tensor.cpp 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15

16 17
#include "./tensor.h"
#include "./grad.h"
18
#include "./trace.h"
19 20
#include "./common.h"
#include "./numpy_dtypes.h"
21
#include "./graph_rt.h"
22
#include "./helper.h"
23 24 25

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
26
#include <range/v3/all.hpp>
27 28 29

#include <unordered_map>

30
namespace py = pybind11;
31
namespace views = ranges::views;
32 33 34

namespace mgb::imperative::python {

35
interpreter::Interpreter::Channel* interpreter_for_py;
36

37 38
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing,
           *cpp_apply_compiled_mode, *cpp_apply_const_compiled_mode;
39

40
PyObject *cpp_apply_backward_varnode;
41

42

43 44
#define REGISTE_APPLY_FUNC(mode)                                    \
        void set_##mode(py::object pyf) {                           \
45
            mode = pyf.ptr();                                       \
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;
bool is_compiled = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)
SET_UNSET_PROP(compiled)

#undef SET_UNSET_PROP

bool skip_tracing = false;

74 75
Tensor::flags_t ApplyContext::global_disable = 0;

76 77 78 79
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
80 81 82
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
83 84 85
        // TODO: emulate scalar
    }

86
    if (flags & Tensor::Flags::GRAD) {
87 88 89
        return apply_grad(ctx);
    }

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

111
    if (flags & Tensor::Flags::TRACE) {
112
        return apply_trace(ctx);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
138 139 140 141
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
142 143
            return nullptr;
        }
144

145 146 147 148 149 150 151 152 153 154 155 156
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
157
        ctx.pytype = pytype;
158 159 160
        if (strstr(op->ob_type->tp_name, "BackwardGraph")) {
            ctx.backward = true;
        }
161 162

        for (size_t i = 0; i < nargs; ++i) {
163
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
164 165 166
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
167 168 169 170 171
                PyErr_SetString(PyExc_TypeError, "expect Tensor");
                return nullptr;
            }
        }

172 173 174
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
199
    if (auto* t = try_cast(tup[0].ptr())) {
200 201 202 203 204
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
223
        } else {
224
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
225 226 227
            if (nargs != 4 && nargs != 5) {
                throw py::type_error("expect 4 or 5 arguments");
            }
228 229 230 231
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
232
            bool no_cache = nargs == 5 ? tup[4].cast<bool>() : false;
233 234 235

            // const op
            if (is_const && is_tracing) {
236
                PyObject *pyf;
237 238 239 240 241 242
                if (is_compiled) {
                    pyf = cpp_apply_const_compiled_mode;
                } else {
                    pyf = cpp_apply_const_with_tracing;
                }

243 244
                auto ret = py::reinterpret_steal<py::object>(
                        PyObject_Call(pyf, tup.ptr(), nullptr));
245
                auto py_ret = py::reinterpret_borrow<py::list>(ret);
246
                if (auto* t = try_cast(py_ret[0].ptr())) {
247 248 249 250 251 252 253 254
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
            constexpr auto size_threshhold = TensorShape::MAX_NDIM;
            if (data.size() > size_threshhold) {
255
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype), no_cache);
256 257
            } else {
                HostTensorND ret(cn);
258
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
259 260 261
            }

            m_tensor = std::make_shared<Tensor>(handle);
262

263 264 265
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
266 267 268 269 270
        }
    }
}


271 272 273 274 275 276 277 278 279 280 281
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
282
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
283 284 285 286

#undef REGISTE_TENSORWRAPPER_FUNC


287 288 289 290 291
PyObject* TensorWrapper::copied() {
    return py::cast(m_tensor->m_trace_info.copied).release().ptr();
}


292 293 294 295 296
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
            return m_tensor->m_trace_info.member;                                   \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
297 298 299 300 301 302 303
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
304 305 306 307 308 309 310 311
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


312 313 314 315 316 317 318 319 320 321 322 323
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


324
PyObject* TensorWrapper::shape() {
325 326 327 328
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
329 330 331 332 333
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
334 335 336
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
337
    }
338 339 340
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
341 342 343

    TensorShape shape;
    if (m_tensor->m_var) {
344 345 346 347 348 349
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
350 351 352 353
    } else {
        shape = m_tensor->shape();
    }

354 355 356 357 358 359 360 361 362 363 364 365
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
366 367 368
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
369 370 371 372 373
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
374 375 376
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
377 378 379 380 381
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
382 383
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
384 385 386
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
387 388 389 390 391 392 393
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            np_val = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
        }
        return np_val;
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
394 395 396 397 398 399
    }
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
400
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
401 402 403 404
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
405
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
406 407
            return nullptr;
        }
408 409 410 411 412
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
413
    }
414 415
    auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get());
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
416 417 418 419
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
420 421 422 423 424 425 426
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

427 428 429 430
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
431
    return py::none().release().ptr();
432 433
}

434
void TensorWrapper::reset(PyObject* tensor) {
435
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
436 437 438 439 440 441
    if (!t) {
        throw py::type_error("expect Tensor");
    }
    m_tensor = t->m_tensor;
}

442 443 444 445
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

446 447 448
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
449 450 451 452 453 454 455

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
456
    new_tensor->m_trace_info = m_tensor->m_trace_info;
457 458 459 460 461
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();

}

462
PyObject* TensorWrapper::_dev_tensor(){
463 464
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
465 466 467
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
468 469 470
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
471 472
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
473 474

        return dev_tensor;
475 476 477
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
478
    }
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


496 497 498 499 500 501 502 503
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
};

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

549
// Returns the data type with sufficient size to hold all types of
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
610
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
    Py_DECREF(tuple);
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
665
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
666 667 668 669 670 671 672 673 674 675 676 677 678 679
        if (tw) {
            if (!valid) {
                cn = tw->m_tensor->comp_node();
                valid = true;
            } else {
                CompNode cn1 = tw->m_tensor->comp_node();
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
                        cn.to_string().c_str(), cn1.to_string().c_str()));
                }
            }
        }
    }
    if (!valid) {
680
        mgb_assert(0, "expect at least 1 device");
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    }
    Py_DECREF(tuple);
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

734

735
void init_tensor(py::module m) {
736 737 738
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
739 740 741 742 743 744 745 746 747

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
        .def<&TensorWrapper::isscalar>("isscalar")
        .def<&TensorWrapper::setscalar>("setscalar")
748
        .def<&TensorWrapper::detach>("detach")
749 750 751 752
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
753
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
754
        .def_getset<&TensorWrapper::varnode>("_varnode")
755
        .def_getset<&TensorWrapper::copied>("_copied")
756
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("mixin_handle")
757
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("recording")
758
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
759 760
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
761 762 763 764 765 766 767 768
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
        .def("__call__", &TensorWeakRef::operator());

769
    static PyMethodDef method_defs[] = {
770 771 772 773
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
774 775 776 777 778 779 780
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
781

782 783 784 785 786 787 788 789
    m.def("_set_swap_flag",
          [](bool flag) { interpreter_for_py->set_swap_flag(flag); });
    m.def("_set_drop_flag",
          [](bool flag) { interpreter_for_py->set_drop_flag(flag); });
    m.def("config_async_level",
          [](int level) { interpreter_for_py->config_async_level(level); });
    m.def("get_async_level",
          []() { return interpreter_for_py->get_async_level(); });
790 791
    m.def("set_buffer_length",
          [](int length) { interpreter_for_py->set_buffer_length(length); });
792 793 794 795 796 797
    m.def("sync",
          []() {
              interpreter_for_py->sync();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
798 799 800 801 802 803 804
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
805

806 807
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
808 809
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
810 811 812
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
813 814
    m.def("backward", &GradKeyWrapper::backward);

815 816 817 818 819 820 821 822 823
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode);
    m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
824 825 826 827 828 829 830 831
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
832 833 834 835 836

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
    m.def("set_compiled", &set_compiled);
    m.def("unset_compiled", &unset_compiled);
837 838
}

839 840
#undef MGE_PY_INTERFACE

841
} // namespace mgb::imperative::python