tensor.cpp 34.5 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16

17 18
#include "./tensor.h"
#include "./grad.h"
19
#include "./trace.h"
20 21
#include "./common.h"
#include "./numpy_dtypes.h"
22
#include "./graph_rt.h"
23
#include "./helper.h"
24 25 26

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
27
#include <range/v3/all.hpp>
28
#include <string>
29 30 31

#include <unordered_map>

32
namespace py = pybind11;
33
namespace views = ranges::views;
34 35 36

namespace mgb::imperative::python {

37
interpreter::Interpreter::Channel* interpreter_for_py;
38

39
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing;
40
PyObject *cpp_apply_backward_varnode;
41

42 43 44
#define REGISTE_APPLY_FUNC(mode)            \
        void set_##mode(py::object pyf) {   \
            mode = pyf.ptr();               \
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)

#undef SET_UNSET_PROP

bool skip_tracing = false;

69 70
Tensor::flags_t ApplyContext::global_disable = 0;

71 72 73 74
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
75 76 77
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
78 79 80
        // TODO: emulate scalar
    }

81
    if (flags & Tensor::Flags::GRAD) {
82 83 84
        return apply_grad(ctx);
    }

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

106
    if (flags & Tensor::Flags::TRACE) {
107
        return apply_trace(ctx);
108 109 110 111 112 113
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

114 115 116 117 118 119 120 121 122 123
        apply_result_t outputs;

        // fast copy without really applying
        if (ctx.op->same_type<FastpathCopy>()) {
            mgb_assert(ctx.nargs == 1);
            outputs.reserve(ctx.nargs);
            outputs.emplace_back(std::make_shared<Tensor>(ctx.args[0]->m_handle));
            return outputs;
        }

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
142 143 144 145
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
146 147
            return nullptr;
        }
148

149 150 151 152 153 154 155 156 157 158 159 160
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
161
        ctx.pytype = pytype;
162
        if (ctx.op->same_type<BackwardGraph>()) {
163 164
            ctx.backward = true;
        }
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        if (py::isinstance<PySymbolVar>(py::handle(args[0]))){
            SmallVector<cg::VarNode*> vinputs(nargs);
            for (size_t i = 0; i < nargs; ++i) {
                    vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node;   
            }
            auto op = ctx.op.get();
            auto rst = OpDef::apply_on_var_node(*op, vinputs);
            auto ret = pybind11::tuple(rst.size());
            auto typeobj = py::handle(args[0]).get_type();
            for (size_t i = 0; i<rst.size(); ++i) {
                ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic));
            }
            return ret.release().ptr();
        }
180 181

        for (size_t i = 0; i < nargs; ++i) {
182
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
183 184 185
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
186 187 188
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
189 190 191 192
                return nullptr;
            }
        }

193 194 195
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
220
    if (auto* t = try_cast(tup[0].ptr())) {
221 222 223 224 225
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
244
        } else {
245
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
246 247
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
248
            }
249 250 251 252
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
253
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
254 255
            std::string name;
            if (tup[nargs - 1].ptr() != Py_None) name = tup[nargs - 1].cast<std::string>();
256 257 258

            // const op
            if (is_const && is_tracing) {
259
                auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
260 261 262
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
263 264 265 266 267 268
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
269
            {
270
                HostTensorND ret(cn);
271
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
272 273 274
            }

            m_tensor = std::make_shared<Tensor>(handle);
275
            m_tensor->user_custom_name = name;
276

277 278 279
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
280 281 282 283 284
        }
    }
}


285 286 287 288 289 290 291 292 293 294 295
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
296
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
297 298 299 300

#undef REGISTE_TENSORWRAPPER_FUNC


301 302
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
303 304 305 306 307
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
308 309
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
310 311 312 313 314 315 316
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
317 318 319 320 321 322 323 324
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


325 326 327 328 329 330 331 332 333 334 335 336 337
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME


338 339 340 341 342 343 344 345 346 347 348 349
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


350
PyObject* TensorWrapper::shape() {
351
    // if it's tracing compiled mode, get value from compiled_info 
352 353 354 355
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
356 357 358 359 360
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
361
    }
362 363

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
364 365
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
366
    }
367

368 369 370
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
371 372

    TensorShape shape;
373
    if (m_tensor->m_var) {      // get shape from m_var
374 375 376 377 378 379
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
380 381 382 383
    } else {
        shape = m_tensor->shape();
    }

384 385 386 387 388 389 390 391 392 393 394 395
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
396 397 398
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
399 400 401 402 403
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
404 405 406
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
407 408 409 410 411
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
412 413
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
414
        if (!np_val) throw py::error_already_set();
415 416 417
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
418
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
419 420 421
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
422 423 424
        }
        return np_val;
    }
425

426 427
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
428
    }
429

430 431 432 433 434
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
435
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
436 437 438 439
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
440
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
441 442
            return nullptr;
        }
443 444 445 446 447
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
448
    }
449 450 451 452
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
453
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
454 455 456 457
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
458

459 460 461 462 463 464 465
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

466 467 468 469
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
470
    Py_RETURN_NONE;
471 472
}

473
void TensorWrapper::reset(PyObject* tensor) {
474
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
475 476 477
    if (!t) {
        throw py::type_error("expect Tensor");
    }
478 479
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
480
    m_tensor = t->m_tensor;
481 482
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
483 484
}

485 486 487 488
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

489 490 491
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
492 493 494 495 496 497 498

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
499
    new_tensor->m_trace_info = m_tensor->m_trace_info;
500 501

    new_tensor->m_flags = m_tensor->m_flags;
502 503 504 505
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();
}

506
PyObject* TensorWrapper::_dev_tensor(){
507 508
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
509
        if (!dev_tensor) throw py::error_already_set();
510 511 512
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
513 514

        // set m_handle to make it a real tensor
515 516 517
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
518 519

        // compiled info is useless after m_handle is set
520 521
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
522 523

        return dev_tensor;
524 525 526
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
527
    }
528 529 530 531
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


548 549 550 551 552 553 554 555
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

556

557 558 559 560 561
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


562 563 564 565 566
void TensorWrapper::unsetscalar() {
    m_tensor->m_flags &= ~Tensor::Flags::SCALAR;
}


567 568 569 570 571 572 573 574 575 576 577
struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
578
    int _use_cnt() { return wptr.use_count(); }
579 580
};

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

607
// Returns the data type with sufficient size to hold all types of
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
653
    PyObject* tuple = nullptr;
654 655 656 657 658 659 660 661 662 663 664 665 666 667
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
668
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
669 670 671 672 673 674 675 676 677 678 679
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
680

681 682 683
            if (py::isinstance<PySymbolVar>(py::handle(handle))){
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
684 685 686 687 688 689
                auto && descr = npy::dtype_mgb2np_descr(type);
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
712
    Py_XDECREF(tuple);
713 714 715 716 717
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
718
    PyObject* tuple = nullptr;
719 720 721 722 723 724 725 726 727 728 729 730 731
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
732
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
733
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
734

735 736
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
737
            if (!valid) {
738 739 740 741
                cn = tw ? tw->m_tensor->comp_node()
                        : py::handle(handle)
                                     .cast<PySymbolVar*>()
                                     ->m_node->comp_node();
742 743
                valid = true;
            } else {
744 745 746 747
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
748 749
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
750 751
                                                   cn.to_string().c_str(),
                                                   cn1.to_string().c_str()));
752 753 754 755 756
                }
            }
        }
    }
    if (!valid) {
757
        return CompNode::load(get_default_device());
758
    }
759
    Py_XDECREF(tuple);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

811

812
void init_tensor(py::module m) {
813 814 815
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
816 817 818 819 820 821 822

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
823 824 825
        .def<&TensorWrapper::isscalar>("_isscalar")
        .def<&TensorWrapper::setscalar>("_setscalar")
        .def<&TensorWrapper::unsetscalar>("_unsetscalar")
826
        .def<&TensorWrapper::detach>("detach")
827 828 829 830
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
831
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
832
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
833
        .def_getset<&TensorWrapper::varnode>("_varnode")
834 835
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
836
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
837 838
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
839 840
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
841 842 843 844 845 846
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
847 848
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
            .def_property("var", [](PySymbolVar* v) { return v->m_node; },
                          [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
            .def_property_readonly(
                    "device",
                    [](PySymbolVar* v) { return v->m_node->comp_node(); })
            .def_property_readonly(
                    "graph",
                    [](PySymbolVar* v) { return v->m_node->owner_graph(); })
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
                        auto&& mgr = v->m_node->owner_graph()
                                             ->static_infer_manager();
                        return mgr.infer_shape_fallible(v->m_node);
                    })
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def("_setscalar",
                 [](PySymbolVar* v) { return v->is_scalar = true; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

876
    static PyMethodDef method_defs[] = {
877 878 879 880
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
881 882 883 884 885 886 887
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
888

889 890 891 892 893
    static constexpr auto sync_py_task_q = []{
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };

894
    m.def("set_option",
895
          [](std::string name, size_t value){ interpreter_for_py->set_option(name, value); });
896 897
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
898
    m.def("_set_swap_flag",
899
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
900
    m.def("_set_drop_flag",
901
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
902
    m.def("config_async_level",
903 904 905 906
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
907
    m.def("get_async_level",
908
          []() { return interpreter_for_py->get_option("async_level"); });
909
    m.def("set_buffer_length",
910 911 912 913 914 915 916 917 918 919 920 921
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
          [](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); });
    m.def("stop_profile",
          [](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); });
922 923 924
    m.def("sync",
          []() {
              interpreter_for_py->sync();
925 926
              sync_py_task_q();
          });
927 928 929 930
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
931 932 933 934 935 936 937
              sync_py_task_q();
          });
    m.def("close",
          []() {
              interpreter_for_py->close();
              sync_py_task_q();
          });
938

939 940
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
941 942
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
943 944 945
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
946 947
    m.def("backward", &GradKeyWrapper::backward);

948 949 950 951 952 953 954
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
955 956 957 958 959 960 961 962
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
963 964 965

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
966 967
}

968 969
#undef MGE_PY_INTERFACE

970
} // namespace mgb::imperative::python