graph_rt.cpp 32.2 KB
Newer Older
1 2
#include "./graph_rt.h"

3 4 5 6
#include "./common.h"
#include "./helper.h"
#include "./ops.h"
#include "megbrain/gopt/inference.h"
7
#include "megbrain/graph/cg.h"
8
#include "megbrain/imperative.h"
9
#include "megbrain/imperative/opr_utility.h"
10 11
#include "megbrain/imperative/profiler_plugin.h"
#include "megbrain/opr/basic_arith.h"
12
#include "megbrain/opr/io.h"
13
#include "megbrain/opr/utility.h"
14
#include "megbrain/plugin/profiler.h"
15
#include "megbrain/serialization/serializer.h"
16 17 18 19 20

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
21
namespace ser = mgb::serialization;
22

23 24
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;
25
using _AlgoStrategy = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
26
using _SerializationMetadata = mgb::serialization::Metadata;
27
using _SerializationFormat = mgb::serialization::GraphDumpFormat;
28

29 30 31 32 33
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;

34 35 36 37 38 39 40 41
public:
    _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg)
            : m_comp_graph{cg}, m_profiler{m_comp_graph.get()} {}

    std::string _get_result() {
        auto json = m_profiler.to_json_full(m_comp_graph->current_comp_seq());
        return json->to_string();
    }
42
};
43

44 45
struct WeakRendezvousArray : public std::vector<std::weak_ptr<RendezvousBase>>,
                             public UserDataContainer::UserData {
46 47 48
    MGB_TYPEINFO_OBJ_DECL;
};
MGB_TYPEINFO_OBJ_IMPL(WeakRendezvousArray);
49
}  // namespace
50 51
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

52
template <typename T>
53 54
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
55 56 57 58 59 60 61 62 63 64 65
            .def(py::init([]() { return Rendezvous<T>::make(); }))
            .def("set", [](Rendezvous<T>& r, T v) { r.set(std::move(v)); })
            .def(
                    "get", [](Rendezvous<T>& r) { return r.get(); },
                    py::call_guard<py::gil_scoped_release>())
            .def("drop", &Rendezvous<T>::drop)
            .def("reset", &Rendezvous<T>::reset)
            .def("set_exception", [](Rendezvous<T>& r, std::string&& message) {
                r.set_exception(std::make_exception_ptr(
                        std::runtime_error(std::move(message))));
            });
66 67 68
}

using TensorAttr = LogicalTensorDesc;
69
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
70

71 72 73 74 75 76 77 78 79 80 81 82 83
std::vector<mgb::cg::VarNode*> _replace_vars(
        const std::vector<mgb::cg::VarNode*>& repl_src,
        const std::vector<mgb::cg::VarNode*>& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
    }
    SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_vars(symvars, varmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
84
    }
85 86
    return result;
}
87 88

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
89 90 91 92 93 94
std::vector<mgb::cg::VarNode*> _replace_oprs(
        const OperatorArray& repl_src, const OperatorArray& repl_dst,
        const std::vector<mgb::cg::VarNode*>& vars) {
    mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*> oprmap;
    for (size_t i = 0; i < repl_src.size(); ++i) {
        oprmap[repl_src[i]] = repl_dst[i];
95
    }
96 97 98 99 100 101 102 103
    const SymbolVarArray symvars(vars.begin(), vars.end());
    auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
    std::vector<mgb::cg::VarNode*> result;
    for (auto symvar : sym_result) {
        result.push_back(symvar.node());
    }
    return result;
}
104 105

void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
106 107 108
    auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
        if (opr->node_prop().attribute().priority == 0) {
            opr->node_prop().attribute().priority = opr->id();
109
        }
110 111 112 113 114
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (const auto& var : dest_vars) {
        dep_iter.add(SymbolVar(var));
    }
115 116
}

117 118
py::object Py_Varnode = py::none();

119
void init_graph_rt(py::module m) {
120 121
    static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{
            std::make_unique<mgb::OprFootprint>()};
122

123 124
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

125 126
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

127 128
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    Py_Varnode =
            py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
                    .def_property_readonly(
                            "owner", [](cg::VarNode* v) { return v->owner_opr(); })
                    .def_property_readonly(
                            "graph", [](cg::VarNode* v) { return v->owner_graph(); })
                    .def_property(
                            "name", py::overload_cast<>(&VarNode::name, py::const_),
                            py::overload_cast<std::string>(&VarNode::name))
                    .def_property_readonly(
                            "dtype", [](cg::VarNode* v) { return v->dtype(); })
                    .def_property_readonly(
                            "comp_node", [](cg::VarNode* v) { return v->comp_node(); })
                    .def_property_readonly(
                            "shape",
                            [](cg::VarNode* v) -> const TensorShape* {
                                auto&& mgr = v->owner_graph()->static_infer_manager();
                                return mgr.infer_shape_fallible(v);
                            })
                    .def_property_readonly(
                            "value",
                            [](cg::VarNode* v) -> py::object {
                                auto&& mgr = v->owner_graph()->static_infer_manager();
                                auto&& type = mgr.get_infer_type(v);
                                using InferType = cg::static_infer::InferType;
                                if (!(type.value &
                                      (InferType::CONST | InferType::RT_STATIC))) {
                                    return py::none();
                                }
                                auto* val = mgr.infer_value_fallible(v);
                                if (!val) {
                                    return py::none();
                                }
                                return py::cast(*val).attr("numpy")();
                            })
                    .def_property_readonly(
                            "id", [](cg::VarNode* v) { return (v->id()); })
                    .def("__repr__", [](cg::VarNode* v) { return "Var:" + v->name(); });
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(
            m, "OperatorNode")
            .def_property_readonly(
                    "graph",
                    [](cg::OperatorNodeBase* opr) { return opr->owner_graph(); })
            .def_property(
                    "name",
                    py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                    py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
            .def_property_readonly(
                    "inputs",
                    [](cg::OperatorNodeBase* opr) { return to_tuple(opr->input()); })
            .def_property_readonly(
                    "outputs",
                    [](cg::OperatorNodeBase* opr) {
                        return to_tuple(opr->usable_output());
                    })
            .def_property_readonly(
                    "id", [](cg::OperatorNodeBase* opr) { return opr->id(); })
            .def_property_readonly(
                    "params",
                    [](cg::OperatorNodeBase* opr) {
                        return _imperative_sm_opr_footprint_ptr->calc_footprint(opr)
                                .param->to_string();
                    })
            .def_property_readonly(
                    "type",
                    [](cg::OperatorNodeBase* opr) { return opr->dyn_typeinfo()->name; })
            .def("__repr__",
                 [](cg::OperatorNodeBase* opr) { return "Opr:" + opr->name(); })
            .def_property(
                    "priority",
                    [](cg::OperatorNodeBase* opr) {
                        return opr->node_prop().attribute().priority;
                    },
                    [](cg::OperatorNodeBase* opr, int priority) {
                        opr->node_prop().attribute().priority = priority;
                    });
206

207
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            .def("execute", &cg::AsyncExecutable::execute,
                 py::call_guard<py::gil_scoped_release>())
            .def("wait", &cg::AsyncExecutable::wait,
                 py::call_guard<py::gil_scoped_release>())
            .def("get_prev_exec_time", &cg::AsyncExecutable::get_prev_exec_time,
                 py::call_guard<py::gil_scoped_release>())
            .def("_to_json",
                 [](cg::AsyncExecutable* exec) {
                     py::call_guard<py::gil_scoped_release>();
                     // dump currently compiled computing graph for debugging
                     return exec->to_json()->to_string();
                 })
            // only used for exception handle
            .def_property_readonly(
                    "_all_rendezvous",
                    [](cg::AsyncExecutable* exec) {
                        auto ud =
                                exec->owner_graph()
                                        ->options()
                                        .user_data.get_user_data<WeakRendezvousArray>();
                        std::vector<std::shared_ptr<RendezvousBase>> ret;
                        if (ud.second) {
                            for (auto&& r : *ud.first[0]) {
                                if (auto p = r.lock()) {
                                    ret.emplace_back(std::move(p));
                                }
                            }
                        }
                        return ret;
                    })
            .def("get_static_memory_alloc_info",
                 &cg::AsyncExecutable::get_static_memory_alloc_info,
                 py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph =
            py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(
                    m, "ComputingGraph")
                    .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
                    .def("compile",
                         [](cg::ComputingGraph& graph,
                            const std::vector<cg::VarNode*>& dest_vars) {
                             mgb_assert(!dest_vars.empty());
                             cg::ComputingGraph::OutputSpec spec;
                             for (auto v : dest_vars) {
                                 spec.emplace_back(v, nullptr);
                             }
                             return graph.compile(spec);
                         })
256 257 258 259
                    .def("enable_weight_preprocess",
                         [](cg::ComputingGraph& graph) {
                             graph.options().graph_opt.enable_weight_preprocess();
                         })
260 261 262 263 264 265 266
                    .def_property_readonly(
                            "options",
                            py::overload_cast<>(&cg::ComputingGraph::options));

    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(
            m, "GraphProfiler")
            .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
267
                return std::make_shared<_CompGraphProfilerImpl>(graph);
268 269 270 271
            }))
            .def("get", [](_CompGraphProfilerImpl& profiler) {
                return profiler._get_result();
            });
272

273 274
    using interpreter::intl::ProfilerPlugin;
    py::class_<ProfilerPlugin, std::shared_ptr<ProfilerPlugin>>(m, "GraphProfiler2")
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            .def(py::init<cg::ComputingGraph*>());

    auto GraphOptimizeOptions =
            py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
                    .def(py::init())
                    .def("serialize", &_OptimizeForInferenceOptions::serialize)
                    .def_static(
                            "deserialize", &_OptimizeForInferenceOptions::deserialize)
                    .def_readwrite(
                            "f16_io_f32_comp",
                            &_OptimizeForInferenceOptions::f16_io_f32_comp)
                    .def_readwrite(
                            "f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
                    .def_readwrite(
                            "fuse_conv_bias_nonlinearity",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
                    .def_readwrite(
                            "fuse_conv_bias_with_z",
                            &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
                    .def_readwrite(
                            "fuse_preprocess",
                            &_OptimizeForInferenceOptions::fuse_preprocess)
                    .def_readwrite(
                            "layout_transform",
299 300 301
                            &_OptimizeForInferenceOptions::layout_transform)
                    .def_readwrite(
                            "fuse_grain", &_OptimizeForInferenceOptions::fuse_grain);
302 303

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
304 305 306 307 308 309 310 311 312 313 314
            .value("DEFAULT", _LayoutTransform::DEFAULT)
            .value("NCHW4", _LayoutTransform::NCHW4)
            .value("NHWCD4", _LayoutTransform::NHWCD4)
            .value("NCHW88", _LayoutTransform::NCHW88)
            .value("NCHW44", _LayoutTransform::NCHW44)
            .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
            .value("NCHW32", _LayoutTransform::NCHW32)
            .value("CHWN4", _LayoutTransform::CHWN4)
            .value("NCHW64", _LayoutTransform::NCHW64)
            .export_values();

315 316
    py::enum_<_SerializationFormat>(m, "SerializationFormat")
            .value("FBS", _SerializationFormat::FLATBUFFERS)
317
            .value("FBS_V2", _SerializationFormat::FLATBUFFERS_V2)
318 319
            .export_values();

320 321 322 323 324 325 326 327 328 329 330 331 332 333
    m.def("optimize_for_inference",
          [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
              auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
              VarNodeArray vars;
              for (auto& si : res_symvars)
                  vars.push_back(si.node());
              return vars;
          });

    m.def("modify_opr_algo_strategy_inplace",
          [](const VarNodeArray& dest_vars, const _AlgoStrategy& strategy) {
              mgb::gopt::modify_opr_algo_strategy_inplace(dest_vars, strategy);
          });
334

335 336
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
337
        auto on_opr = [&](cg::OperatorNodeBase* opr) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

353
        auto to_json = [](const std::unordered_set<const char*>& v) {
354 355 356
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
357
            for (auto&& i : vs)
358 359 360 361 362
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
363 364 365 366 367
                                          {"opr_types", to_json(opr_types)},
                                          {"dtypes", to_json(dtype_names)},
                                          {"elemwise_modes", to_json(elemwise_modes)},
                                  })
                ->to_string();
368 369
    });

370
    py::class_<_SerializationMetadata>(m, "SerializationMetadata")
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
            .def(py::init())
            .def_property(
                    "user_info",
                    [](const _SerializationMetadata& meta) {
                        return py::bytes(meta.get_user_info());
                    },
                    &_SerializationMetadata::set_user_info)
            .def_readonly(
                    "optimized_for_inference",
                    &_SerializationMetadata::optimized_for_inference)
            .def_property(
                    "optimize_options", &_SerializationMetadata::get_optimize_options,
                    &_SerializationMetadata::set_optimize_options)
            .def_readwrite("graph_modified", &_SerializationMetadata::graph_modified)
            .def_readwrite("is_valid", &_SerializationMetadata::is_valid);

    m.def("dump_graph",
          [](const std::vector<VarNode*>& dest_vars, int keep_var_name,
             bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
390 391 392 393
             bool no_change_graph, std::optional<_SerializationMetadata> metadata,
             std::optional<_SerializationFormat> dump_format,
             std::optional<int> model_version, py::list& stat, py::list& inputs,
             py::list& outputs, py::list& params) {
394
              std::vector<uint8_t> buf;
395
              ser::GraphDumpFormat format = ser::GraphDumpFormat::FLATBUFFERS_V2;
396
              int version = 2;
397 398 399
              if (dump_format.has_value()) {
                  format = dump_format.value();
              }
400 401 402
              if (model_version.has_value()) {
                  version = model_version.value();
              }
403
              auto dumper = ser::GraphDumper::make(
404
                      ser::OutputFile::make_vector_proxy(&buf), format, version);
405 406 407 408
              SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

              ser::GraphDumper::DumpConfig config{
                      keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};
409
              config.no_change_graph = no_change_graph;
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

              ser::GraphDumper::DumpResult rst;
              if (metadata)
                  rst = dumper->dump(symvars, config, *metadata);
              else
                  rst = dumper->dump(symvars, config);

              for (auto i : rst.inputs) {
                  inputs.append(py::cast(i));
              }
              for (auto i : rst.outputs) {
                  outputs.append(py::cast(i));
              }
              for (auto i : rst.params) {
                  params.append(py::cast(i));
              }
              auto rst_stat = std::vector{
                      rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                      static_cast<size_t>(rst.content_hash)};
              for (auto i : rst_stat) {
                  stat.append(py::cast(i));
              }
              return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
          });

    m.def("load_graph",
          [](std::string& buf, py::list& output_var_map, py::list& output_var_list) {
              auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
              auto format = ser::GraphLoader::identify_graph_dump_format(*file);
              auto loader = ser::GraphLoader::make(std::move(file), format.val());
              ser::GraphLoader::LoadConfig config;
              auto rst = loader->load(config);
              for (auto i : rst.output_var_map) {
                  output_var_map.append(py::make_tuple(i.first, i.second.node()));
              }
              for (auto i : rst.output_var_list) {
                  output_var_list.append(i.node());
              }
              std::unordered_map<HostTensorND*, const std::string*> tensor2name;
              for (const auto& pair : rst.tensor_map) {
                  tensor2name[pair.second.get()] = &pair.first;
              }
              auto cb = [&tensor2name, graph = rst.graph](cg::OperatorNodeBase* opr) {
                  if (!opr->same_type<opr::Host2DeviceCopy>())
                      return;
                  auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
                  auto it = tensor2name.find(h2d.host_data().get());
                  mgb_throw_if(
                          it == tensor2name.end(), GraphError,
                          "unbound Host2DeviceCopy in loaded graph");
                  h2d.output(0)->name(*it->second);
              };
              cg::DepOprIter iter{cb};
              for (const auto& var : rst.output_var_list) {
                  iter.add(var);
              }
              auto ret = py::tuple(2);
              ret[0] = py::cast(rst.graph);
              ret[1] = py::cast(rst.metadata);
              return ret;
          });
471

472 473
#define CURRENT_CLASS cg::ComputingGraph::Options

474
    // clang-format off
475 476
    auto PyComputingGraphOptions =
            py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
                // DEF_READWRITE(opr_attribute)
                DEF_READWRITE(seq_opt)
                DEF_READWRITE(graph_opt)
                DEF_READWRITE(graph_opt_level)
                DEF_READWRITE(log_level)
                DEF_READWRITE(async_exec_level)
                DEF_READWRITE(force_dynamic_alloc)
                DEF_READWRITE(var_sanity_check_first_run)
                DEF_READWRITE(allocate_static_mem_after_graph_compile)
                DEF_READWRITE(fake_next_exec)
                DEF_READWRITE(enable_sublinear_memory_opt)
                DEF_READWRITE(enable_dtr_memory_opt)
                DEF_READWRITE(no_profiling_on_shape_change)
                DEF_READWRITE(enable_var_mem_defragment)
                DEF_READWRITE(enable_grad_var_static_reshape)
                DEF_READWRITE(enable_memory_swap)
                DEF_READWRITE(comp_node_seq_record_level)
                DEF_READWRITE(no_force_inplace)
                DEF_READWRITE(sublinear_mem_config)
                DEF_READWRITE(dtr_config)
                // DEF_READWRITE(eager_evaluation)
                // DEF_READWRITE(imperative_proxy_graph)
                // DEF_READWRITE(extra_vardeps)
                // DEF_READWRITE(user_data)
501
            ;
502
    // clang-format on
503 504 505 506 507

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
508 509
            DEF_READWRITE(enable_mem_plan_opt) DEF_READWRITE(enable_mem_reuse_alloc)
                    DEF_READWRITE(enable_seq_comp_node_opt);
510 511 512 513

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

514
    auto PyGraphOpt = py::class_<cg::ComputingGraph::Options::GraphOpt>(
515 516 517
            PyComputingGraphOptions, "GraphOpt") DEF_READWRITE(jit)
            DEF_READWRITE(jit_config)
            DEF_READWRITE(tensorrt);
518 519

#undef CURRENT_CLASS
520
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt::JITConfig
521

522 523 524
    py::class_<cg::ComputingGraph::Options::GraphOpt::JITConfig>(
            PyGraphOpt, "JITConfig") DEF_READWRITE(fuse_dimshuffle)
            DEF_READWRITE(fuse_reduce);
525 526

#undef CURRENT_CLASS
527 528
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

529 530 531 532
    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(
            PyComputingGraphOptions, "SublinearMemConfig") DEF_READWRITE(thresh_nr_try)
            DEF_READWRITE(genetic_nr_iter) DEF_READWRITE(genetic_pool_size)
                    DEF_READWRITE(lb_memory_mb) DEF_READWRITE(num_worker);
533

534 535 536 537
#undef CURRENT_CLASS

#define CURRENT_CLASS cg::ComputingGraph::Options::DTRConfig

538 539 540 541
    py::class_<cg::ComputingGraph::Options::DTRConfig>(
            PyComputingGraphOptions, "DTRConfig") DEF_READWRITE(eviction_threshold)
            DEF_READWRITE(evictee_minimum_size) DEF_READWRITE(recomp_memory_factor)
                    DEF_READWRITE(recomp_time_factor);
542

543
#undef CURRENT_CLASS
544 545
    auto common = rel_import("common", m, 1);

546 547 548 549 550 551 552 553
    common.def(
            "invoke_op",
            [](const OpDef& def, const std::vector<cg::VarNode*> inputs,
               cg::ComputingGraph* graph) {
                cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
                return to_tuple(OpDef::apply_on_var_node(def, vinputs));
            },
            py::arg(), py::arg(), py::arg("graph") = py::none());
554

555 556
    auto input_callback = [](auto callback, const CompNode& comp_node,
                             const DType& dtype, const TensorShape& shape,
557
                             const std::vector<cg::VarNode*>& inputs,
558
                             cg::ComputingGraph* graph, bool use_static_shape) {
559 560 561 562 563 564 565 566
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
567 568 569
        auto soutputs = opr::InputCallback::make(
                *graph, std::move(callback), comp_node, dtype, shape, sinputs,
                use_static_shape);
570 571 572 573 574 575 576 577
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

578
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
579 580 581 582
        return opr::SharedDeviceTensor::make(
                       *graph, std::make_shared<DeviceTensorND>(data))
                .node();
    });
583

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    m.def(
            "make_const",
            [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    cn = CompNode::load(get_default_device());
                }
                OperatorNodeConfig config(cn);
                if (name) {
                    config.name(*name);
                }
                auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
                return opr::ImmutableTensor::make(*graph, hv, config).node();
            },
            py::arg(), py::arg(), py::arg(), py::arg(), py::arg() = py::none());

    m.def(
            "make_h2d",
            [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape,
               std::optional<std::string> name) {
                if (!cn.valid()) {
                    throw py::type_error("device must be valid");
                }
                if (!dtype.valid()) {
                    throw py::type_error("dtype must be valid");
                }
                OperatorNodeConfig config;
                if (name) {
                    config.name(*name);
                }
                return opr::Host2DeviceCopy::make(
                               graph, std::make_shared<HostTensorND>(cn, shape, dtype),
                               config)
                        .node();
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::none());

    m.def("_replace_vars", &_replace_vars, py::arg(), py::arg(), py::arg());
    m.def("_replace_oprs", &_replace_oprs, py::arg(), py::arg(), py::arg());
    m.def("_set_priority_to_id", &_set_priority_to_id, py::arg());

    m.def(
            "input_callback",
            [input_callback](
                    std::function<DeviceTensorND(void)> callback,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                return input_callback(
                        [f = std::move(callback)]() {
                            py::gil_scoped_acquire _;
                            return f();
                        },
                        comp_node, dtype, shape, inputs, graph, use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);

    m.def(
            "input_callback",
            [input_callback](
                    std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                    const CompNode& comp_node, const DType& dtype,
                    const TensorShape& shape, const std::vector<cg::VarNode*>& inputs,
                    cg::ComputingGraph* graph, bool use_static_shape) {
                auto f = [p]() -> DeviceTensorND { return p->get(); };
                return input_callback(
                        std::move(f), comp_node, dtype, shape, inputs, graph,
                        use_static_shape);
            },
            py::arg(), py::arg(), py::arg(), py::arg() = py::none(),
            py::arg() = py::tuple(), py::arg("graph") = py::none(),
            py::arg("use_static_shape") = false);
659

660
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs,
661 662
                              std::shared_ptr<RendezvousBase> r = {},
                              bool borrow = false, bool prefer_host_value = false) {
663 664 665
        if (r) {
            mgb_assert(inputs.size());
            auto cg = inputs[0]->owner_graph();
666 667
            cg->options()
                    .user_data.get_user_data_or_create<WeakRendezvousArray>()
668 669
                    ->emplace_back(r);
        }
670 671 672 673 674
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
675 676
        opr::OutputCallback::Param param{
                std::move(callback), borrow, prefer_host_value};
677 678 679 680
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

681 682 683 684 685
    m.def("output_callback", [output_callback](
                                     std::function<void(DeviceTensorND)> callback,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [f = std::move(callback)](DeviceTensorND dv) {
            auto task = [f = std::move(f), dv = std::move(dv)]() { f(dv); };
686 687 688 689 690
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

691 692 693 694
    m.def("output_callback", [output_callback](
                                     std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                     std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) { p->set(std::move(dv)); };
695
        return output_callback(std::move(f), std::move(inputs), p);
696 697
    });

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    m.def("value_output_callback",
          [output_callback](
                  std::shared_ptr<Rendezvous<HostNDWithEvent>> p,
                  std::vector<cg::VarNode*> inputs) {
              auto f = [p](DeviceTensorND dv) {
                  HostNDWithEvent hv_with_event;
                  hv_with_event.first.copy_from(dv);
                  hv_with_event.second = dv.comp_node().create_event();
                  hv_with_event.second->record();
                  p->set(std::move(hv_with_event));
              };
              return output_callback(std::move(f), std::move(inputs), p, true, true);
          });

    m.def("attr_output_callback", [output_callback](
                                          std::shared_ptr<Rendezvous<TensorAttr>> p,
                                          std::vector<cg::VarNode*> inputs) {
715 716 717
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
718
        return output_callback(std::move(f), std::move(inputs), p, true);
719
    });
720 721 722 723 724 725 726 727

    m.def("virtual_dep", [](std::vector<cg::VarNode*> inputs, std::string device) {
        auto&& graph = inputs[0]->owner_graph();
        VarNodeArray inps(inputs.begin(), inputs.end());
        cg::OperatorNodeConfig config;
        if (device.length() > 0) {
            config.comp_node(CompNode::load(device));
        }
728 729
        cg::OperatorNodeBase* opr =
                graph->insert_opr(std::make_unique<mgb::opr::VirtualDep>(inps, config));
730 731
        return opr;
    });
732
}
新手
引导
客服 返回
顶部