提交 eef0308b 编写于 作者: M Megvii Engine Team

feat(serialization): add no_change_graph and version param whem dump model

GitOrigin-RevId: 65064452c939ecd7313fe25d608f2b23e0778a77
上级 4ab5f970
......@@ -367,10 +367,12 @@ def dump_graph(
keep_opr_name: bool = False,
keep_param_name: bool = False,
keep_opr_priority: bool = False,
no_change_graph: bool = False,
strip_info_file=None,
append_json=False,
metadata=None,
dump_format=None
dump_format=None,
model_version: int = 2
) -> Tuple[bytes, CompGraphDumpResult]:
r"""serialize the computing graph of `output_vars` and get byte result.
......@@ -386,12 +388,22 @@ def dump_graph(
keep_param_name: whether to keep param names, so param values can be
easily manipulated after loading model
keep_opr_priority: whether to keep priority setting for operators
no_change_graph: whether to change the compute graph when dump, for
model compatibility, some operators will convert to its compatible
format in this version.
* if set False, some operators maybe convert to other operator for
compatibility, all operators will ensure compatibility.
* if set True, no operator will change in the graph when dump.
strip_info_file: a string for path or a file handler. if is not None,
then the dump information for code strip would be written to ``strip_info_file``
append_json: will be check when `strip_info_file` is not None. if set
true, the information for code strip will be append to strip_info_file.
if set false, will rewrite strip_info_file
dump_format: using different dump formats.
model_version: the model version of "FBS_V2", begin with version 2, this
works only when dump format is "FBS_V2".
Note:
The underlying C++ API only accepts a var list. If a dict is given,
......@@ -441,8 +453,10 @@ def dump_graph(
keep_opr_name,
keep_param_name,
keep_opr_priority,
no_change_graph,
metadata,
dump_format,
model_version,
stat,
inputs,
outputs,
......
......@@ -549,6 +549,7 @@ class trace:
keep_opr_name: bool = False,
keep_param_name: bool = False,
keep_opr_priority: bool = False,
no_change_graph: bool = False,
strip_info_file=None,
append_json=False,
optimize_for_inference=True,
......@@ -562,6 +563,7 @@ class trace:
resize_input=False,
input_transform=None,
dump_format: str = None,
model_version: int = 2,
**kwargs
):
r"""Serializes trace to file system.
......@@ -583,6 +585,14 @@ class trace:
keep_param_name: whether to keep param names, so param values can be
easily manipulated after loading model
keep_opr_priority: whether to keep priority setting for operators
no_change_graph: whether to change the compute graph when dump, for
model compatibility, some operators will convert to its compatible
format in this version.
* if set False, some operators maybe convert to other operator for
compatibility, all operators will ensure compatibility.
* if set True, no operator will change in the graph when dump.
strip_info_file: a string for path or a file handler. if is not None,
then the dump information for code strip would be written to ``strip_info_file``
append_json: will be check when `strip_info_file` is not None. if set
......@@ -616,6 +626,9 @@ class trace:
dump_format: using different dump formats. the open source MegEngine
defaults to the FBS_V2 format, there are two format FBS_V2 and FBS to choose,
internal MegEngine have an other choice of internal proprietary formats
model_version: the model version of FBS_V2, begin with version 2, this
works only when dump format is FBS_V2.
Keyword Arguments:
......@@ -762,10 +775,12 @@ class trace:
keep_opr_name=keep_opr_name,
keep_param_name=keep_param_name,
keep_opr_priority=keep_opr_priority,
no_change_graph=no_change_graph,
strip_info_file=strip_info_file,
append_json=append_json,
metadata=metadata,
dump_format=dump_format,
model_version=model_version,
)
file.write(dump_content)
......
......@@ -381,20 +381,26 @@ void init_graph_rt(py::module m) {
m.def("dump_graph",
[](const std::vector<VarNode*>& dest_vars, int keep_var_name,
bool keep_opr_name, bool keep_param_name, bool keep_opr_priority,
std::optional<_SerializationMetadata> metadata,
std::optional<_SerializationFormat> dump_format, py::list& stat,
py::list& inputs, py::list& outputs, py::list& params) {
bool no_change_graph, std::optional<_SerializationMetadata> metadata,
std::optional<_SerializationFormat> dump_format,
std::optional<int> model_version, py::list& stat, py::list& inputs,
py::list& outputs, py::list& params) {
std::vector<uint8_t> buf;
ser::GraphDumpFormat format = ser::GraphDumpFormat::FLATBUFFERS_V2;
int version = 2;
if (dump_format.has_value()) {
format = dump_format.value();
}
if (model_version.has_value()) {
version = model_version.value();
}
auto dumper = ser::GraphDumper::make(
ser::OutputFile::make_vector_proxy(&buf), format);
ser::OutputFile::make_vector_proxy(&buf), format, version);
SymbolVarArray symvars(dest_vars.begin(), dest_vars.end());
ser::GraphDumper::DumpConfig config{
keep_var_name, keep_param_name, keep_opr_priority, keep_opr_name};
config.no_change_graph = no_change_graph;
ser::GraphDumper::DumpResult rst;
if (metadata)
......
......@@ -21,6 +21,13 @@ struct OprLoadDumpImplV2<opr::Softmax, 1> {
ctx.write_param<PersisParam>(opr.cast_final_safe<Opr>().param());
}
/** This converter is just a example for Operator serialization compatible,
* Just in this situation: when optimize the softmax Operator by
* fusing the elemwise and reduce to a big Operator, but the whole softmax
* Operator can't be recognized by old version, in order to model
* compatibility the softmax Operator should be covert to elemwise and
* reduce Operators when dump the model
*/
static cg::OperatorNodeBase* replace_opr(
cg::OperatorNodeBase* opr, const VarNodeArray& inputs) {
int32_t axis = opr->cast_final_safe<Opr>().param().axis;
......@@ -196,9 +203,11 @@ namespace opr {
#define SERGE_OPR_V2_NO_CONVERTER(_cls, _arity) \
MGB_SEREG_OPR_V2(_cls, _arity, nullptr, VERSION_2, CURRENT_VERSION);
SERGE_OPR_V2_CONVERTER(
//! this is just a example for Operator compatibility
/*SERGE_OPR_V2_CONVERTER(
Softmax, 1,
(mgb::serialization::OprLoadDumpImplV2<opr::Softmax, 1>::replace_opr));
(mgb::serialization::OprLoadDumpImplV2<opr::Softmax, 1>::replace_opr));*/
SERGE_OPR_V2_NO_CONVERTER(Softmax, 1)
SERGE_OPR_V2_NO_CONVERTER(ConvBiasForward, 0)
SERGE_OPR_V2_NO_CONVERTER(BatchConvBiasForward, 0);
......
......@@ -59,7 +59,8 @@ std::unique_ptr<GraphLoader> make_fbs_loader(std::unique_ptr<InputFile> file);
std::unique_ptr<GraphDumper> make_fbs_dumper(std::unique_ptr<OutputFile> file);
std::unique_ptr<GraphLoader> make_fbs_v2_loader(std::unique_ptr<InputFile> file);
std::unique_ptr<GraphDumper> make_fbs_v2_dumper(std::unique_ptr<OutputFile> file);
std::unique_ptr<GraphDumper> make_fbs_v2_dumper(
std::unique_ptr<OutputFile> file, int version);
bool is_fbs_file(InputFile& file);
bool is_fbs_v2_file(InputFile& file);
......@@ -72,7 +73,7 @@ bool GraphDumper::should_remove_in_dump(cg::OperatorNodeBase* opr) {
}
std::unique_ptr<GraphDumper> GraphDumper::make(
std::unique_ptr<OutputFile> file, GraphDumpFormat format) {
std::unique_ptr<OutputFile> file, GraphDumpFormat format, int version) {
switch (format) {
case GraphDumpFormat::FLATBUFFERS:
#if MGB_ENABLE_FBS_SERIALIZATION
......@@ -81,7 +82,7 @@ std::unique_ptr<GraphDumper> GraphDumper::make(
MGB_FALLTHRU
case GraphDumpFormat::FLATBUFFERS_V2:
#if MGB_ENABLE_FBS_SERIALIZATION
return make_fbs_v2_dumper(std::move(file));
return make_fbs_v2_dumper(std::move(file), version);
#endif
MGB_FALLTHRU
default:
......
......@@ -194,7 +194,7 @@ void GraphDumperOSSV2::init_oprs_to_dump(const SymbolVarArray& endpoints) {
}
} else {
auto registry = OprRegistryV2::versioned_find_by_typeinfo(
opr->dyn_typeinfo(), CURRENT_VERSION);
opr->dyn_typeinfo(), m_version);
if (!registry || !registry->dumper) {
mgb_throw(
cg::OperatorNodeExcExtraInfo::ExcMaker{opr}.make<MegBrainError>,
......@@ -202,6 +202,9 @@ void GraphDumperOSSV2::init_oprs_to_dump(const SymbolVarArray& endpoints) {
"operator %s",
opr->dyn_typeinfo()->name);
}
mgb_assert(
registry->version <= m_version,
"The Operator version should less than model version");
m_oprs_to_dump.emplace_back(opr, registry);
}
};
......@@ -352,7 +355,10 @@ GraphDumper::DumpResult GraphDumperOSSV2::dump(
const Metadata& metadata) {
mgb_throw_if(output_vars.empty(), SerializationError, "Can't dump empty graph");
auto&& new_output_vars = converter_all_opr_to_compatiable(output_vars);
auto new_output_vars = output_vars;
if (!config.no_change_graph) {
new_output_vars = converter_all_opr_to_compatiable(output_vars);
}
auto begin_pos = m_file->tell();
m_config = config;
......@@ -416,6 +422,7 @@ GraphDumper::DumpResult GraphDumperOSSV2::dump(
fbs::v2::ModelBuilder model(m_builder);
model.add_mge_version(MGB_VERSION);
model.add_model_version(m_version);
model.add_oprs(fb_oprs);
model.add_middle_tensors(fb_mid_tensor);
model.add_output_vars_idx(fb_output_vars);
......@@ -694,10 +701,8 @@ void GraphLoaderOSSV2::OprLoadContextImpl::load_single_opr(
OprRegistryV2::versioned_find_by_id(type_id, opr_version);
mgb_throw_if(
!registry, SerializationError,
"failed to find opr with type %s , use python env "
"config.dump_registered_oprs() to get a dict that maps from "
"opr id to opr name",
fbopr->type()->str().c_str());
"failed to find opr with type %s and version %d.",
fbopr->type()->str().c_str(), opr_version);
// load inputs
VarNodeArray inputs;
......@@ -811,12 +816,19 @@ GraphLoader::LoadResult GraphLoaderOSSV2::load(const LoadConfig& config, bool re
m_model = fbs::v2::GetModel(m_model_buf.data());
m_mgb_version = m_model->mge_version();
m_model_version = m_model->model_version();
if (m_model->mge_version() > MGB_VERSION) {
mgb_log_warn(
"loading model from future runtime: version=%u "
"model_version=%u",
MGB_VERSION, m_model->mge_version());
}
if (m_model_version > CURRENT_VERSION) {
mgb_log_warn(
"The model dump in the future version %d, try to load it, maybe case "
"load error in %d version.",
m_model_version, CURRENT_VERSION);
}
if (m_shared_tensor_map.empty()) {
m_shared_tensor_map.resize(m_model->nr_shared_tensor());
......@@ -845,8 +857,9 @@ GraphLoader::LoadResult GraphLoaderOSSV2::load(const LoadConfig& config, bool re
return result;
}
std::unique_ptr<GraphDumper> make_fbs_v2_dumper(std::unique_ptr<OutputFile> file) {
return std::make_unique<GraphDumperOSSV2>(std::move(file));
std::unique_ptr<GraphDumper> make_fbs_v2_dumper(
std::unique_ptr<OutputFile> file, int version) {
return std::make_unique<GraphDumperOSSV2>(std::move(file), version);
}
std::unique_ptr<GraphLoader> make_fbs_v2_loader(std::unique_ptr<InputFile> file) {
......
......@@ -58,18 +58,25 @@ struct GraphDumpConfig {
//! names. this list record the mapping between output node and it's name
std::vector<std::pair<std::string, SymbolVar>> alias_name_map;
//! whether just to dump all the op with no change the graph, sometimes the
//! opr maybe not compatible, if false, some opr will converter to the compatibility
//! format and then dump
bool no_change_graph;
GraphDumpConfig(
int keep_var_name_ = 1, bool keep_param_name_ = false,
bool keep_opr_priority_ = false, bool keep_op_name_ = true,
const std::shared_ptr<UserDataContainer>& user_data_ =
std::make_shared<UserDataContainer>(),
const TensorValueDumper& tensor_value_dumper_ = {})
const TensorValueDumper& tensor_value_dumper_ = {},
bool no_change_graph_ = false)
: keep_var_name{keep_var_name_},
keep_param_name{keep_param_name_},
keep_opr_priority{keep_opr_priority_},
keep_op_name{keep_op_name_},
user_data{user_data_},
tensor_value_dumper{tensor_value_dumper_} {}
tensor_value_dumper{tensor_value_dumper_},
no_change_graph{no_change_graph_} {}
};
//! config for loading a whole graph; setup in GraphLoader
......
......@@ -15,6 +15,7 @@ namespace serialization {
class GraphDumperOSSV2 final : public GraphDumper, OprDumpContextFlatBuffers {
const std::unique_ptr<OutputFile> m_file;
int m_version;
flatbuffers::FlatBufferBuilder m_builder;
DumpConfig m_config;
......@@ -51,7 +52,8 @@ class GraphDumperOSSV2 final : public GraphDumper, OprDumpContextFlatBuffers {
flatbuffers::Offset<fbs::DType> build_dtype(DType dtype);
public:
GraphDumperOSSV2(std::unique_ptr<OutputFile> file) : m_file{std::move(file)} {}
GraphDumperOSSV2(std::unique_ptr<OutputFile> file, int version)
: m_file{std::move(file)}, m_version{version} {}
DumpResult dump(
const SymbolVarArray& output_vars, const DumpConfig& config = {},
......@@ -95,6 +97,7 @@ class GraphLoaderOSSV2 final : public GraphLoader {
const fbs::v2::Model* m_model;
SharedTensorIDMap m_shared_tensor_map;
uint32_t m_mgb_version = 0;
uint32_t m_model_version = CURRENT_VERSION;
bool m_model_loaded = false;
void verify();
......
......@@ -5,6 +5,7 @@
#include "megbrain/serialization/file.h"
#include "megbrain/serialization/load_dump_config.h"
#include "megbrain/serialization/metadata.h"
#include "megbrain/serialization/opr_load_dump.h"
namespace mgb {
namespace serialization {
......@@ -160,7 +161,8 @@ public:
};
MGE_WIN_DECLSPEC_FUC static std::unique_ptr<GraphDumper> make(
std::unique_ptr<OutputFile> file, GraphDumpFormat format = {});
std::unique_ptr<OutputFile> file, GraphDumpFormat format = {},
int version = VERSION_2);
virtual ~GraphDumper() = default;
......
......@@ -987,7 +987,9 @@ TEST(TestSerializer2, TestSoftMaxLoadDump) {
OutputFile::make_fs(fname.c_str()), GraphDumpFormat::FLATBUFFERS_V2);
auto rst = dumper->dump({x});
func->execute().wait();
ASSERT_EQ(rst.nr_opr, 6);
//! if convert to reduce and elemwise, nr_opr is 6
// ASSERT_EQ(rst.nr_opr, 6);
ASSERT_EQ(rst.nr_opr, 2);
ASSERT_EQ(rst.inputs.size(), 1);
ASSERT_EQ(rst.outputs.size(), 1);
ASSERT_EQ(rst.params.size(), 0);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册