803
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2804 2805
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2806 2807
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2808
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2809
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2810
	}
T
Thomas Gleixner 已提交
2811
	return -ENOSYS;
L
Linus Torvalds 已提交
2812 2813 2814
}


2815 2816 2817
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2818
{
2819 2820
	struct timespec ts;
	ktime_t t, *tp = NULL;
2821
	u32 val2 = 0;
E
Eric Dumazet 已提交
2822
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2823

2824
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2825 2826
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2827
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2828
			return -EFAULT;
2829
		if (!timespec_valid(&ts))
2830
			return -EINVAL;
2831 2832

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2833
		if (cmd == FUTEX_WAIT)
2834
			t = ktime_add_safe(ktime_get(), t);
2835
		tp = &t;
L
Linus Torvalds 已提交
2836 2837
	}
	/*
2838
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2839
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2840
	 */
2841
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2842
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2843
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2844

2845
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2846 2847
}

2848
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
2849
{
2850
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2851
	u32 curval;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
2870
	unsigned int futex_shift;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
2882 2883 2884
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
2885 2886

	futex_detect_cmpxchg();
2887

2888
	for (i = 0; i < futex_hashsize; i++) {
2889
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
2890 2891 2892
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2893 2894
	return 0;
}
2895
__initcall(futex_init);