tensor.cpp 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15

16 17
#include "./tensor.h"
#include "./grad.h"
18
#include "./trace.h"
19 20
#include "./common.h"
#include "./numpy_dtypes.h"
21
#include "./graph_rt.h"
22
#include "./helper.h"
23 24 25

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
26
#include <range/v3/all.hpp>
27 28 29

#include <unordered_map>

30
namespace py = pybind11;
31
namespace views = ranges::views;
32 33 34 35 36

namespace mgb::imperative::python {

std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py;

37 38 39 40 41
py::object cpp_apply_with_tracing, cpp_apply_const_with_tracing,
           cpp_apply_compiled_mode, cpp_apply_const_compiled_mode;

py::object cpp_apply_backward_varnode;

42 43 44 45 46 47 48 49
void release_trace_apply_func(){
    cpp_apply_with_tracing.release();
    cpp_apply_const_with_tracing.release();
    cpp_apply_compiled_mode.release();
    cpp_apply_const_compiled_mode.release();
    cpp_apply_backward_varnode.release();
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#define REGISTE_APPLY_FUNC(mode)                                    \
        void set_##mode(py::object pyf) {                           \
            mode = pybind11::reinterpret_steal<py::object>(pyf);    \
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;
bool is_symbolic = false;
bool is_compiled = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)
SET_UNSET_PROP(symbolic)
SET_UNSET_PROP(compiled)

#undef SET_UNSET_PROP

bool skip_tracing = false;

83 84
Tensor::flags_t ApplyContext::global_disable = 0;

85 86 87 88
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
89 90 91
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
92 93 94
        // TODO: emulate scalar
    }

95
    if (flags & Tensor::Flags::GRAD) {
96 97 98
        return apply_grad(ctx);
    }

99
    if (flags & Tensor::Flags::TRACE) {
100
        return apply_trace(ctx);
101
    } else {
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
            py::tuple pyin(ctx.nargs);
            for (size_t i = 0; i < ctx.nargs; ++i) {
                pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
            }
            auto f = py::getattr(op->obj, "_default_rule");
            auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
            if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
                return {tw->m_tensor};
            }
            apply_result_t ret;
            ret.reserve(py::len(pyout));
            for (auto&& i : pyout) {
                auto* tw = TensorWrapper::try_cast(i.ptr());
                mgb_assert(tw);
                ret.push_back(tw->m_tensor);
            }
            return ret;
        }

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
146 147 148 149
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
150 151
            return nullptr;
        }
152

153 154 155 156 157 158 159 160 161 162 163 164
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
165
        ctx.pytype = pytype;
166 167 168
        if (strstr(op->ob_type->tp_name, "BackwardGraph")) {
            ctx.backward = true;
        }
169 170

        for (size_t i = 0; i < nargs; ++i) {
171
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
172 173 174
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
175 176 177 178 179
                PyErr_SetString(PyExc_TypeError, "expect Tensor");
                return nullptr;
            }
        }

180 181 182
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
207
    if (auto* t = try_cast(tup[0].ptr())) {
208 209 210 211 212
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
231
        } else {
232
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
            if (nargs != 4) {
                throw py::type_error("expect 3 arguments");
            }

            // const op
            if (is_const && is_tracing) {
                py::object pyf;
                if (is_compiled) {
                    pyf = cpp_apply_const_compiled_mode;
                } else {
                    pyf = cpp_apply_const_with_tracing;
                }

                auto ret = pyf(*tup);
                auto py_ret = py::reinterpret_borrow<py::list>(ret);
252
                if (auto* t = try_cast(py_ret[0].ptr())) {
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
            constexpr auto size_threshhold = TensorShape::MAX_NDIM;
            if (data.size() > size_threshhold) {
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype));
            } else {
                HostTensorND ret(cn);
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype));
            }

            m_tensor = std::make_shared<Tensor>(handle);
268

269 270 271
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
272 273 274 275 276
        }
    }
}


277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(bool, data_read)
REGISTE_TENSORWRAPPER_FUNC(bool, value_read)
REGISTE_TENSORWRAPPER_FUNC(bool, shape_read)
REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)

#undef REGISTE_TENSORWRAPPER_FUNC


PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


307
PyObject* TensorWrapper::shape() {
308 309 310
    if (!skip_tracing) {
        set_shape_read(py::cast(true).  release().ptr());
    }
311 312 313
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
314 315 316 317 318 319 320 321

    TensorShape shape;
    if (m_tensor->m_var) {
        shape = m_tensor->m_var->shape();
    } else {
        shape = m_tensor->shape();
    }

322 323 324 325 326 327 328 329 330 331 332 333
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
334 335 336
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
337 338 339 340 341
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
342 343 344
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
345 346 347 348 349
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
350 351 352 353 354 355 356 357
    if (!skip_tracing) {
        set_value_read(py::cast(true).release().ptr());
    }
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
358
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
359 360 361 362
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
363
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
364 365 366 367
            return nullptr;
        }
        return py::cast(*val).attr("numpy")().release().ptr();
    }
368 369
    auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get());
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
370 371 372 373
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
374 375 376 377 378 379 380
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

381 382 383 384
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
385
    return py::none().release().ptr();
386 387
}

388
void TensorWrapper::reset(PyObject* tensor) {
389
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
390 391 392 393 394 395
    if (!t) {
        throw py::type_error("expect Tensor");
    }
    m_tensor = t->m_tensor;
}

396 397 398 399
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

400 401 402
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
403 404 405 406 407 408 409

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
410
    new_tensor->m_trace_info = m_tensor->m_trace_info;
411 412 413 414 415
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();

}

416
PyObject* TensorWrapper::_dev_tensor(){
417 418 419
    if (!skip_tracing) {
        set_data_read(py::cast(true).release().ptr());
    }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


437 438 439 440 441 442 443 444
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
};

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

490
// Returns the data type with sufficient size to hold all types of
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
551
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
    Py_DECREF(tuple);
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
606
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
607 608 609 610 611 612 613 614 615 616 617 618 619 620
        if (tw) {
            if (!valid) {
                cn = tw->m_tensor->comp_node();
                valid = true;
            } else {
                CompNode cn1 = tw->m_tensor->comp_node();
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
                        cn.to_string().c_str(), cn1.to_string().c_str()));
                }
            }
        }
    }
    if (!valid) {
621
        mgb_assert(0, "expect at least 1 device");
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    }
    Py_DECREF(tuple);
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

675 676 677 678
py::object make_empty_tensorwrapper() {
    return TensorWrapper::make(std::move(std::make_shared<Tensor>()));
}

679 680 681 682 683 684 685 686 687 688 689
void init_tensor(py::module m) {
    interpreter_for_py = interpreter::Interpreter::inst().create_channel();

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
        .def<&TensorWrapper::isscalar>("isscalar")
        .def<&TensorWrapper::setscalar>("setscalar")
690
        .def<&TensorWrapper::detach>("detach")
691 692 693 694
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
695
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
696 697 698 699 700 701
        .def_getset<&TensorWrapper::varnode>("_varnode")
        .def_getset<&TensorWrapper::data_read, &TensorWrapper::set_data_read>("data_read")
        .def_getset<&TensorWrapper::value_read, &TensorWrapper::set_value_read>("value_read")
        .def_getset<&TensorWrapper::shape_read, &TensorWrapper::set_shape_read>("shape_read")
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("mixin_handle")
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
702 703 704 705 706 707 708 709
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
        .def("__call__", &TensorWeakRef::operator());

710
    static PyMethodDef method_defs[] = {
711 712 713 714
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
715 716 717 718 719 720 721
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
722

723 724 725 726 727 728 729 730 731 732 733 734 735 736
    m.def("_set_swap_flag",
          [](bool flag) { interpreter_for_py->set_swap_flag(flag); });
    m.def("_set_drop_flag",
          [](bool flag) { interpreter_for_py->set_drop_flag(flag); });
    m.def("config_async_level",
          [](int level) { interpreter_for_py->config_async_level(level); });
    m.def("get_async_level",
          []() { return interpreter_for_py->get_async_level(); });
    m.def("sync",
          []() {
              interpreter_for_py->sync();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
737

738
    m.def("release_trace_apply_func", &release_trace_apply_func);
739

740 741
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
742 743
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
744 745 746
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
747 748
    m.def("backward", &GradKeyWrapper::backward);

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode);
    m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
        .def(py::init<const SharedHandle&>());

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
    m.def("set_symbolic", &set_symbolic);
    m.def("unset_symbolic", &unset_symbolic);
    m.def("set_compiled", &set_compiled);
    m.def("unset_compiled", &unset_compiled);

767
    m.def("__make_empty_tensor", &make_empty_tensorwrapper);
768 769
}

770 771
#undef MGE_PY_INTERFACE

772
} // namespace mgb::imperative::python