tensor.cpp 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15

16 17
#include "./tensor.h"
#include "./grad.h"
18
#include "./trace.h"
19 20
#include "./common.h"
#include "./numpy_dtypes.h"
21
#include "./graph_rt.h"
22
#include "./helper.h"
23 24 25

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
26
#include <range/v3/all.hpp>
27 28 29

#include <unordered_map>

30
namespace py = pybind11;
31
namespace views = ranges::views;
32 33 34 35 36

namespace mgb::imperative::python {

std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py;

37 38 39 40 41
py::object cpp_apply_with_tracing, cpp_apply_const_with_tracing,
           cpp_apply_compiled_mode, cpp_apply_const_compiled_mode;

py::object cpp_apply_backward_varnode;

42 43 44 45 46 47 48 49
void release_trace_apply_func(){
    cpp_apply_with_tracing.release();
    cpp_apply_const_with_tracing.release();
    cpp_apply_compiled_mode.release();
    cpp_apply_const_compiled_mode.release();
    cpp_apply_backward_varnode.release();
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#define REGISTE_APPLY_FUNC(mode)                                    \
        void set_##mode(py::object pyf) {                           \
            mode = pybind11::reinterpret_steal<py::object>(pyf);    \
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;
bool is_symbolic = false;
bool is_compiled = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)
SET_UNSET_PROP(symbolic)
SET_UNSET_PROP(compiled)

#undef SET_UNSET_PROP

bool skip_tracing = false;

83 84
Tensor::flags_t ApplyContext::global_disable = 0;

85 86 87 88
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
89 90 91
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
92 93 94
        // TODO: emulate scalar
    }

95
    if (flags & Tensor::Flags::GRAD) {
96 97 98
        return apply_grad(ctx);
    }

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

120
    if (flags & Tensor::Flags::TRACE) {
121
        return apply_trace(ctx);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
147 148 149 150
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
151 152
            return nullptr;
        }
153

154 155 156 157 158 159 160 161 162 163 164 165
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
166
        ctx.pytype = pytype;
167 168 169
        if (strstr(op->ob_type->tp_name, "BackwardGraph")) {
            ctx.backward = true;
        }
170 171

        for (size_t i = 0; i < nargs; ++i) {
172
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
173 174 175
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
176 177 178 179 180
                PyErr_SetString(PyExc_TypeError, "expect Tensor");
                return nullptr;
            }
        }

181 182 183
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
208
    if (auto* t = try_cast(tup[0].ptr())) {
209 210 211 212 213
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
232
        } else {
233
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
234 235 236
            if (nargs != 4 && nargs != 5) {
                throw py::type_error("expect 4 or 5 arguments");
            }
237 238 239 240
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
241
            bool no_cache = nargs == 5 ? tup[4].cast<bool>() : false;
242 243 244 245 246 247 248 249 250 251 252 253

            // const op
            if (is_const && is_tracing) {
                py::object pyf;
                if (is_compiled) {
                    pyf = cpp_apply_const_compiled_mode;
                } else {
                    pyf = cpp_apply_const_with_tracing;
                }

                auto ret = pyf(*tup);
                auto py_ret = py::reinterpret_borrow<py::list>(ret);
254
                if (auto* t = try_cast(py_ret[0].ptr())) {
255 256 257 258 259 260 261 262
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
            constexpr auto size_threshhold = TensorShape::MAX_NDIM;
            if (data.size() > size_threshhold) {
263
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype), no_cache);
264 265
            } else {
                HostTensorND ret(cn);
266
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
267 268 269
            }

            m_tensor = std::make_shared<Tensor>(handle);
270

271 272 273
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
274 275 276 277 278
        }
    }
}


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(bool, data_read)
REGISTE_TENSORWRAPPER_FUNC(bool, value_read)
REGISTE_TENSORWRAPPER_FUNC(bool, shape_read)
REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)

#undef REGISTE_TENSORWRAPPER_FUNC


PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


309
PyObject* TensorWrapper::shape() {
310 311 312
    if (!skip_tracing) {
        set_shape_read(py::cast(true).  release().ptr());
    }
313 314 315
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
316 317 318 319 320 321 322 323

    TensorShape shape;
    if (m_tensor->m_var) {
        shape = m_tensor->m_var->shape();
    } else {
        shape = m_tensor->shape();
    }

324 325 326 327 328 329 330 331 332 333 334 335
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
336 337 338
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
339 340 341 342 343
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
344 345 346
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
347 348 349 350 351
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
352 353 354 355 356 357 358 359
    if (!skip_tracing) {
        set_value_read(py::cast(true).release().ptr());
    }
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
360
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
361 362 363 364
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
365
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
366 367 368 369
            return nullptr;
        }
        return py::cast(*val).attr("numpy")().release().ptr();
    }
370 371
    auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get());
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
372 373 374 375
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
376 377 378 379 380 381 382
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

383 384 385 386
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
387
    return py::none().release().ptr();
388 389
}

390
void TensorWrapper::reset(PyObject* tensor) {
391
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
392 393 394 395 396 397
    if (!t) {
        throw py::type_error("expect Tensor");
    }
    m_tensor = t->m_tensor;
}

398 399 400 401
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

402 403 404
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
405 406 407 408 409 410 411

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
412
    new_tensor->m_trace_info = m_tensor->m_trace_info;
413 414 415 416 417
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();

}

418
PyObject* TensorWrapper::_dev_tensor(){
419 420 421
    if (!skip_tracing) {
        set_data_read(py::cast(true).release().ptr());
    }
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


439 440 441 442 443 444 445 446
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
};

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

492
// Returns the data type with sufficient size to hold all types of
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
553
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
    Py_DECREF(tuple);
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
    PyObject* tuple;
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
608
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
609 610 611 612 613 614 615 616 617 618 619 620 621 622
        if (tw) {
            if (!valid) {
                cn = tw->m_tensor->comp_node();
                valid = true;
            } else {
                CompNode cn1 = tw->m_tensor->comp_node();
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
                        cn.to_string().c_str(), cn1.to_string().c_str()));
                }
            }
        }
    }
    if (!valid) {
623
        mgb_assert(0, "expect at least 1 device");
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    }
    Py_DECREF(tuple);
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

677 678 679 680
py::object make_empty_tensorwrapper() {
    return TensorWrapper::make(std::move(std::make_shared<Tensor>()));
}

681 682 683 684 685 686 687 688 689 690 691
void init_tensor(py::module m) {
    interpreter_for_py = interpreter::Interpreter::inst().create_channel();

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
        .def<&TensorWrapper::isscalar>("isscalar")
        .def<&TensorWrapper::setscalar>("setscalar")
692
        .def<&TensorWrapper::detach>("detach")
693 694 695 696
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
697
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
698 699 700 701 702 703
        .def_getset<&TensorWrapper::varnode>("_varnode")
        .def_getset<&TensorWrapper::data_read, &TensorWrapper::set_data_read>("data_read")
        .def_getset<&TensorWrapper::value_read, &TensorWrapper::set_value_read>("value_read")
        .def_getset<&TensorWrapper::shape_read, &TensorWrapper::set_shape_read>("shape_read")
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("mixin_handle")
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
704 705 706 707 708 709 710 711
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
        .def("__call__", &TensorWeakRef::operator());

712
    static PyMethodDef method_defs[] = {
713 714 715 716
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
717 718 719 720 721 722 723
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738
    m.def("_set_swap_flag",
          [](bool flag) { interpreter_for_py->set_swap_flag(flag); });
    m.def("_set_drop_flag",
          [](bool flag) { interpreter_for_py->set_drop_flag(flag); });
    m.def("config_async_level",
          [](int level) { interpreter_for_py->config_async_level(level); });
    m.def("get_async_level",
          []() { return interpreter_for_py->get_async_level(); });
    m.def("sync",
          []() {
              interpreter_for_py->sync();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
739 740 741 742 743 744 745
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
              py_task_q.wait_all_task_finish();
          },
          py::call_guard<py::gil_scoped_release>());
746

747
    m.def("release_trace_apply_func", &release_trace_apply_func);
748

749 750
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
751 752
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
753 754 755
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
756 757
    m.def("backward", &GradKeyWrapper::backward);

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode);
    m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
        .def(py::init<const SharedHandle&>());

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
    m.def("set_symbolic", &set_symbolic);
    m.def("unset_symbolic", &unset_symbolic);
    m.def("set_compiled", &set_compiled);
    m.def("unset_compiled", &unset_compiled);

776
    m.def("__make_empty_tensor", &make_empty_tensorwrapper);
777 778
}

779 780
#undef MGE_PY_INTERFACE

781
} // namespace mgb::imperative::python