graph_rt.cpp 22.5 KB
Newer Older
M
Megvii Engine Team 已提交
1 2 3 4 5 6 7 8 9 10 11
/**
 * \file imperative/python/src/graph_rt.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "./graph_rt.h"

14
#include "megbrain/graph/cg.h"
15
#include "megbrain/serialization/serializer.h"
16
#include "megbrain/imperative/opr_utility.h"
M
Megvii Engine Team 已提交
17
#include "megbrain/opr/io.h"
18 19 20
#include "megbrain/opr/basic_arith.h"
#include "megbrain/imperative.h"
#include "./helper.h"
21
#include "megbrain/plugin/profiler.h"
22
#include "./common.h"
23 24
#include "megbrain/gopt/inference.h"

25 26 27 28 29

namespace py = pybind11;

using namespace mgb;
using namespace imperative;
30
namespace ser = mgb::serialization;
31

32 33 34
using _OptimizeForInferenceOptions = mgb::gopt::OptimizeForInferenceOptions;
using _LayoutTransform = _OptimizeForInferenceOptions::LayoutTransform;

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
namespace {
class _CompGraphProfilerImpl {
    std::shared_ptr<ComputingGraph> m_comp_graph;
    GraphProfiler m_profiler;
    public:
        _CompGraphProfilerImpl(std::shared_ptr<ComputingGraph> cg):
            m_comp_graph{cg},
            m_profiler{m_comp_graph.get()}
        {
        }

        std::string _get_result() {
            auto json = m_profiler.to_json_full(
                    m_comp_graph->current_comp_seq());
            return json->to_string();
        }
};
}
53 54 55 56 57 58 59 60
#define DEF_READWRITE(name) .def_readwrite(#name, &CURRENT_CLASS::name)

template<typename T>
auto def_rendezvous(py::object m, const char* name) {
    return py::class_<Rendezvous<T>, std::shared_ptr<Rendezvous<T>>>(m, name)
        .def(py::init([](){return std::make_shared<Rendezvous<T>>();}))
        .def("set", [](Rendezvous<T>& r, T v) {r.set(std::move(v));})
        .def("get", [](Rendezvous<T>& r) {return r.get();}, py::call_guard<py::gil_scoped_release>())
M
Megvii Engine Team 已提交
61
        .def("drop", &Rendezvous<T>::drop)
62 63 64 65
        .def("reset", &Rendezvous<T>::reset);
}

using TensorAttr = LogicalTensorDesc;
M
Megvii Engine Team 已提交
66
using HostNDWithEvent = std::pair<HostTensorND, std::shared_ptr<CompNode::Event>>;
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
std::vector<mgb::cg::VarNode*>  _replace_vars(const std::vector<mgb::cg::VarNode*>& repl_src,
                                 const std::vector<mgb::cg::VarNode*>& repl_dst,
                                 const std::vector<mgb::cg::VarNode*>& vars) {
        mgb::ThinHashMap<SymbolVar, SymbolVar> varmap;
        for (size_t i = 0; i < repl_src.size(); ++i) {
            varmap[SymbolVar(repl_src[i])] = SymbolVar(repl_dst[i]);
        }
        SymbolVarArray symvars(vars.begin(), vars.end());
        auto sym_result = mgb::cg::replace_vars(symvars, varmap);
        std::vector<mgb::cg::VarNode*> result;
        for (auto symvar : sym_result){
            result.push_back(symvar.node());
        }
        return result;
    }

typedef std::vector<mgb::cg::OperatorNodeBase*> OperatorArray;
std::vector<mgb::cg::VarNode*> _replace_oprs(const OperatorArray& repl_src,
                                 const OperatorArray& repl_dst,
                                 const std::vector<mgb::cg::VarNode*>& vars) {
        mgb::ThinHashMap<mgb::cg::OperatorNodeBase*, mgb::cg::OperatorNodeBase*>
                oprmap;
        for (size_t i = 0; i < repl_src.size(); ++i) {
            oprmap[repl_src[i]] = repl_dst[i];
        }
        const SymbolVarArray symvars(vars.begin(), vars.end());
        auto sym_result = mgb::cg::replace_oprs(symvars, oprmap);
        std::vector<mgb::cg::VarNode*> result;
        for (auto symvar : sym_result){
            result.push_back(symvar.node());
        }
        return result;
    }



void _set_priority_to_id(const std::vector<mgb::cg::VarNode*>& dest_vars) {
        auto on_opr = [](mgb::cg::OperatorNodeBase* opr) {
            if (opr->node_prop().attribute().priority == 0) {
                opr->node_prop().attribute().priority = opr->id();
            }
        };
        mgb::cg::DepOprIter dep_iter{on_opr};
        for (const auto& var : dest_vars) {
            dep_iter.add(SymbolVar(var));
        }
}



118
void init_graph_rt(py::module m) {
119 120 121

   static const std::unique_ptr<mgb::OprFootprint> _imperative_sm_opr_footprint_ptr{std::make_unique<mgb::OprFootprint>()};

122 123
    def_rendezvous<DeviceTensorND>(m, "DeviceTensorNDRendezvous");

M
Megvii Engine Team 已提交
124 125
    def_rendezvous<HostNDWithEvent>(m, "HostTensorNDRendezvous");

126 127 128 129 130
    def_rendezvous<TensorAttr>(m, "TensorAttrRendezvous");

    py::class_<cg::VarNode, GraphNodePtr<cg::VarNode>>(m, "VarNode")
        .def_property_readonly("owner", [](cg::VarNode* v) {return v->owner_opr();})
        .def_property_readonly("graph", [](cg::VarNode* v) {return v->owner_graph();})
131 132
        .def_property("name", py::overload_cast<>(&VarNode::name, py::const_),
                      py::overload_cast<std::string>(&VarNode::name))
133
        .def_property_readonly("dtype", [](cg::VarNode* v) {return v->dtype();})
M
Megvii Engine Team 已提交
134 135 136 137 138 139 140 141 142
        .def_property_readonly("comp_node", [](cg::VarNode* v) {return v->comp_node();})
        .def_property_readonly("shape", [](cg::VarNode* v) -> const TensorShape* {
                auto&& mgr = v->owner_graph()->static_infer_manager();
                auto&& type = mgr.get_infer_type(v);
                using InferType = cg::static_infer::InferType;
                if (!(type.shape & (InferType::CONST | InferType::RT_STATIC))) {
                    return nullptr;
                }
                return mgr.infer_shape_fallible(v);
143 144 145 146 147 148 149 150 151 152 153 154 155
            })
        .def_property_readonly("value", [](cg::VarNode* v) -> py::object {
                auto&& mgr = v->owner_graph()->static_infer_manager();
                auto&& type = mgr.get_infer_type(v);
                using InferType = cg::static_infer::InferType;
                if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                    return py::none();
                }
                auto* val = mgr.infer_value_fallible(v);
                if (!val) {
                    return py::none();
                }
                return py::cast(*val).attr("numpy")();
156 157 158
            })
        .def_property_readonly("id",[](cg::VarNode* v){
            return (v->id());
159 160 161
        })
        .def("__repr__", [](cg::VarNode* v) {
            return "Var:" + v->name();
162
        });
163 164 165

    py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode")
        .def_property_readonly("graph", [](cg::OperatorNodeBase* opr) {return opr->owner_graph();})
166 167
        .def_property("name", py::overload_cast<>(&cg::OperatorNodeBase::name, py::const_),
                      py::overload_cast<std::string>(&cg::OperatorNodeBase::name))
168 169 170 171
        .def_property_readonly("inputs", [](cg::OperatorNodeBase* opr) {
                return to_tuple(opr->input());
            })
        .def_property_readonly("outputs", [](cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
172
                return to_tuple(opr->usable_output());
173 174 175 176 177 178 179 180 181
            })
        .def_property_readonly("id",[](cg::OperatorNodeBase* opr){
            return opr->id();
        })
        .def_property_readonly("params",[](cg::OperatorNodeBase* opr){
            return _imperative_sm_opr_footprint_ptr->calc_footprint(opr).param->to_string();
        })
        .def_property_readonly("type",[](cg::OperatorNodeBase* opr){
            return opr->dyn_typeinfo()->name;
182 183 184
        })
        .def("__repr__", [](cg::OperatorNodeBase* opr){
            return "Opr:" + opr->name();
185 186
        });

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    py::class_<cg::AsyncExecutable>(m, "AsyncExecutable")
        .def("execute", &cg::AsyncExecutable::execute, py::call_guard<py::gil_scoped_release>())
        .def("wait", &cg::AsyncExecutable::wait, py::call_guard<py::gil_scoped_release>());

    auto PyComputingGraph = py::class_<cg::ComputingGraph, std::shared_ptr<cg::ComputingGraph>>(m, "ComputingGraph")
        .def(py::init(py::overload_cast<>(&cg::ComputingGraph::make)))
        .def("compile", [](cg::ComputingGraph& graph, const std::vector<cg::VarNode*>& dest_vars) {
                mgb_assert(!dest_vars.empty());
                cg::ComputingGraph::OutputSpec spec;
                for (auto v : dest_vars) {
                    spec.emplace_back(v, nullptr);
                }
                return graph.compile(spec);
            })
        .def_property_readonly("options", py::overload_cast<>(&cg::ComputingGraph::options));

203 204 205 206 207 208
    py::class_<_CompGraphProfilerImpl, std::shared_ptr<_CompGraphProfilerImpl>>(m, "GraphProfiler")
        .def(py::init([](std::shared_ptr<ComputingGraph> graph) {
                return std::make_shared<_CompGraphProfilerImpl>(graph);
                }))
        .def("get", [](_CompGraphProfilerImpl& profiler) { return profiler._get_result(); });

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    auto GraphOptimizeOptions = py::class_<_OptimizeForInferenceOptions>(m, "GraphOptimizeOptions")
        .def(py::init())
        .def_readwrite("f16_io_f32_comp", &_OptimizeForInferenceOptions::f16_io_f32_comp)
        .def_readwrite("f16_io_comp", &_OptimizeForInferenceOptions::f16_io_comp)
        .def_readwrite("fuse_conv_bias_nonlinearity", &_OptimizeForInferenceOptions::fuse_conv_bias_nonlinearity)
        .def_readwrite("fuse_conv_bias_with_z", &_OptimizeForInferenceOptions::fuse_conv_bias_with_z)
        .def_readwrite("layout_transform", &_OptimizeForInferenceOptions::layout_transform)
        ;

    py::enum_<_LayoutTransform>(GraphOptimizeOptions, "LayoutTransform")
        .value("DEFAULT", _LayoutTransform::DEFAULT)
        .value("NCHW4", _LayoutTransform::NCHW4)
        .value("NHWCD4", _LayoutTransform::NHWCD4)
        .value("NCHW88", _LayoutTransform::NCHW88)
        .value("NCHW44", _LayoutTransform::NCHW44)
        .value("NCHW44_DOT", _LayoutTransform::NCHW44_DOT)
        .value("NCHW32", _LayoutTransform::NCHW32)
        .value("CHWN4", _LayoutTransform::CHWN4)
        .export_values()
        ;

    m.def("optimize_for_inference", [](const VarNodeArray& dest_vars, const _OptimizeForInferenceOptions& opt) {
        SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
        auto res_symvars = mgb::gopt::optimize_for_inference(symvars, opt);
        VarNodeArray vars;
        for (auto& si: res_symvars)
            vars.push_back(si.node());
        return vars;
    });

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    m.def("get_info_for_strip", [](const std::vector<VarNode*>& dest_vars) {
        std::unordered_set<const char*> opr_types, dtype_names, elemwise_modes;
        auto on_opr = [&](cg::OperatorNodeBase *opr) {
            if (ser::GraphDumper::should_remove_in_dump(opr))
                return;
            opr_types.insert(opr->dyn_typeinfo()->name);
            for (auto i : opr->output())
                dtype_names.insert(i->dtype().name());
            if (opr->same_type<opr::Elemwise>()) {
                auto mode = opr->cast_final<opr::Elemwise>().param().mode;
                elemwise_modes.insert(
                        megdnn::Elemwise::ModeTrait::from_mode(mode).name);
            }
        };
        cg::DepOprIter opr_iter{on_opr};
        for (auto i : dest_vars)
            opr_iter.add(i->owner_opr());

        auto to_json = [](const std::unordered_set<const char*> &v) {
            std::vector<std::string> vs(v.begin(), v.end());
            std::sort(vs.begin(), vs.end());
            auto ret = json::Array::make();
            for (auto &&i : vs)
                ret->add(json::String::make(i));
            return ret;
        };

        return json::Object::make({
            {"opr_types", to_json(opr_types)},
            {"dtypes", to_json(dtype_names)},
            {"elemwise_modes", to_json(elemwise_modes)},
270
        })->to_string();
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    });

    m.def("dump_graph", [](
        const std::vector<VarNode*>& dest_vars,
        int keep_var_name,
        bool keep_param_name,
        bool keep_opr_priority,
        py::list& stat,
        py::list& inputs,
        py::list& outputs,
        py::list& params
    ) {
        std::vector<uint8_t> buf;
        auto dumper = ser::GraphDumper::make(ser::OutputFile::make_vector_proxy(&buf));
        SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());

        ser::GraphDumper::DumpConfig config{keep_var_name, keep_param_name,
                                       keep_opr_priority};

        auto rst = dumper->dump(symvars, config);
        for (auto i : rst.inputs) {
            inputs.append(py::cast(i));
        }
        for (auto i : rst.outputs) {
            outputs.append(py::cast(i));
        }
        for (auto i : rst.params) {
            params.append(py::cast(i));
        }
300 301 302
        auto rst_stat =
                std::vector{rst.nr_opr, rst.tot_bytes, rst.tensor_value_bytes,
                            static_cast<size_t>(rst.content_hash)};
303 304 305 306 307
        for (auto i : rst_stat) {
            stat.append(py::cast(i));
        }
        return py::bytes(reinterpret_cast<const char*>(&buf[0]), buf.size());
    });
308

309 310 311 312 313 314 315 316 317
    m.def("load_graph", [](
        std::string& buf,
        py::list& output_var_map,
        py::list& output_var_list
    ) {
        auto file = ser::InputFile::make_mem_proxy(buf.c_str(), buf.length());
        auto format = ser::GraphLoader::identify_graph_dump_format(*file);
        auto loader = ser::GraphLoader::make(std::move(file), format.val());
        ser::GraphLoader::LoadConfig config;
318
        auto rst = loader->load(config);
319 320
        for (auto i : rst.output_var_map) {
            output_var_map.append(py::make_tuple(i.first, i.second.node()));
321
        }
322 323
        for (auto i : rst.output_var_list) {
            output_var_list.append(i.node());
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        }
        std::unordered_map<HostTensorND*, const std::string*> tensor2name;
        for (const auto& pair : rst.tensor_map) {
            tensor2name[pair.second.get()] = &pair.first;
        }
        auto cb = [&tensor2name, graph=rst.graph](cg::OperatorNodeBase* opr) {
            if (!opr->same_type<opr::Host2DeviceCopy>())
                return;
            auto& h2d = opr->cast_final_safe<opr::Host2DeviceCopy>();
            auto it = tensor2name.find(h2d.host_data().get());
            mgb_throw_if(it == tensor2name.end(), GraphError,
                        "unbound Host2DeviceCopy in loaded graph");
            h2d.output(0)->name(*it->second);
        };
        cg::DepOprIter iter{cb};
339 340
        for (const auto& var : rst.output_var_list) {
            iter.add(var);
341 342 343 344 345
        }
        return rst.graph;

    });

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#define CURRENT_CLASS cg::ComputingGraph::Options

    auto PyComputingGraphOptions = py::class_<cg::ComputingGraph::Options>(PyComputingGraph, "Options")
        // DEF_READWRITE(opr_attribute)
        DEF_READWRITE(seq_opt)
        DEF_READWRITE(graph_opt)
        DEF_READWRITE(graph_opt_level)
        DEF_READWRITE(log_level)
        DEF_READWRITE(async_exec_level)
        DEF_READWRITE(force_dynamic_alloc)
        DEF_READWRITE(var_sanity_check_first_run)
        DEF_READWRITE(allocate_static_mem_after_graph_compile)
        DEF_READWRITE(fake_next_exec)
        DEF_READWRITE(enable_sublinear_memory_opt)
        DEF_READWRITE(no_profiling_on_shape_change)
        DEF_READWRITE(enable_var_mem_defragment)
        DEF_READWRITE(enable_grad_var_static_reshape)
        DEF_READWRITE(enable_memory_swap)
        DEF_READWRITE(comp_node_seq_record_level)
365
        DEF_READWRITE(no_force_inplace)
366
        DEF_READWRITE(sublinear_mem_config)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        // DEF_READWRITE(eager_evaluation)
        // DEF_READWRITE(imperative_proxy_graph)
        // DEF_READWRITE(extra_vardeps)
        // DEF_READWRITE(user_data)
        ;

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::SeqOpt

    py::class_<cg::ComputingGraph::Options::SeqOpt>(PyComputingGraphOptions, "SeqOpt")
        DEF_READWRITE(enable_mem_plan_opt)
        DEF_READWRITE(enable_mem_reuse_alloc)
        DEF_READWRITE(enable_seq_comp_node_opt);

#undef CURRENT_CLASS
#define CURRENT_CLASS cg::ComputingGraph::Options::GraphOpt

    py::class_<cg::ComputingGraph::Options::GraphOpt>(PyComputingGraphOptions, "GraphOpt")
        DEF_READWRITE(jit)
        DEF_READWRITE(tensorrt);

#undef CURRENT_CLASS

390 391 392 393 394 395 396 397 398 399
#define CURRENT_CLASS cg::ComputingGraph::Options::SublinearMemConfig

    py::class_<cg::ComputingGraph::Options::SublinearMemConfig>(PyComputingGraphOptions, "SublinearMemConfig")
        DEF_READWRITE(thresh_nr_try)
        DEF_READWRITE(genetic_nr_iter)
        DEF_READWRITE(genetic_pool_size)
        DEF_READWRITE(lb_memory)
        DEF_READWRITE(num_worker);

#undef CURRENT_CLASS
400 401 402 403 404
    auto common = rel_import("common", m, 1);

    common.def("invoke_op", [](const OpDef& def, const std::vector<cg::VarNode*> inputs, cg::ComputingGraph* graph) {
            cg::VarNodeArray vinputs(inputs.begin(), inputs.end());
            auto opr = OpDef::apply_on_var_node(def, vinputs);
M
Megvii Engine Team 已提交
405
            auto outputs = opr->usable_output();
406 407 408 409 410 411 412
            return to_tuple(outputs);
        },
        py::arg(), py::arg(), py::arg("graph") = py::none());

    auto input_callback = [](auto callback,
                             const CompNode& comp_node,
                             const DType& dtype,
M
Megvii Engine Team 已提交
413
                             const TensorShape& shape,
414 415 416 417 418 419 420 421 422 423
                             const std::vector<cg::VarNode*>& inputs,
                             cg::ComputingGraph* graph) {
        if (!graph) {
            graph = inputs[0]->owner_graph();
        }
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
M
Megvii Engine Team 已提交
424
        auto soutputs = opr::InputCallback::make(*graph, std::move(callback), comp_node, dtype, shape, sinputs);
425 426 427 428 429 430 431 432
        std::vector<VarNode*> outputs;
        outputs.reserve(soutputs.size());
        for (auto i : soutputs) {
            outputs.push_back(i.node());
        }
        return outputs;
    };

M
Megvii Engine Team 已提交
433 434 435 436 437 438
    m.def("make_shared", [](cg::ComputingGraph* graph, const DeviceTensorND& data) {
            return opr::SharedDeviceTensor::make(*graph, std::make_shared<DeviceTensorND>(data)).node();
        });

    m.def("make_const", [](cg::ComputingGraph* graph, py::array data, CompNode cn, DType dtype) {
            if (!cn.valid()) {
439
                cn = CompNode::load(get_default_device());
M
Megvii Engine Team 已提交
440 441
            }
            auto hv = npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype);
442
            return opr::ImmutableTensor::make(*graph, hv, OperatorNodeConfig(cn)).node();
M
Megvii Engine Team 已提交
443 444
        });

445
    m.def("make_h2d", [](cg::ComputingGraph& graph, CompNode cn, DType dtype, TensorShape shape, std::optional<std::string> name) {
446 447 448 449 450 451 452 453 454 455
            if (!cn.valid()) {
                throw py::type_error("device must be valid");
            }
            if (!dtype.valid()) {
                throw py::type_error("dtype must be valid");
            }
            OperatorNodeConfig config;
            if (name) {
                config.name(*name);
            }
456 457
            return opr::Host2DeviceCopy::make(graph, std::make_shared<HostTensorND>(cn, shape, dtype), config).node();
        }, py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::none());
458

459 460 461 462
    m.def("_replace_vars", &_replace_vars,py::arg(),py::arg(),py::arg());
    m.def("_replace_oprs", &_replace_oprs,py::arg(),py::arg(),py::arg());
    m.def("_set_priority_to_id",&_set_priority_to_id,py::arg());

463 464 465
    m.def("input_callback", [input_callback](std::function<DeviceTensorND(void)> callback,
                                             const CompNode& comp_node,
                                             const DType& dtype,
M
Megvii Engine Team 已提交
466
                                             const TensorShape& shape,
467 468
                                             const std::vector<cg::VarNode*>& inputs,
                                             cg::ComputingGraph* graph) {
M
Megvii Engine Team 已提交
469
            return input_callback([f=std::move(callback)](){py::gil_scoped_acquire _; return f();}, comp_node, dtype, shape, inputs, graph);
470
        },
M
Megvii Engine Team 已提交
471
        py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
472 473 474 475

    m.def("input_callback", [input_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p,
                                             const CompNode& comp_node,
                                             const DType& dtype,
M
Megvii Engine Team 已提交
476
                                             const TensorShape& shape,
477 478 479 480 481
                                             const std::vector<cg::VarNode*>& inputs,
                                             cg::ComputingGraph* graph) {
            auto f = [p]() -> DeviceTensorND {
                return p->get();
            };
M
Megvii Engine Team 已提交
482
            return input_callback(std::move(f), comp_node, dtype, shape, inputs, graph);
483
        },
M
Megvii Engine Team 已提交
484
        py::arg(), py::arg(), py::arg(), py::arg() = py::none(), py::arg() = py::tuple(), py::arg("graph") = py::none());
485

486
    auto output_callback = [](auto callback, const std::vector<cg::VarNode*>& inputs, bool borrow = false, bool prefer_host_value = false) {
487 488 489 490 491
        SymbolVarArray sinputs;
        for (auto i : inputs) {
            sinputs.emplace_back(i);
        }
        static_assert(!std::is_reference<decltype(callback)>::value);
492
        opr::OutputCallback::Param param{std::move(callback), borrow, prefer_host_value};
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        auto output = opr::OutputCallback::make(std::move(param), sinputs);
        return output.node();
    };

    m.def("output_callback", [output_callback](std::function<void(DeviceTensorND)> callback, std::vector<cg::VarNode*> inputs) {
        auto f = [f=std::move(callback)](DeviceTensorND dv) {
            auto task = [f=std::move(f), dv=std::move(dv)]() {
                f(dv);
            };
            py_task_q.add_task(std::move(task));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

    m.def("output_callback", [output_callback](std::shared_ptr<Rendezvous<DeviceTensorND>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(std::move(dv));
        };
        return output_callback(std::move(f), std::move(inputs));
    });

M
Megvii Engine Team 已提交
514 515 516 517 518 519 520 521
    m.def("value_output_callback", [output_callback](std::shared_ptr<Rendezvous<HostNDWithEvent>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            HostNDWithEvent hv_with_event;
            hv_with_event.first.copy_from(dv);
            hv_with_event.second = dv.comp_node().create_event();
            hv_with_event.second->record();
            p->set(std::move(hv_with_event));
        };
522
        return output_callback(std::move(f), std::move(inputs), true, true);
M
Megvii Engine Team 已提交
523 524
    });

525 526 527 528 529 530 531
    m.def("attr_output_callback", [output_callback](std::shared_ptr<Rendezvous<TensorAttr>> p, std::vector<cg::VarNode*> inputs) {
        auto f = [p](DeviceTensorND dv) {
            p->set(TensorAttr{TensorLayout{dv.shape(), dv.dtype()}, dv.comp_node()});
        };
        return output_callback(std::move(f), std::move(inputs), true);
    });
}