graph_rt.cpp 32.2 KB
Newer Older
1 2
#include "./graph_rt.h"

M
Megvii Engine Team 已提交
3 4 5 6
#include "./common.h"
#include "./helper.h"
#include "./ops.h"
#include "megbrain/gopt/inference.h"
7
#include "megbrain/graph/cg.h"
M
Megvii Engine Team 已提交
8
#include "megbrain/imperative.h"
9
#include "megbrain/imperative/opr_utility.h"
M
Megvii Engine Team 已提交
10 11
#include "megbrain/imperative/profiler_plugin.h"
#include "megbrain/opr/basic_arith.h"
M
Megvii Engine Team 已提交
12
#include "megbrain/opr/io.h"
13
#include "megbrain/opr/utility.h"
14
#include "megbrain/plugin/profiler.h"
M
Megvii Engine Team 已提交
15
#include "megbrain/serialization/serializer.h"
16 17 18 19 20

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
21
namespace ser = mgb::serialization;
22

23 24
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
25
using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
26
using _SerializationMetadata = mgb::serialization::Metadata;
27
using _SerializationFormat = mgb::serialization::GraphDumpFormat;
28

29 30 31 32 33
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;

M
Megvii Engine Team 已提交
34 35 36 37 38 39 40 41
public:
    _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
            : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}

    std::string _get_result() {
        auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
        return json->to_string();
    }
42
};
43

M
Megvii Engine Team 已提交
44 45
struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
                             public UserDataContainer::UserData {
46 47 48
    MGB_TYPEINFO_OBJ_DECL;
};
MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
M
Megvii Engine Team 已提交
49
}  // namespace
50 51
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

M
Megvii Engine Team 已提交
52
template <typename T>
53 54
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
M
Megvii Engine Team 已提交
55 56 57 58 59 60 61 62 63 64 65
            .def(py::init([]() { return Rendezvous<T>::make(); }))
            .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
            .def(
                    "get", [](Rendezvous<T>& r) { return r.get(); },
                    py::call_guard<py::gil_scoped_release>())
            .def("drop", &Rendezvous<T>::drop)
            .def("reset", &Rendezvous<T>::reset)
            .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
                r.set_exception(std::make_exception_ptr(
                        std::runtime_error(std::move(message))));
            });
66 67 68
}

using TensorAttr = LogicalTensorDesc;
M
Megvii Engine Team 已提交
69
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
70

M
Megvii Engine Team 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
std::vector<mgb::cg::VarNode*> _replace_vars(
        const std::vector<mgb::cg::VarNode*>& repl_src,
        const std::vector<mgb::cg::VarNode*>& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
    }
    SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_vars(symvars, varmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
84
    }
M
Megvii Engine Team 已提交
85 86
    return result;
}
87 88

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
M
Megvii Engine Team 已提交
89 90 91 92 93 94
std::vector<mgb::cg::VarNode*> _replace_oprs(
        const OperatorArray& repl_src, const OperatorArray& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        oprmap[repl_src[i]] = repl_dst[i];
95
    }
M
Megvii Engine Team 已提交
96 97 98 99 100 101 102 103
    const SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
    }
    return result;
}
104 105

void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
M
Megvii Engine Team 已提交
106 107 108
    auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
        if (opr->node_prop().attribute().priority == 0) {
            opr->node_prop().attribute().priority = opr->id();
109
        }
M
Megvii Engine Team 已提交
110 111 112 113 114
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (const auto& var : dest_vars) {
        dep_iter.add(SymbolVar(var));
    }
115 116
}

117
py::object Py_Varnode = py::none();
118 119
const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
        std::make_unique<mgb::OprFootprint>()};
120 121 122
void init_graph_rt(py::module m) {
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

M
Megvii Engine Team 已提交
123 124
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

125 126
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Py_Varnode =
            py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
                    .def_property_readonly(
                            "owner", [](cg::VarNode* v) { return v->owner_opr(); })
                    .def_property_readonly(
                            "graph", [](cg::VarNode* v) { return v->owner_graph(); })
                    .def_property(
                            "name", py::overload_cast<>(&VarNode::name, py::const_),
                            py::overload_cast<std::string>(&VarNode::name))
                    .def_property_readonly(
                            "dtype", [](cg::VarNode* v) { return v->dtype(); })
                    .def_property_readonly(
                            "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
                    .def_property_readonly(
                            "shape",
                            [](cg::VarNode* v) -> const TensorShape* {
                                auto&& mgr = v->owner_graph()->static_infer_manager();
                                return mgr.infer_shape_fallible(v);
                            })
                    .def_property_readonly(
                            "value",
                            [](cg::VarNode* v) -> py::object {
                                auto&& mgr = v->owner_graph()->static_infer_manager();
                                auto&& type = mgr.get_infer_type(v);
                                using InferType = cg::static_infer::InferType;
                                if (!(type.value &
                                      (InferType::CONST | InferType::RT_STATIC))) {
                                    return py::none();
                                }
                                auto* val = mgr.infer_value_fallible(v);
                                if (!val) {
                                    return py::none();
                                }
                                return py::cast(*val).attr("numpy")();
                            })
                    .def_property_readonly(
                            "id", [](cg::VarNode* v) { return (v->id()); })
                    .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });
M
Megvii Engine Team 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
            m, "OperatorNode")
            .def_property_readonly(
                    "graph",
                    [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
            .def_property(
                    "name",
                    py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                    py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
            .def_property_readonly(
                    "inputs",
                    [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
            .def_property_readonly(
                    "outputs",
                    [](cg::OperatorNodeBase* opr) {
                        return to_tuple(opr->usable_output());
                    })
            .def_property_readonly(
                    "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
            .def_property_readonly(
                    "params",
                    [](cg::OperatorNodeBase* opr) {
                        return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
                                .param->to_string();
                    })
            .def_property_readonly(
                    "type",
                    [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
            .def("__repr__",
                 [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
            .def_property(
                    "priority",
                    [](cg::OperatorNodeBase* opr) {
                        return opr->node_prop().attribute().priority;
                    },
                    [](cg::OperatorNodeBase* opr, int priority) {
                        opr->node_prop().attribute().priority = priority;
                    });
204

205
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
M
Megvii Engine Team 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            .def("execute", &cg::AsyncExecutable::execute,
                 py::call_guard<py::gil_scoped_release>())
            .def("wait", &cg::AsyncExecutable::wait,
                 py::call_guard<py::gil_scoped_release>())
            .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
                 py::call_guard<py::gil_scoped_release>())
            .def("_to_json",
                 [](cg::AsyncExecutable* exec) {
                     py::call_guard<py::gil_scoped_release>();
                     // dump currently compiled computing graph for debugging
                     return exec->to_json()->to_string();
                 })
            // only used for exception handle
            .def_property_readonly(
                    "_all_rendezvous",
                    [](cg::AsyncExecutable* exec) {
                        auto ud =
                                exec->owner_graph()
                                        ->options()
                                        .user_data.get_user_data<WeakRendezvousArray>();
                        std::vector<std::shared_ptr<RendezvousBase>> ret;
                        if (ud.second) {
                            for (auto&& r : *ud.first[0]) {
                                if (auto p = r.lock()) {
                                    ret.emplace_back(std::move(p));
                                }
                            }
                        }
                        return ret;
                    })
            .def("get_static_memory_alloc_info",
                 &cg::AsyncExecutable::get_static_memory_alloc_info,
                 py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph =
            py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
                    m, "ComputingGraph")
                    .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
                    .def("compile",
                         [](cg::ComputingGraph& graph,
                            const std::vector<cg::VarNode*>& dest_vars) {
                             mgb_assert(!dest_vars.empty());
                             cg::ComputingGraph::OutputSpec spec;
                             for (auto v : dest_vars) {
                                 spec.emplace_back(v, nullptr);
                             }
                             return graph.compile(spec);
                         })
254 255 256 257
                    .def("enable_weight_preprocess",
                         [](cg::ComputingGraph& graph) {
                             graph.options().graph_opt.enable_weight_preprocess();
                         })
M
Megvii Engine Team 已提交
258 259 260 261 262 263 264
                    .def_property_readonly(
                            "options",
                            py::overload_cast<>(&cg::ComputingGraph::options));

    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
            m, "GraphProfiler")
            .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
265
                return std::make_shared<_CompGraphProfilerImpl>(graph);
M
Megvii Engine Team 已提交
266 267 268 269
            }))
            .def("get", [](_CompGraphProfilerImpl& profiler) {
                return profiler._get_result();
            });
270

271 272
    using interpreter::intl::ProfilerPlugin;
    py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
M
Megvii Engine Team 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            .def(py::init<cg::ComputingGraph*>());

    auto GraphOptimizeOptions =
            py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
                    .def(py::init())
                    .def("serialize", &_OptimizeForInferenceOptions::serialize)
                    .def_static(
                            "deserialize", &_OptimizeForInferenceOptions::deserialize)
                    .def_readwrite(
                            "f16_io_f32_comp",
                            &_OptimizeForInferenceOptions::f16_io_f32_comp)
                    .def_readwrite(
                            "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
                    .def_readwrite(
                            "fuse_conv_bias_nonlinearity",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
                    .def_readwrite(
                            "fuse_conv_bias_with_z",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
                    .def_readwrite(
                            "fuse_preprocess",
                            &_OptimizeForInferenceOptions::fuse_preprocess)
                    .def_readwrite(
                            "layout_transform",
297 298 299
                            &_OptimizeForInferenceOptions::layout_transform)
                    .def_readwrite(
                            "fuse_grain", &_OptimizeForInferenceOptions::fuse_grain);
300 301

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
M
Megvii Engine Team 已提交
302 303 304 305 306 307 308 309 310 311 312
            .value("DEFAULT", _LayoutTransform::DEFAULT)
            .value("NCHW4", _LayoutTransform::NCHW4)
            .value("NHWCD4", _LayoutTransform::NHWCD4)
            .value("NCHW88", _LayoutTransform::NCHW88)
            .value("NCHW44", _LayoutTransform::NCHW44)
            .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
            .value("NCHW32", _LayoutTransform::NCHW32)
            .value("CHWN4", _LayoutTransform::CHWN4)
            .value("NCHW64", _LayoutTransform::NCHW64)
            .export_values();

313 314
    py::enum_<_SerializationFormat>(m, "SerializationFormat")
            .value("FBS", _SerializationFormat::FLATBUFFERS)
315
            .value("FBS_V2", _SerializationFormat::FLATBUFFERS_V2)
316 317
            .export_values();

M
Megvii Engine Team 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    m.def("optimize_for_inference",
          [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
              auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
              VarNodeArray vars;
              for (auto& si : res_symvars)
                  vars.push_back(si.node());
              return vars;
          });

    m.def("modify_opr_algo_strategy_inplace",
          [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
              mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
          });
332

333 334
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
M
Megvii Engine Team 已提交
335
        auto on_opr = [&](cg::OperatorNodeBase* opr) {
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

M
Megvii Engine Team 已提交
351
        auto to_json = [](const std::unordered_set<const char*>& v) {
352 353 354
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
M
Megvii Engine Team 已提交
355
            for (auto&& i : vs)
356 357 358 359 360
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
M
Megvii Engine Team 已提交
361 362 363 364 365
                                          {"opr_types", to_json(opr_types)},
                                          {"dtypes", to_json(dtype_names)},
                                          {"elemwise_modes", to_json(elemwise_modes)},
                                  })
                ->to_string();
366 367
    });

368
    py::class_<_SerializationMetadata>(m, "SerializationMetadata")
M
Megvii Engine Team 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            .def(py::init())
            .def_property(
                    "user_info",
                    [](const _SerializationMetadata& meta) {
                        return py::bytes(meta.get_user_info());
                    },
                    &_SerializationMetadata::set_user_info)
            .def_readonly(
                    "optimized_for_inference",
                    &_SerializationMetadata::optimized_for_inference)
            .def_property(
                    "optimize_options", &_SerializationMetadata::get_optimize_options,
                    &_SerializationMetadata::set_optimize_options)
            .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
            .def_readwrite("is_valid", &_SerializationMetadata::is_valid);

    m.def("dump_graph",
          [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
             bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
388 389 390 391
             bool no_change_graph, std::optional<_SerializationMetadata> metadata,
             std::optional<_SerializationFormat> dump_format,
             std::optional<int> model_version, py::list& stat, py::list& inputs,
             py::list& outputs, py::list& params) {
M
Megvii Engine Team 已提交
392
              std::vector<uint8_t> buf;
393
              ser::GraphDumpFormat format = ser::GraphDumpFormat::FLATBUFFERS_V2;
394
              int version = 2;
395 396 397
              if (dump_format.has_value()) {
                  format = dump_format.value();
              }
398 399 400
              if (model_version.has_value()) {
                  version = model_version.value();
              }
401
              auto dumper = ser::GraphDumper::make(
402
                      ser::OutputFile::make_vector_proxy(&buf), format, version);
M
Megvii Engine Team 已提交
403 404 405 406
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

              ser::GraphDumper::DumpConfig config{
                      keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};
407
              config.no_change_graph = no_change_graph;
M
Megvii Engine Team 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

              ser::GraphDumper::DumpResult rst;
              if (metadata)
                  rst = dumper->dump(symvars, config, *metadata);
              else
                  rst = dumper->dump(symvars, config);

              for (auto i : rst.inputs) {
                  inputs.append(py::cast(i));
              }
              for (auto i : rst.outputs) {
                  outputs.append(py::cast(i));
              }
              for (auto i : rst.params) {
                  params.append(py::cast(i));
              }
              auto rst_stat = std::vector{
                      rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                      static_cast<size_t>(rst.content_hash)};
              for (auto i : rst_stat) {
                  stat.append(py::cast(i));
              }
              return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
          });

    m.def("load_graph",
          [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
              auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
              auto format = ser::GraphLoader::identify_graph_dump_format(*file);
              auto loader = ser::GraphLoader::make(std::move(file), format.val());
              ser::GraphLoader::LoadConfig config;
              auto rst = loader->load(config);
              for (auto i : rst.output_var_map) {
                  output_var_map.append(py::make_tuple(i.first, i.second.node()));
              }
              for (auto i : rst.output_var_list) {
                  output_var_list.append(i.node());
              }
              std::unordered_map<HostTensorND*, const std::string*> tensor2name;
              for (const auto& pair : rst.tensor_map) {
                  tensor2name[pair.second.get()] = &pair.first;
              }
              auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
                  if (!opr->same_type<opr::Host2DeviceCopy>())
                      return;
                  auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
                  auto it = tensor2name.find(h2d.host_data().get());
                  mgb_throw_if(
                          it == tensor2name.end(), GraphError,
                          "unbound Host2DeviceCopy in loaded graph");
                  h2d.output(0)->name(*it->second);
              };
              cg::DepOprIter iter{cb};
              for (const auto& var : rst.output_var_list) {
                  iter.add(var);
              }
              auto ret = py::tuple(2);
              ret[0] = py::cast(rst.graph);
              ret[1] = py::cast(rst.metadata);
              return ret;
          });
469

470 471
#define CURRENT_CLASS cg::ComputingGraph::Options

472
    // clang-format off
M
Megvii Engine Team 已提交
473 474
    auto PyComputingGraphOptions =
            py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
                // DEF_READWRITE(opr_attribute)
                DEF_READWRITE(seq_opt)
                DEF_READWRITE(graph_opt)
                DEF_READWRITE(graph_opt_level)
                DEF_READWRITE(log_level)
                DEF_READWRITE(async_exec_level)
                DEF_READWRITE(force_dynamic_alloc)
                DEF_READWRITE(var_sanity_check_first_run)
                DEF_READWRITE(allocate_static_mem_after_graph_compile)
                DEF_READWRITE(fake_next_exec)
                DEF_READWRITE(enable_sublinear_memory_opt)
                DEF_READWRITE(enable_dtr_memory_opt)
                DEF_READWRITE(no_profiling_on_shape_change)
                DEF_READWRITE(enable_var_mem_defragment)
                DEF_READWRITE(enable_grad_var_static_reshape)
                DEF_READWRITE(enable_memory_swap)
                DEF_READWRITE(comp_node_seq_record_level)
                DEF_READWRITE(no_force_inplace)
                DEF_READWRITE(sublinear_mem_config)
                DEF_READWRITE(dtr_config)
                // DEF_READWRITE(eager_evaluation)
                // DEF_READWRITE(imperative_proxy_graph)
                // DEF_READWRITE(extra_vardeps)
                // DEF_READWRITE(user_data)
M
Megvii Engine Team 已提交
499
            ;
500
    // clang-format on
501 502 503 504 505

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
M
Megvii Engine Team 已提交
506 507
            DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
                    DEF_READWRITE(enable_seq_comp_node_opt);
508 509 510 511

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

512
    auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
M
Megvii Engine Team 已提交
513 514 515
            PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
            DEF_READWRITE(jit_config)
            DEF_READWRITE(tensorrt);
516 517

#undef CURRENT_CLASS
518
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
519

M
Megvii Engine Team 已提交
520 521 522
    py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
            PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
            DEF_READWRITE(fuse_reduce);
523 524

#undef CURRENT_CLASS
525 526
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

M
Megvii Engine Team 已提交
527 528 529 530
    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
            PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
            DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
                    DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
531

532 533 534 535
#undef CURRENT_CLASS

#define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig

M
Megvii Engine Team 已提交
536 537 538 539
    py::class_<cg::ComputingGraph::Options::DTRConfig>(
            PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
            DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
                    DEF_READWRITE(recomp_time_factor);
540

541
#undef CURRENT_CLASS
542 543
    auto common = rel_import("common", m, 1);

M
Megvii Engine Team 已提交
544 545 546 547 548 549 550 551
    common.def(
            "invoke_op",
            [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
               cg::ComputingGraph* graph) {
                cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
                return to_tuple(OpDef::apply_on_var_node(def, vinputs));
            },
            py::arg(), py::arg(), py::arg("graph") = py::none());
552

M
Megvii Engine Team 已提交
553 554
    auto input_callback = [](auto callback, const CompNode& comp_node,
                             const DType& dtype, const TensorShape& shape,
555
                             const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
556
                             cg::ComputingGraph* graph, bool use_static_shape) {
557 558 559 560 561 562 563 564
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
565 566 567
        auto soutputs = opr::InputCallback::make(
                *graph, std::move(callback), comp_node, dtype, shape, sinputs,
                use_static_shape);
568 569 570 571 572 573 574 575
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

M
Megvii Engine Team 已提交
576
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
M
Megvii Engine Team 已提交
577 578 579 580
        return opr::SharedDeviceTensor::make(
                       *graph, std::make_shared<DeviceTensorND>(data))
                .node();
    });
M
Megvii Engine Team 已提交
581

M
Megvii Engine Team 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    m.def(
            "make_const",
            [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    cn = CompNode::load(get_default_device());
                }
                OperatorNodeConfig config(cn);
                if (name) {
                    config.name(*name);
                }
                auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
                return opr::ImmutableTensor::make(*graph, hv, config).node();
            },
            py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());

    m.def(
            "make_h2d",
            [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    throw py::type_error("device must be valid");
                }
                if (!dtype.valid()) {
                    throw py::type_error("dtype must be valid");
                }
                OperatorNodeConfig config;
                if (name) {
                    config.name(*name);
                }
                return opr::Host2DeviceCopy::make(
                               graph, std::make_shared<HostTensorND>(cn, shape, dtype),
                               config)
                        .node();
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::none());

    m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
    m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
    m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());

    m.def(
            "input_callback",
            [input_callback](
                    std::function<DeviceTensorND(void)> callback,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                return input_callback(
                        [f = std::move(callback)]() {
                            py::gil_scoped_acquire _;
                            return f();
                        },
                        comp_node, dtype, shape, inputs, graph, use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);

    m.def(
            "input_callback",
            [input_callback](
                    std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                auto f = [p]() -> DeviceTensorND { return p->get(); };
                return input_callback(
                        std::move(f), comp_node, dtype, shape, inputs, graph,
                        use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);
657

658
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
659 660
                              std::shared_ptr<RendezvousBase> r = {},
                              bool borrow = false, bool prefer_host_value = false) {
661 662 663
        if (r) {
            mgb_assert(inputs.size());
            auto cg = inputs[0]->owner_graph();
M
Megvii Engine Team 已提交
664 665
            cg->options()
                    .user_data.get_user_data_or_create<WeakRendezvousArray>()
666 667
                    ->emplace_back(r);
        }
668 669 670 671 672
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
673 674
        opr::OutputCallback::Param param{
                std::move(callback), borrow, prefer_host_value};
675 676 677 678
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

M
Megvii Engine Team 已提交
679 680 681 682 683
    m.def("output_callback", [output_callback](
                                     std::function<void(DeviceTensorND)> callback,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [f = std::move(callback)](DeviceTensorND dv) {
            auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
684 685 686 687 688
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

M
Megvii Engine Team 已提交
689 690 691 692
    m.def("output_callback", [output_callback](
                                     std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
693
        return output_callback(std::move(f), std::move(inputs), p);
694 695
    });

M
Megvii Engine Team 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    m.def("value_output_callback",
          [output_callback](
                  std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
                  std::vector<cg::VarNode*> inputs) {
              auto f = [p](DeviceTensorND dv) {
                  HostNDWithEvent hv_with_event;
                  hv_with_event.first.copy_from(dv);
                  hv_with_event.second = dv.comp_node().create_event();
                  hv_with_event.second->record();
                  p->set(std::move(hv_with_event));
              };
              return output_callback(std::move(f), std::move(inputs), p, true, true);
          });

    m.def("attr_output_callback", [output_callback](
                                          std::shared_ptr<Rendezvous<TensorAttr>> p,
                                          std::vector<cg::VarNode*> inputs) {
713 714 715
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
716
        return output_callback(std::move(f), std::move(inputs), p, true);
717
    });
718 719 720 721 722 723 724 725

    m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
        auto&& graph = inputs[0]->owner_graph();
        VarNodeArray inps(inputs.begin(), inputs.end());
        cg::OperatorNodeConfig config;
        if (device.length() > 0) {
            config.comp_node(CompNode::load(device));
        }
M
Megvii Engine Team 已提交
726 727
        cg::OperatorNodeBase* opr =
                graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
728 729
        return opr;
    });
730
}