graph_rt.cpp 25.8 KB
Newer Older
M
Megvii Engine Team 已提交
1 2 3 4
/**
 * \file imperative/python/src/graph_rt.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
M
Megvii Engine Team 已提交
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "./graph_rt.h"

14
#include "megbrain/graph/cg.h"
15
#include "megbrain/serialization/serializer.h"
16
#include "megbrain/imperative/opr_utility.h"
M
Megvii Engine Team 已提交
17
#include "megbrain/opr/io.h"
18
#include "megbrain/opr/utility.h"
19 20 21
#include "megbrain/opr/basic_arith.h"
#include "megbrain/imperative.h"
#include "./helper.h"
22
#include "megbrain/plugin/profiler.h"
23
#include "./common.h"
24
#include "./ops.h"
25 26
#include "megbrain/gopt/inference.h"

27 28 29 30 31

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
32
namespace ser = mgb::serialization;
33

34 35
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
36
using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;
    public:
        _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
            m_comp_graph{cg},
            m_profiler{m_comp_graph.get()}
        {
        }

        std::string _get_result() {
            auto json = m_profiler.to_json_full(
                    m_comp_graph->current_comp_seq());
            return json->to_string();
        }
};
55 56 57 58 59 60 61

struct WeakRendezvousArray:
    public std::vector<std::weak_ptr<RendezvousBase>>,
    public UserDataContainer::UserData {
    MGB_TYPEINFO_OBJ_DECL;
};
MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
62
}
63 64 65 66 67
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

template<typename T>
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
68
        .def(py::init([](){return Rendezvous<T>::make();}))
69 70
        .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
        .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
M
Megvii Engine Team 已提交
71
        .def("drop", &Rendezvous<T>::drop)
72 73 74 75 76
        .def("reset", &Rendezvous<T>::reset)
        .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
            r.set_exception(std::make_exception_ptr(
                    std::runtime_error(std::move(message))));
        });
77 78 79
}

using TensorAttr = LogicalTensorDesc;
M
Megvii Engine Team 已提交
80
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
std::vector<mgb::cg::VarNode*>  _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
                                 const std::vector<mgb::cg::VarNode*>& repl_dst,
                                 const std::vector<mgb::cg::VarNode*>& vars) {
        mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
        for (size_t i = 0; i < repl_src.size(); ++i) {
            varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
        }
        SymbolVarArray symvars(vars.begin(), vars.end());
        auto sym_result = mgb::cg::replace_vars(symvars, varmap);
        std::vector<mgb::cg::VarNode*> result;
        for (auto symvar : sym_result){
            result.push_back(symvar.node());
        }
        return result;
    }

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
                                 const OperatorArray& repl_dst,
                                 const std::vector<mgb::cg::VarNode*>& vars) {
        mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
                oprmap;
        for (size_t i = 0; i < repl_src.size(); ++i) {
            oprmap[repl_src[i]] = repl_dst[i];
        }
        const SymbolVarArray symvars(vars.begin(), vars.end());
        auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
        std::vector<mgb::cg::VarNode*> result;
        for (auto symvar : sym_result){
            result.push_back(symvar.node());
        }
        return result;
    }



void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
        auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
            if (opr->node_prop().attribute().priority == 0) {
                opr->node_prop().attribute().priority = opr->id();
            }
        };
        mgb::cg::DepOprIter dep_iter{on_opr};
        for (const auto& var : dest_vars) {
            dep_iter.add(SymbolVar(var));
        }
}



132
void init_graph_rt(py::module m) {
133 134 135

   static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};

136 137
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

M
Megvii Engine Team 已提交
138 139
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

140 141 142 143 144
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

    py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
        .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
        .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
145 146
        .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
                      py::overload_cast<std::string>(&VarNode::name))
147
        .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
M
Megvii Engine Team 已提交
148 149 150 151
        .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
        .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
                auto&& mgr = v->owner_graph()->static_infer_manager();
                return mgr.infer_shape_fallible(v);
152 153 154 155 156 157 158 159 160 161 162 163 164
            })
        .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
                auto&& mgr = v->owner_graph()->static_infer_manager();
                auto&& type = mgr.get_infer_type(v);
                using InferType = cg::static_infer::InferType;
                if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                    return py::none();
                }
                auto* val = mgr.infer_value_fallible(v);
                if (!val) {
                    return py::none();
                }
                return py::cast(*val).attr("numpy")();
165 166 167
            })
        .def_property_readonly("id",[](cg::VarNode* v){
            return (v->id());
168 169 170
        })
        .def("__repr__", [](cg::VarNode* v) {
            return "Var:" + v->name();
171
        });
172 173 174

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
        .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
175 176
        .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                      py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
177 178 179 180
        .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
                return to_tuple(opr->input());
            })
        .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
181
                return to_tuple(opr->usable_output());
182 183 184 185 186 187 188 189 190
            })
        .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
            return opr->id();
        })
        .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
            return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
        })
        .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
            return opr->dyn_typeinfo()->name;
191 192 193
        })
        .def("__repr__", [](cg::OperatorNodeBase* opr){
            return "Opr:" + opr->name();
194 195
        });

196 197
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
        .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
198
        .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>())
199
        .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time, py::call_guard<py::gil_scoped_release>())
200 201 202 203 204
        .def("_to_json", [](cg::AsyncExecutable* exec) {
            py::call_guard<py::gil_scoped_release>();
            // dump currently compiled computing graph for debugging
            return exec->to_json()->to_string();
        })
205 206 207 208 209 210 211 212 213 214 215 216 217
        // only used for exception handle
        .def_property_readonly("_all_rendezvous", [](cg::AsyncExecutable* exec) {
            auto ud = exec->owner_graph()->options().user_data
                        .get_user_data<WeakRendezvousArray>();
            std::vector<std::shared_ptr<RendezvousBase>> ret;
            if (ud.second) {
                for (auto&& r: *ud.first[0]) {
                    if (auto p = r.lock()) {
                        ret.emplace_back(std::move(p));
                    }
                }
            }
            return ret;
218 219 220 221
        })
        .def("get_static_memory_alloc_info",
             &cg::AsyncExecutable::get_static_memory_alloc_info,
             py::call_guard<py::gil_scoped_release>());
222 223 224 225 226 227 228 229 230 231 232 233 234

    auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
        .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
        .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
                mgb_assert(!dest_vars.empty());
                cg::ComputingGraph::OutputSpec spec;
                for (auto v : dest_vars) {
                    spec.emplace_back(v, nullptr);
                }
                return graph.compile(spec);
            })
        .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));

235 236 237 238 239 240
    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
        .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
                return std::make_shared<_CompGraphProfilerImpl>(graph);
                }))
        .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
        .def(py::init())
        .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
        .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
        .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
        .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
        .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
        ;

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
        .value("DEFAULT", _LayoutTransform::DEFAULT)
        .value("NCHW4", _LayoutTransform::NCHW4)
        .value("NHWCD4", _LayoutTransform::NHWCD4)
        .value("NCHW88", _LayoutTransform::NCHW88)
        .value("NCHW44", _LayoutTransform::NCHW44)
        .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
        .value("NCHW32", _LayoutTransform::NCHW32)
        .value("CHWN4", _LayoutTransform::CHWN4)
        .export_values()
        ;

    m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
        SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
        auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
        VarNodeArray vars;
        for (auto& si: res_symvars)
            vars.push_back(si.node());
        return vars;
    });

271
    m.def("modify_opr_algo_strategy_inplace", [](const VarNodeArray& dest_vars,
272 273
                                                 const _AlgoStrategy& strategy) {
        mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
274 275
    });

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
        auto on_opr = [&](cg::OperatorNodeBase *opr) {
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

        auto to_json = [](const std::unordered_set<const char*> &v) {
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
            for (auto &&i : vs)
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
            {"opr_types", to_json(opr_types)},
            {"dtypes", to_json(dtype_names)},
            {"elemwise_modes", to_json(elemwise_modes)},
307
        })->to_string();
308 309 310 311 312
    });

    m.def("dump_graph", [](
        const std::vector<VarNode*>& dest_vars,
        int keep_var_name,
313
        bool keep_opr_name,
314 315 316 317 318 319 320 321 322 323 324 325
        bool keep_param_name,
        bool keep_opr_priority,
        py::list& stat,
        py::list& inputs,
        py::list& outputs,
        py::list& params
    ) {
        std::vector<uint8_t> buf;
        auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
        SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

        ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
326
                                       keep_opr_priority, keep_opr_name};
327 328 329 330 331 332 333 334 335 336 337

        auto rst = dumper->dump(symvars, config);
        for (auto i : rst.inputs) {
            inputs.append(py::cast(i));
        }
        for (auto i : rst.outputs) {
            outputs.append(py::cast(i));
        }
        for (auto i : rst.params) {
            params.append(py::cast(i));
        }
338 339 340
        auto rst_stat =
                std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                            static_cast<size_t>(rst.content_hash)};
341 342 343 344 345
        for (auto i : rst_stat) {
            stat.append(py::cast(i));
        }
        return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
    });
346

347 348 349 350 351 352 353 354 355
    m.def("load_graph", [](
        std::string& buf,
        py::list& output_var_map,
        py::list& output_var_list
    ) {
        auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
        auto format = ser::GraphLoader::identify_graph_dump_format(*file);
        auto loader = ser::GraphLoader::make(std::move(file), format.val());
        ser::GraphLoader::LoadConfig config;
356
        auto rst = loader->load(config);
357 358
        for (auto i : rst.output_var_map) {
            output_var_map.append(py::make_tuple(i.first, i.second.node()));
359
        }
360 361
        for (auto i : rst.output_var_list) {
            output_var_list.append(i.node());
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        }
        std::unordered_map<HostTensorND*, const std::string*> tensor2name;
        for (const auto& pair : rst.tensor_map) {
            tensor2name[pair.second.get()] = &pair.first;
        }
        auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
            if (!opr->same_type<opr::Host2DeviceCopy>())
                return;
            auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
            auto it = tensor2name.find(h2d.host_data().get());
            mgb_throw_if(it == tensor2name.end(), GraphError,
                        "unbound Host2DeviceCopy in loaded graph");
            h2d.output(0)->name(*it->second);
        };
        cg::DepOprIter iter{cb};
377 378
        for (const auto& var : rst.output_var_list) {
            iter.add(var);
379 380 381 382 383
        }
        return rst.graph;

    });

384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define CURRENT_CLASS cg::ComputingGraph::Options

    auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
        // DEF_READWRITE(opr_attribute)
        DEF_READWRITE(seq_opt)
        DEF_READWRITE(graph_opt)
        DEF_READWRITE(graph_opt_level)
        DEF_READWRITE(log_level)
        DEF_READWRITE(async_exec_level)
        DEF_READWRITE(force_dynamic_alloc)
        DEF_READWRITE(var_sanity_check_first_run)
        DEF_READWRITE(allocate_static_mem_after_graph_compile)
        DEF_READWRITE(fake_next_exec)
        DEF_READWRITE(enable_sublinear_memory_opt)
398
        DEF_READWRITE(enable_dtr_memory_opt)
399 400 401 402 403
        DEF_READWRITE(no_profiling_on_shape_change)
        DEF_READWRITE(enable_var_mem_defragment)
        DEF_READWRITE(enable_grad_var_static_reshape)
        DEF_READWRITE(enable_memory_swap)
        DEF_READWRITE(comp_node_seq_record_level)
404
        DEF_READWRITE(no_force_inplace)
405
        DEF_READWRITE(sublinear_mem_config)
406
        DEF_READWRITE(dtr_config)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        // DEF_READWRITE(eager_evaluation)
        // DEF_READWRITE(imperative_proxy_graph)
        // DEF_READWRITE(extra_vardeps)
        // DEF_READWRITE(user_data)
        ;

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
        DEF_READWRITE(enable_mem_plan_opt)
        DEF_READWRITE(enable_mem_reuse_alloc)
        DEF_READWRITE(enable_seq_comp_node_opt);

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

    py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
        DEF_READWRITE(jit)
        DEF_READWRITE(tensorrt);

#undef CURRENT_CLASS

430 431 432 433 434 435 436 437 438
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
        DEF_READWRITE(thresh_nr_try)
        DEF_READWRITE(genetic_nr_iter)
        DEF_READWRITE(genetic_pool_size)
        DEF_READWRITE(lb_memory)
        DEF_READWRITE(num_worker);

439 440 441 442 443 444 445 446
#undef CURRENT_CLASS

#define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig

    py::class_<cg::ComputingGraph::Options::DTRConfig>(PyComputingGraphOptions, "DTRConfig")
        DEF_READWRITE(eviction_threshold)
        DEF_READWRITE(evictee_minimum_size);

447
#undef CURRENT_CLASS
448 449 450 451
    auto common = rel_import("common", m, 1);

    common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
            cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
452
            return to_tuple(OpDef::apply_on_var_node(def, vinputs));
453 454 455 456 457 458
        },
        py::arg(), py::arg(), py::arg("graph") = py::none());

    auto input_callback = [](auto callback,
                             const CompNode& comp_node,
                             const DType& dtype,
M
Megvii Engine Team 已提交
459
                             const TensorShape& shape,
460
                             const std::vector<cg::VarNode*>& inputs,
461 462
                             cg::ComputingGraph* graph,
                             bool use_static_shape) {
463 464 465 466 467 468 469 470
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
471 472 473
        auto soutputs = opr::InputCallback::make(*graph, std::move(callback),
                                                 comp_node, dtype, shape,
                                                 sinputs, use_static_shape);
474 475 476 477 478 479 480 481
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

M
Megvii Engine Team 已提交
482 483 484 485
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
            return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
        });

486
    m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype, std::optional<std::string> name) {
M
Megvii Engine Team 已提交
487
            if (!cn.valid()) {
488
                cn = CompNode::load(get_default_device());
M
Megvii Engine Team 已提交
489
            }
490 491 492 493
            OperatorNodeConfig config(cn);
            if (name) {
                config.name(*name);
            }
M
Megvii Engine Team 已提交
494
            auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
495 496
            return opr::ImmutableTensor::make(*graph, hv, config).node();
        }, py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());
M
Megvii Engine Team 已提交
497

498
    m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
499 500 501 502 503 504 505 506 507 508
            if (!cn.valid()) {
                throw py::type_error("device must be valid");
            }
            if (!dtype.valid()) {
                throw py::type_error("dtype must be valid");
            }
            OperatorNodeConfig config;
            if (name) {
                config.name(*name);
            }
509 510
            return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
        }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
511

512 513 514 515
    m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
    m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
    m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());

516 517 518
    m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
                                             const CompNode& comp_node,
                                             const DType& dtype,
M
Megvii Engine Team 已提交
519
                                             const TensorShape& shape,
520
                                             const std::vector<cg::VarNode*>& inputs,
521 522 523 524 525
                                             cg::ComputingGraph* graph,
                                             bool use_static_shape) {
            return input_callback(
                [f=std::move(callback)](){py::gil_scoped_acquire _; return f();},
                comp_node, dtype, shape, inputs, graph, use_static_shape);
526
        },
527 528
        py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(),
        py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
529 530 531 532

    m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                             const CompNode& comp_node,
                                             const DType& dtype,
M
Megvii Engine Team 已提交
533
                                             const TensorShape& shape,
534
                                             const std::vector<cg::VarNode*>& inputs,
535 536
                                             cg::ComputingGraph* graph,
                                             bool use_static_shape) {
537 538 539
            auto f = [p]() -> DeviceTensorND {
                return p->get();
            };
540
            return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph, use_static_shape);
541
        },
542 543
        py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), 
        py::arg("graph") = py::none(), py::arg("use_static_shape") = false);
544

545 546 547 548 549 550 551 552
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
            std::shared_ptr<RendezvousBase> r = {}, bool borrow = false, bool prefer_host_value = false) {
        if (r) {
            mgb_assert(inputs.size());
            auto cg = inputs[0]->owner_graph();
            cg->options().user_data.get_user_data_or_create<WeakRendezvousArray>()
                    ->emplace_back(r);
        }
553 554 555 556 557
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
558
        opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

    m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
        auto f = [f=std::move(callback)](DeviceTensorND dv) {
            auto task = [f=std::move(f), dv=std::move(dv)]() {
                f(dv);
            };
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

    m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(std::move(dv));
        };
577
        return output_callback(std::move(f), std::move(inputs), p);
578 579
    });

M
Megvii Engine Team 已提交
580 581 582 583 584 585 586 587
    m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            HostNDWithEvent hv_with_event;
            hv_with_event.first.copy_from(dv);
            hv_with_event.second = dv.comp_node().create_event();
            hv_with_event.second->record();
            p->set(std::move(hv_with_event));
        };
588
        return output_callback(std::move(f), std::move(inputs), p, true, true);
M
Megvii Engine Team 已提交
589 590
    });

591 592 593 594
    m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
595
        return output_callback(std::move(f), std::move(inputs), p, true);
596
    });
597 598 599 600 601 602 603 604 605 606 607 608

    m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
        auto&& graph = inputs[0]->owner_graph();
        VarNodeArray inps(inputs.begin(), inputs.end());
        cg::OperatorNodeConfig config;
        if (device.length() > 0) {
            config.comp_node(CompNode::load(device));
        }
        cg::OperatorNodeBase* opr = graph->insert_opr(
                std::make_unique<mgb::opr::VirtualDep>(inps, config));
        return opr;
    });
609
}