tensor.cpp 36.3 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16
#include "megbrain/imperative/profiler.h"
17
#include "megbrain/opr/io.h"
18

19 20
#include "./tensor.h"
#include "./grad.h"
21
#include "./trace.h"
22 23
#include "./common.h"
#include "./numpy_dtypes.h"
24
#include "./graph_rt.h"
25
#include "./helper.h"
26 27 28

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
29
#include <range/v3/all.hpp>
30
#include <string>
31 32 33

#include <unordered_map>

34
namespace py = pybind11;
35
namespace views = ranges::views;
36 37 38

namespace mgb::imperative::python {

39
interpreter::Interpreter::Channel* interpreter_for_py;
40

41
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing;
42
PyObject *cpp_apply_backward_varnode;
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
std::shared_ptr<Tensor> make_const(imperative::TensorPtr value) {
    if (!(ApplyContext::global_enable & Tensor::Flags::TRACE)) {
        return std::make_shared<Tensor>(interpreter_for_py->put(value->dev_tensor()));
    }
    py::tuple tup(6);
    auto data = value->get_value();
    tup[0] = py::reinterpret_steal<py::array>(ndarray_from_tensor(data, npy::ShareType::MUST_SHARE));
    tup[1] = value->dtype();
    tup[2] = value->comp_node();
    tup[3] = true;
    tup[4] = false;
    tup[5] = py::none{};
    auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
    if (!py_ret) throw py::error_already_set();
    auto py_list = py::reinterpret_steal<py::list>(py_ret);
    auto* tensor_wrapper = TensorWrapper::try_cast(py_list[0].ptr());
    auto tensor = tensor_wrapper->m_tensor;
    return tensor_wrapper->m_tensor;
}

64 65 66
#define REGISTE_APPLY_FUNC(mode)            \
        void set_##mode(py::object pyf) {   \
            mode = pyf.ptr();               \
67 68 69 70 71 72 73 74
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

75 76
Tensor::flags_t ApplyContext::global_disable = 0;
Tensor::flags_t ApplyContext::global_enable = 0;
77

78 79
void set_tracing() { ApplyContext::global_enable |= Tensor::Flags::TRACE; }
void unset_tracing() { ApplyContext::global_enable &= ~Tensor::Flags::TRACE; }
80 81 82

bool skip_tracing = false;

83 84 85 86
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
87
    auto flags = ctx.flags & ~ApplyContext::global_disable;
88
    flags = flags | ApplyContext::global_enable;
89 90

    if (flags & Tensor::Flags::SCALAR) {
91 92 93
        // TODO: emulate scalar
    }

94
    if (flags & Tensor::Flags::GRAD) {
95 96 97
        return apply_grad(ctx);
    }

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

119
    if (flags & Tensor::Flags::TRACE) {
120
        return apply_trace(ctx);
121 122 123 124 125 126
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

127 128 129 130 131 132 133 134 135 136
        apply_result_t outputs;

        // fast copy without really applying
        if (ctx.op->same_type<FastpathCopy>()) {
            mgb_assert(ctx.nargs == 1);
            outputs.reserve(ctx.nargs);
            outputs.emplace_back(std::make_shared<Tensor>(ctx.args[0]->m_handle));
            return outputs;
        }

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
155 156 157 158
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
159 160
            return nullptr;
        }
161

162 163 164
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
165 166 167 168 169 170

        // check if pytype is Parameter(and all other python Tensor's derived class),
        // if yes, using it's tp_base(python Tensor)
        if (TensorWrapper::wrap_t::type().same_pytype(pytype->tp_base->tp_base)) {
            pytype = pytype->tp_base;
        }
171 172 173 174 175 176 177 178 179
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
180
        ctx.pytype = pytype;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        if (py::isinstance<PySymbolVar>(py::handle(args[0]))){
            SmallVector<cg::VarNode*> vinputs(nargs);
            for (size_t i = 0; i < nargs; ++i) {
                    vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node;   
            }
            auto op = ctx.op.get();
            auto rst = OpDef::apply_on_var_node(*op, vinputs);
            auto ret = pybind11::tuple(rst.size());
            auto typeobj = py::handle(args[0]).get_type();
            for (size_t i = 0; i<rst.size(); ++i) {
                ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic));
            }
            return ret.release().ptr();
        }
196 197

        for (size_t i = 0; i < nargs; ++i) {
198
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
199 200 201
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
202 203 204
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                return nullptr;
            }
        }

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
232
    if (auto* t = try_cast(tup[0].ptr())) {
233 234 235 236 237
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
256
        } else {
257
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
258 259
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
260
            }
261 262 263 264
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
265
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
266 267
            std::string name;
            if (tup[nargs - 1].ptr() != Py_None) name = tup[nargs - 1].cast<std::string>();
268 269

            // const op
270
            if (is_const && (ApplyContext::global_enable == Tensor::Flags::TRACE)) {
271
                auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
272 273 274
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
275 276 277 278 279 280
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
281
            {
282
                HostTensorND ret(cn);
283
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
284 285 286
            }

            m_tensor = std::make_shared<Tensor>(handle);
287
            m_tensor->user_custom_name = name;
288

289 290 291
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
292 293 294 295 296
        }
    }
}


297 298 299 300 301 302 303 304 305 306 307
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
308
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
309 310 311 312

#undef REGISTE_TENSORWRAPPER_FUNC


313 314
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
315 316 317 318 319
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
320 321
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
322 323 324 325 326 327 328
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
329 330 331 332 333 334 335 336
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


337 338 339 340 341 342 343 344 345 346 347 348 349
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME


350 351 352 353 354 355 356 357 358 359 360 361
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


362
PyObject* TensorWrapper::shape() {
363
    // if it's tracing compiled mode, get value from compiled_info 
364 365 366 367
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
368 369 370 371 372
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
373
    }
374 375

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
376 377
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
378
    }
379

380 381 382
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
383 384

    TensorShape shape;
385
    if (m_tensor->m_var) {      // get shape from m_var
386 387 388 389 390 391
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
392
    } else {
393
        py::gil_scoped_release _;
394 395 396
        shape = m_tensor->shape();
    }

397 398 399 400 401 402 403 404 405 406 407 408
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
409 410 411
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
412 413 414 415 416
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
417 418 419
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
420 421 422 423 424
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
425 426
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
427
        if (!np_val) throw py::error_already_set();
428 429 430
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
431
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
432 433 434
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
435 436 437
        }
        return np_val;
    }
438

439 440
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
441
    }
442

443 444 445 446 447
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
448
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
449 450 451 452
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
453
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
454 455
            return nullptr;
        }
456 457 458 459 460
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
461
    }
462 463 464 465
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
466
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
467 468 469 470
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
471

472 473 474 475 476 477 478
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

479 480 481 482
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
483
    Py_RETURN_NONE;
484 485
}

486
void TensorWrapper::reset(PyObject* tensor) {
487
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
488 489 490
    if (!t) {
        throw py::type_error("expect Tensor");
    }
491 492
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
493
    m_tensor = t->m_tensor;
494 495
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
496 497
}

498 499 500 501
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

502 503 504
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
505 506 507 508 509 510 511

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
512
    new_tensor->m_trace_info = m_tensor->m_trace_info;
513 514

    new_tensor->m_flags = m_tensor->m_flags;
515 516 517 518
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();
}

519
PyObject* TensorWrapper::_dev_tensor(){
520 521
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
522
        if (!dev_tensor) throw py::error_already_set();
523 524 525
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
526 527

        // set m_handle to make it a real tensor
528 529 530
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
531 532

        // compiled info is useless after m_handle is set
533 534
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
535 536

        return dev_tensor;
537 538 539
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
540
    }
541 542 543 544
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


561 562 563 564 565 566 567 568
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

569

570 571 572 573 574
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


575 576 577 578 579
void TensorWrapper::unsetscalar() {
    m_tensor->m_flags &= ~Tensor::Flags::SCALAR;
}


580 581 582 583 584 585 586 587 588 589 590
struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
591
    int _use_cnt() { return wptr.use_count(); }
592 593
};

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

620
// Returns the data type with sufficient size to hold all types of
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
666
    PyObject* tuple = nullptr;
667 668 669 670 671 672 673 674 675 676 677 678 679 680
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
681
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
682 683 684 685 686 687 688 689 690 691 692
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
693

694 695 696
            if (py::isinstance<PySymbolVar>(py::handle(handle))){
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
697 698 699 700 701 702
                auto && descr = npy::dtype_mgb2np_descr(type);
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
725
    Py_XDECREF(tuple);
726 727 728 729 730
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
731
    PyObject* tuple = nullptr;
732 733 734 735 736 737 738 739 740 741 742 743 744
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
745
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
746
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
747

748 749
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
750
            if (!valid) {
751 752 753 754
                cn = tw ? tw->m_tensor->comp_node()
                        : py::handle(handle)
                                     .cast<PySymbolVar*>()
                                     ->m_node->comp_node();
755 756
                valid = true;
            } else {
757 758 759 760
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
761 762
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
763 764
                                                   cn.to_string().c_str(),
                                                   cn1.to_string().c_str()));
765 766 767 768 769
                }
            }
        }
    }
    if (!valid) {
770
        return CompNode::load(get_default_device());
771
    }
772
    Py_XDECREF(tuple);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
805

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

824

825
void init_tensor(py::module m) {
826 827 828
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
829 830 831 832 833 834 835

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
836 837 838
        .def<&TensorWrapper::isscalar>("_isscalar")
        .def<&TensorWrapper::setscalar>("_setscalar")
        .def<&TensorWrapper::unsetscalar>("_unsetscalar")
839
        .def<&TensorWrapper::detach>("detach")
840 841 842 843
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
844
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
845
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
846
        .def_getset<&TensorWrapper::varnode>("_varnode")
847 848
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
849
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
850 851
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
852 853
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
854 855 856 857 858 859
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
860 861
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
            .def_property("var", [](PySymbolVar* v) { return v->m_node; },
                          [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
            .def_property_readonly(
                    "device",
                    [](PySymbolVar* v) { return v->m_node->comp_node(); })
            .def_property_readonly(
                    "graph",
                    [](PySymbolVar* v) { return v->m_node->owner_graph(); })
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
                        auto&& mgr = v->m_node->owner_graph()
                                             ->static_infer_manager();
                        return mgr.infer_shape_fallible(v->m_node);
                    })
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def("_setscalar",
                 [](PySymbolVar* v) { return v->is_scalar = true; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

889
    static PyMethodDef method_defs[] = {
890 891 892 893
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
894 895 896 897 898 899 900
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
901

902 903 904 905
    static constexpr auto sync_py_task_q = []{
        py_task_q.wait_all_task_finish();
    };

906
    m.def("set_option",
907
          [](std::string name, size_t value){ interpreter_for_py->set_option(name, value); });
908 909
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
910
    m.def("_set_swap_flag",
911
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
912
    m.def("_set_drop_flag",
913
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
914
    m.def("config_async_level",
915 916 917 918
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
919
    m.def("get_async_level",
920
          []() { return interpreter_for_py->get_option("async_level"); });
921
    m.def("set_buffer_length",
922 923 924 925 926 927 928 929 930
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
931 932 933 934 935
          [](imperative::Profiler::options_t options) {
              interpreter_for_py->sync();
              imperative::Profiler::load_options(std::move(options));
              imperative::Profiler::start_profile();
              interpreter_for_py->start_profile();
936
          }, py::call_guard<py::gil_scoped_release>());
937
    m.def("stop_profile",
938 939 940 941 942 943 944 945 946
          []() -> std::function<void(std::string, std::string)> {
              interpreter_for_py->stop_profile();
              interpreter_for_py->sync();
              imperative::Profiler::stop_profile();
              auto results = imperative::Profiler::collect();
              auto options = imperative::Profiler::get_options();
              return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){
                  imperative::Profiler::dump_profile(basename, format, results, options);
              };
947
          }, py::call_guard<py::gil_scoped_release>());
948 949 950
    m.def("sync",
          []() {
              interpreter_for_py->sync();
951
              sync_py_task_q();
952
          }, py::call_guard<py::gil_scoped_release>());
953 954 955 956
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
957
              sync_py_task_q();
958
          }, py::call_guard<py::gil_scoped_release>());
959 960 961 962
    m.def("close",
          []() {
              interpreter_for_py->close();
              sync_py_task_q();
963
          }, py::call_guard<py::gil_scoped_release>());
964

965 966
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
967 968
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
969 970 971
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
972 973
    m.def("backward", &GradKeyWrapper::backward);

974 975 976 977 978 979 980
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
981 982 983 984 985 986 987 988
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
989 990 991

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
992 993
}

994 995
#undef MGE_PY_INTERFACE

996
} // namespace mgb::imperative::python