graph_rt.cpp 31.1 KB
Newer Older
1 2
#include "./graph_rt.h"

M
Megvii Engine Team 已提交
3 4 5 6
#include "./common.h"
#include "./helper.h"
#include "./ops.h"
#include "megbrain/gopt/inference.h"
7
#include "megbrain/graph/cg.h"
M
Megvii Engine Team 已提交
8
#include "megbrain/imperative.h"
9
#include "megbrain/imperative/opr_utility.h"
M
Megvii Engine Team 已提交
10 11
#include "megbrain/imperative/profiler_plugin.h"
#include "megbrain/opr/basic_arith.h"
M
Megvii Engine Team 已提交
12
#include "megbrain/opr/io.h"
13
#include "megbrain/opr/utility.h"
14
#include "megbrain/plugin/profiler.h"
M
Megvii Engine Team 已提交
15
#include "megbrain/serialization/serializer.h"
16 17 18 19 20

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
21
namespace ser = mgb::serialization;
22

23 24
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
25
using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
26
using _SerializationMetadata = mgb::serialization::Metadata;
27
using _SerializationFormat = mgb::serialization::GraphDumpFormat;
28

29 30 31 32 33
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;

M
Megvii Engine Team 已提交
34 35 36 37 38 39 40 41
public:
    _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
            : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}

    std::string _get_result() {
        auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
        return json->to_string();
    }
42
};
43

M
Megvii Engine Team 已提交
44 45
struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
                             public UserDataContainer::UserData {
46 47 48
    MGB_TYPEINFO_OBJ_DECL;
};
MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
M
Megvii Engine Team 已提交
49
}  // namespace
50 51
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

M
Megvii Engine Team 已提交
52
template <typename T>
53 54
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
M
Megvii Engine Team 已提交
55 56 57 58 59 60 61 62 63 64 65
            .def(py::init([]() { return Rendezvous<T>::make(); }))
            .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
            .def(
                    "get", [](Rendezvous<T>& r) { return r.get(); },
                    py::call_guard<py::gil_scoped_release>())
            .def("drop", &Rendezvous<T>::drop)
            .def("reset", &Rendezvous<T>::reset)
            .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
                r.set_exception(std::make_exception_ptr(
                        std::runtime_error(std::move(message))));
            });
66 67 68
}

using TensorAttr = LogicalTensorDesc;
M
Megvii Engine Team 已提交
69
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
70

M
Megvii Engine Team 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
std::vector<mgb::cg::VarNode*> _replace_vars(
        const std::vector<mgb::cg::VarNode*>& repl_src,
        const std::vector<mgb::cg::VarNode*>& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
    }
    SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_vars(symvars, varmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
84
    }
M
Megvii Engine Team 已提交
85 86
    return result;
}
87 88

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
M
Megvii Engine Team 已提交
89 90 91 92 93 94
std::vector<mgb::cg::VarNode*> _replace_oprs(
        const OperatorArray& repl_src, const OperatorArray& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        oprmap[repl_src[i]] = repl_dst[i];
95
    }
M
Megvii Engine Team 已提交
96 97 98 99 100 101 102 103
    const SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
    }
    return result;
}
104 105

void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
M
Megvii Engine Team 已提交
106 107 108
    auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
        if (opr->node_prop().attribute().priority == 0) {
            opr->node_prop().attribute().priority = opr->id();
109
        }
M
Megvii Engine Team 已提交
110 111 112 113 114
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (const auto& var : dest_vars) {
        dep_iter.add(SymbolVar(var));
    }
115 116
}

117
void init_graph_rt(py::module m) {
M
Megvii Engine Team 已提交
118 119
    static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
            std::make_unique<mgb::OprFootprint>()};
120

121 122
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

M
Megvii Engine Team 已提交
123 124
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

125 126 127
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

    py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
M
Megvii Engine Team 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            .def_property_readonly(
                    "owner", [](cg::VarNode* v) { return v->owner_opr(); })
            .def_property_readonly(
                    "graph", [](cg::VarNode* v) { return v->owner_graph(); })
            .def_property(
                    "name", py::overload_cast<>(&VarNode::name, py::const_),
                    py::overload_cast<std::string>(&VarNode::name))
            .def_property_readonly("dtype", [](cg::VarNode* v) { return v->dtype(); })
            .def_property_readonly(
                    "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
            .def_property_readonly(
                    "shape",
                    [](cg::VarNode* v) -> const TensorShape* {
                        auto&& mgr = v->owner_graph()->static_infer_manager();
                        return mgr.infer_shape_fallible(v);
                    })
            .def_property_readonly(
                    "value",
                    [](cg::VarNode* v) -> py::object {
                        auto&& mgr = v->owner_graph()->static_infer_manager();
                        auto&& type = mgr.get_infer_type(v);
                        using InferType = cg::static_infer::InferType;
                        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                            return py::none();
                        }
                        auto* val = mgr.infer_value_fallible(v);
                        if (!val) {
                            return py::none();
                        }
                        return py::cast(*val).attr("numpy")();
                    })
            .def_property_readonly("id", [](cg::VarNode* v) { return (v->id()); })
            .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
            m, "OperatorNode")
            .def_property_readonly(
                    "graph",
                    [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
            .def_property(
                    "name",
                    py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                    py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
            .def_property_readonly(
                    "inputs",
                    [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
            .def_property_readonly(
                    "outputs",
                    [](cg::OperatorNodeBase* opr) {
                        return to_tuple(opr->usable_output());
                    })
            .def_property_readonly(
                    "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
            .def_property_readonly(
                    "params",
                    [](cg::OperatorNodeBase* opr) {
                        return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
                                .param->to_string();
                    })
            .def_property_readonly(
                    "type",
                    [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
            .def("__repr__",
                 [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
            .def_property(
                    "priority",
                    [](cg::OperatorNodeBase* opr) {
                        return opr->node_prop().attribute().priority;
                    },
                    [](cg::OperatorNodeBase* opr, int priority) {
                        opr->node_prop().attribute().priority = priority;
                    });
200

201
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
M
Megvii Engine Team 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            .def("execute", &cg::AsyncExecutable::execute,
                 py::call_guard<py::gil_scoped_release>())
            .def("wait", &cg::AsyncExecutable::wait,
                 py::call_guard<py::gil_scoped_release>())
            .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
                 py::call_guard<py::gil_scoped_release>())
            .def("_to_json",
                 [](cg::AsyncExecutable* exec) {
                     py::call_guard<py::gil_scoped_release>();
                     // dump currently compiled computing graph for debugging
                     return exec->to_json()->to_string();
                 })
            // only used for exception handle
            .def_property_readonly(
                    "_all_rendezvous",
                    [](cg::AsyncExecutable* exec) {
                        auto ud =
                                exec->owner_graph()
                                        ->options()
                                        .user_data.get_user_data<WeakRendezvousArray>();
                        std::vector<std::shared_ptr<RendezvousBase>> ret;
                        if (ud.second) {
                            for (auto&& r : *ud.first[0]) {
                                if (auto p = r.lock()) {
                                    ret.emplace_back(std::move(p));
                                }
                            }
                        }
                        return ret;
                    })
            .def("get_static_memory_alloc_info",
                 &cg::AsyncExecutable::get_static_memory_alloc_info,
                 py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph =
            py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
                    m, "ComputingGraph")
                    .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
                    .def("compile",
                         [](cg::ComputingGraph& graph,
                            const std::vector<cg::VarNode*>& dest_vars) {
                             mgb_assert(!dest_vars.empty());
                             cg::ComputingGraph::OutputSpec spec;
                             for (auto v : dest_vars) {
                                 spec.emplace_back(v, nullptr);
                             }
                             return graph.compile(spec);
                         })
                    .def_property_readonly(
                            "options",
                            py::overload_cast<>(&cg::ComputingGraph::options));

    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
            m, "GraphProfiler")
            .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
257
                return std::make_shared<_CompGraphProfilerImpl>(graph);
M
Megvii Engine Team 已提交
258 259 260 261
            }))
            .def("get", [](_CompGraphProfilerImpl& profiler) {
                return profiler._get_result();
            });
262

263 264
    using interpreter::intl::ProfilerPlugin;
    py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
M
Megvii Engine Team 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
            .def(py::init<cg::ComputingGraph*>());

    auto GraphOptimizeOptions =
            py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
                    .def(py::init())
                    .def("serialize", &_OptimizeForInferenceOptions::serialize)
                    .def_static(
                            "deserialize", &_OptimizeForInferenceOptions::deserialize)
                    .def_readwrite(
                            "f16_io_f32_comp",
                            &_OptimizeForInferenceOptions::f16_io_f32_comp)
                    .def_readwrite(
                            "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
                    .def_readwrite(
                            "fuse_conv_bias_nonlinearity",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
                    .def_readwrite(
                            "fuse_conv_bias_with_z",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
                    .def_readwrite(
                            "fuse_preprocess",
                            &_OptimizeForInferenceOptions::fuse_preprocess)
                    .def_readwrite(
                            "layout_transform",
                            &_OptimizeForInferenceOptions::layout_transform);
290 291

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
M
Megvii Engine Team 已提交
292 293 294 295 296 297 298 299 300 301 302
            .value("DEFAULT", _LayoutTransform::DEFAULT)
            .value("NCHW4", _LayoutTransform::NCHW4)
            .value("NHWCD4", _LayoutTransform::NHWCD4)
            .value("NCHW88", _LayoutTransform::NCHW88)
            .value("NCHW44", _LayoutTransform::NCHW44)
            .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
            .value("NCHW32", _LayoutTransform::NCHW32)
            .value("CHWN4", _LayoutTransform::CHWN4)
            .value("NCHW64", _LayoutTransform::NCHW64)
            .export_values();

303 304 305 306
    py::enum_<_SerializationFormat>(m, "SerializationFormat")
            .value("FBS", _SerializationFormat::FLATBUFFERS)
            .export_values();

M
Megvii Engine Team 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
    m.def("optimize_for_inference",
          [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
              auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
              VarNodeArray vars;
              for (auto& si : res_symvars)
                  vars.push_back(si.node());
              return vars;
          });

    m.def("modify_opr_algo_strategy_inplace",
          [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
              mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
          });
321

322 323
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
M
Megvii Engine Team 已提交
324
        auto on_opr = [&](cg::OperatorNodeBase* opr) {
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

M
Megvii Engine Team 已提交
340
        auto to_json = [](const std::unordered_set<const char*>& v) {
341 342 343
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
M
Megvii Engine Team 已提交
344
            for (auto&& i : vs)
345 346 347 348 349
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
M
Megvii Engine Team 已提交
350 351 352 353 354
                                          {"opr_types", to_json(opr_types)},
                                          {"dtypes", to_json(dtype_names)},
                                          {"elemwise_modes", to_json(elemwise_modes)},
                                  })
                ->to_string();
355 356
    });

357
    py::class_<_SerializationMetadata>(m, "SerializationMetadata")
M
Megvii Engine Team 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            .def(py::init())
            .def_property(
                    "user_info",
                    [](const _SerializationMetadata& meta) {
                        return py::bytes(meta.get_user_info());
                    },
                    &_SerializationMetadata::set_user_info)
            .def_readonly(
                    "optimized_for_inference",
                    &_SerializationMetadata::optimized_for_inference)
            .def_property(
                    "optimize_options", &_SerializationMetadata::get_optimize_options,
                    &_SerializationMetadata::set_optimize_options)
            .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
            .def_readwrite("is_valid", &_SerializationMetadata::is_valid);

    m.def("dump_graph",
          [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
             bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
377 378
             std::optional<_SerializationMetadata> metadata,
             std::optional<_SerializationFormat> dump_format, py::list& stat,
M
Megvii Engine Team 已提交
379 380
             py::list& inputs, py::list& outputs, py::list& params) {
              std::vector<uint8_t> buf;
381 382 383 384 385 386 387 388
              ser::GraphDumpFormat format;
              if (dump_format.has_value()) {
                  format = dump_format.value();
              } else {
                  format = {};
              }
              auto dumper = ser::GraphDumper::make(
                      ser::OutputFile::make_vector_proxy(&buf), format);
M
Megvii Engine Team 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

              ser::GraphDumper::DumpConfig config{
                      keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};

              ser::GraphDumper::DumpResult rst;
              if (metadata)
                  rst = dumper->dump(symvars, config, *metadata);
              else
                  rst = dumper->dump(symvars, config);

              for (auto i : rst.inputs) {
                  inputs.append(py::cast(i));
              }
              for (auto i : rst.outputs) {
                  outputs.append(py::cast(i));
              }
              for (auto i : rst.params) {
                  params.append(py::cast(i));
              }
              auto rst_stat = std::vector{
                      rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                      static_cast<size_t>(rst.content_hash)};
              for (auto i : rst_stat) {
                  stat.append(py::cast(i));
              }
              return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
          });

    m.def("load_graph",
          [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
              auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
              auto format = ser::GraphLoader::identify_graph_dump_format(*file);
              auto loader = ser::GraphLoader::make(std::move(file), format.val());
              ser::GraphLoader::LoadConfig config;
              auto rst = loader->load(config);
              for (auto i : rst.output_var_map) {
                  output_var_map.append(py::make_tuple(i.first, i.second.node()));
              }
              for (auto i : rst.output_var_list) {
                  output_var_list.append(i.node());
              }
              std::unordered_map<HostTensorND*, const std::string*> tensor2name;
              for (const auto& pair : rst.tensor_map) {
                  tensor2name[pair.second.get()] = &pair.first;
              }
              auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
                  if (!opr->same_type<opr::Host2DeviceCopy>())
                      return;
                  auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
                  auto it = tensor2name.find(h2d.host_data().get());
                  mgb_throw_if(
                          it == tensor2name.end(), GraphError,
                          "unbound Host2DeviceCopy in loaded graph");
                  h2d.output(0)->name(*it->second);
              };
              cg::DepOprIter iter{cb};
              for (const auto& var : rst.output_var_list) {
                  iter.add(var);
              }
              auto ret = py::tuple(2);
              ret[0] = py::cast(rst.graph);
              ret[1] = py::cast(rst.metadata);
              return ret;
          });
454

455 456
#define CURRENT_CLASS cg::ComputingGraph::Options

457
    // clang-format off
M
Megvii Engine Team 已提交
458 459
    auto PyComputingGraphOptions =
            py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                // DEF_READWRITE(opr_attribute)
                DEF_READWRITE(seq_opt)
                DEF_READWRITE(graph_opt)
                DEF_READWRITE(graph_opt_level)
                DEF_READWRITE(log_level)
                DEF_READWRITE(async_exec_level)
                DEF_READWRITE(force_dynamic_alloc)
                DEF_READWRITE(var_sanity_check_first_run)
                DEF_READWRITE(allocate_static_mem_after_graph_compile)
                DEF_READWRITE(fake_next_exec)
                DEF_READWRITE(enable_sublinear_memory_opt)
                DEF_READWRITE(enable_dtr_memory_opt)
                DEF_READWRITE(no_profiling_on_shape_change)
                DEF_READWRITE(enable_var_mem_defragment)
                DEF_READWRITE(enable_grad_var_static_reshape)
                DEF_READWRITE(enable_memory_swap)
                DEF_READWRITE(comp_node_seq_record_level)
                DEF_READWRITE(no_force_inplace)
                DEF_READWRITE(sublinear_mem_config)
                DEF_READWRITE(dtr_config)
                // DEF_READWRITE(eager_evaluation)
                // DEF_READWRITE(imperative_proxy_graph)
                // DEF_READWRITE(extra_vardeps)
                // DEF_READWRITE(user_data)
M
Megvii Engine Team 已提交
484
            ;
485
    // clang-format on
486 487 488 489 490

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
M
Megvii Engine Team 已提交
491 492
            DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
                    DEF_READWRITE(enable_seq_comp_node_opt);
493 494 495 496

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

497
    auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
M
Megvii Engine Team 已提交
498 499 500
            PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
            DEF_READWRITE(jit_config)
            DEF_READWRITE(tensorrt);
501 502

#undef CURRENT_CLASS
503
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
504

M
Megvii Engine Team 已提交
505 506 507
    py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
            PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
            DEF_READWRITE(fuse_reduce);
508 509

#undef CURRENT_CLASS
510 511
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

M
Megvii Engine Team 已提交
512 513 514 515
    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
            PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
            DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
                    DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
516

517 518 519 520
#undef CURRENT_CLASS

#define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig

M
Megvii Engine Team 已提交
521 522 523 524
    py::class_<cg::ComputingGraph::Options::DTRConfig>(
            PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
            DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
                    DEF_READWRITE(recomp_time_factor);
525

526
#undef CURRENT_CLASS
527 528
    auto common = rel_import("common", m, 1);

M
Megvii Engine Team 已提交
529 530 531 532 533 534 535 536
    common.def(
            "invoke_op",
            [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
               cg::ComputingGraph* graph) {
                cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
                return to_tuple(OpDef::apply_on_var_node(def, vinputs));
            },
            py::arg(), py::arg(), py::arg("graph") = py::none());
537

M
Megvii Engine Team 已提交
538 539
    auto input_callback = [](auto callback, const CompNode& comp_node,
                             const DType& dtype, const TensorShape& shape,
540
                             const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
541
                             cg::ComputingGraph* graph, bool use_static_shape) {
542 543 544 545 546 547 548 549
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
550 551 552
        auto soutputs = opr::InputCallback::make(
                *graph, std::move(callback), comp_node, dtype, shape, sinputs,
                use_static_shape);
553 554 555 556 557 558 559 560
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

M
Megvii Engine Team 已提交
561
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
M
Megvii Engine Team 已提交
562 563 564 565
        return opr::SharedDeviceTensor::make(
                       *graph, std::make_shared<DeviceTensorND>(data))
                .node();
    });
M
Megvii Engine Team 已提交
566

M
Megvii Engine Team 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    m.def(
            "make_const",
            [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    cn = CompNode::load(get_default_device());
                }
                OperatorNodeConfig config(cn);
                if (name) {
                    config.name(*name);
                }
                auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
                return opr::ImmutableTensor::make(*graph, hv, config).node();
            },
            py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());

    m.def(
            "make_h2d",
            [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    throw py::type_error("device must be valid");
                }
                if (!dtype.valid()) {
                    throw py::type_error("dtype must be valid");
                }
                OperatorNodeConfig config;
                if (name) {
                    config.name(*name);
                }
                return opr::Host2DeviceCopy::make(
                               graph, std::make_shared<HostTensorND>(cn, shape, dtype),
                               config)
                        .node();
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::none());

    m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
    m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
    m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());

    m.def(
            "input_callback",
            [input_callback](
                    std::function<DeviceTensorND(void)> callback,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                return input_callback(
                        [f = std::move(callback)]() {
                            py::gil_scoped_acquire _;
                            return f();
                        },
                        comp_node, dtype, shape, inputs, graph, use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);

    m.def(
            "input_callback",
            [input_callback](
                    std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                auto f = [p]() -> DeviceTensorND { return p->get(); };
                return input_callback(
                        std::move(f), comp_node, dtype, shape, inputs, graph,
                        use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);
642

643
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
M
Megvii Engine Team 已提交
644 645
                              std::shared_ptr<RendezvousBase> r = {},
                              bool borrow = false, bool prefer_host_value = false) {
646 647 648
        if (r) {
            mgb_assert(inputs.size());
            auto cg = inputs[0]->owner_graph();
M
Megvii Engine Team 已提交
649 650
            cg->options()
                    .user_data.get_user_data_or_create<WeakRendezvousArray>()
651 652
                    ->emplace_back(r);
        }
653 654 655 656 657
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
658 659
        opr::OutputCallback::Param param{
                std::move(callback), borrow, prefer_host_value};
660 661 662 663
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

M
Megvii Engine Team 已提交
664 665 666 667 668
    m.def("output_callback", [output_callback](
                                     std::function<void(DeviceTensorND)> callback,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [f = std::move(callback)](DeviceTensorND dv) {
            auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
669 670 671 672 673
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

M
Megvii Engine Team 已提交
674 675 676 677
    m.def("output_callback", [output_callback](
                                     std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
678
        return output_callback(std::move(f), std::move(inputs), p);
679 680
    });

M
Megvii Engine Team 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    m.def("value_output_callback",
          [output_callback](
                  std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
                  std::vector<cg::VarNode*> inputs) {
              auto f = [p](DeviceTensorND dv) {
                  HostNDWithEvent hv_with_event;
                  hv_with_event.first.copy_from(dv);
                  hv_with_event.second = dv.comp_node().create_event();
                  hv_with_event.second->record();
                  p->set(std::move(hv_with_event));
              };
              return output_callback(std::move(f), std::move(inputs), p, true, true);
          });

    m.def("attr_output_callback", [output_callback](
                                          std::shared_ptr<Rendezvous<TensorAttr>> p,
                                          std::vector<cg::VarNode*> inputs) {
698 699 700
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
701
        return output_callback(std::move(f), std::move(inputs), p, true);
702
    });
703 704 705 706 707 708 709 710

    m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
        auto&& graph = inputs[0]->owner_graph();
        VarNodeArray inps(inputs.begin(), inputs.end());
        cg::OperatorNodeConfig config;
        if (device.length() > 0) {
            config.comp_node(CompNode::load(device));
        }
M
Megvii Engine Team 已提交
711 712
        cg::OperatorNodeBase* opr =
                graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
713 714
        return opr;
    });
715
}