tensor.cpp 37.6 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16
#include "megbrain/imperative/ops/autogen.h"
17
#include "megbrain/imperative/profiler.h"
18
#include "megbrain/opr/io.h"
19

20 21
#include "./tensor.h"
#include "./grad.h"
22
#include "./trace.h"
23 24
#include "./common.h"
#include "./numpy_dtypes.h"
25
#include "./graph_rt.h"
26
#include "./helper.h"
27 28 29

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
30
#include <range/v3/all.hpp>
31
#include <string>
32 33 34

#include <unordered_map>

35
namespace py = pybind11;
36
namespace views = ranges::views;
37 38 39

namespace mgb::imperative::python {

40
interpreter::Interpreter::Channel* interpreter_for_py;
41

42
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing;
43
PyObject *cpp_apply_backward_varnode;
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
std::shared_ptr<Tensor> make_const(imperative::TensorPtr value) {
    if (!(ApplyContext::global_enable & Tensor::Flags::TRACE)) {
        return std::make_shared<Tensor>(interpreter_for_py->put(value->dev_tensor()));
    }
    py::tuple tup(6);
    auto data = value->get_value();
    tup[0] = py::reinterpret_steal<py::array>(ndarray_from_tensor(data, npy::ShareType::MUST_SHARE));
    tup[1] = value->dtype();
    tup[2] = value->comp_node();
    tup[3] = true;
    tup[4] = false;
    tup[5] = py::none{};
    auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
    if (!py_ret) throw py::error_already_set();
    auto py_list = py::reinterpret_steal<py::list>(py_ret);
    auto* tensor_wrapper = TensorWrapper::try_cast(py_list[0].ptr());
    auto tensor = tensor_wrapper->m_tensor;
    return tensor_wrapper->m_tensor;
}

65 66 67
#define REGISTE_APPLY_FUNC(mode)            \
        void set_##mode(py::object pyf) {   \
            mode = pyf.ptr();               \
68 69 70 71 72 73 74 75
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

76 77
Tensor::flags_t ApplyContext::global_disable = 0;
Tensor::flags_t ApplyContext::global_enable = 0;
78

79 80
void set_tracing() { ApplyContext::global_enable |= Tensor::Flags::TRACE; }
void unset_tracing() { ApplyContext::global_enable &= ~Tensor::Flags::TRACE; }
81 82 83

bool skip_tracing = false;

84 85 86 87
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
88
    auto flags = ctx.flags & ~ApplyContext::global_disable;
89
    flags = flags | ApplyContext::global_enable;
90 91

    if (flags & Tensor::Flags::SCALAR) {
92 93 94
        // TODO: emulate scalar
    }

95
    if (flags & Tensor::Flags::GRAD) {
96 97 98
        return apply_grad(ctx);
    }

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

120
    if (flags & Tensor::Flags::TRACE) {
121
        return apply_trace(ctx);
122 123 124 125 126 127
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

128 129 130 131 132 133 134 135 136 137
        apply_result_t outputs;

        // fast copy without really applying
        if (ctx.op->same_type<FastpathCopy>()) {
            mgb_assert(ctx.nargs == 1);
            outputs.reserve(ctx.nargs);
            outputs.emplace_back(std::make_shared<Tensor>(ctx.args[0]->m_handle));
            return outputs;
        }

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
156 157 158 159
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
160 161
            return nullptr;
        }
162

163 164 165
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
166 167 168 169 170 171

        // check if pytype is Parameter(and all other python Tensor's derived class),
        // if yes, using it's tp_base(python Tensor)
        if (TensorWrapper::wrap_t::type().same_pytype(pytype->tp_base->tp_base)) {
            pytype = pytype->tp_base;
        }
172 173 174 175 176 177 178 179 180
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
181
        ctx.pytype = pytype;
182 183 184 185

        if (py::isinstance<PySymbolVar>(py::handle(args[0]))){
            SmallVector<cg::VarNode*> vinputs(nargs);
            for (size_t i = 0; i < nargs; ++i) {
186
                vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node;
187 188 189 190 191 192 193 194 195 196
            }
            auto op = ctx.op.get();
            auto rst = OpDef::apply_on_var_node(*op, vinputs);
            auto ret = pybind11::tuple(rst.size());
            auto typeobj = py::handle(args[0]).get_type();
            for (size_t i = 0; i<rst.size(); ++i) {
                ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic));
            }
            return ret.release().ptr();
        }
197 198

        for (size_t i = 0; i < nargs; ++i) {
199
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
200 201 202
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
203 204 205
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                return nullptr;
            }
        }

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
233
    if (auto* t = try_cast(tup[0].ptr())) {
234 235 236 237 238
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
257
        } else {
258
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
259 260
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
261
            }
262 263 264 265
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
266
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
267 268
            std::string name;
            if (tup[nargs - 1].ptr() != Py_None) name = tup[nargs - 1].cast<std::string>();
269 270

            // const op
271
            if (is_const && (ApplyContext::global_enable == Tensor::Flags::TRACE)) {
272
                auto py_ret = PyObject_Call(cpp_apply_const_with_tracing, tup.ptr(), nullptr);
273 274 275
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
276 277 278 279 280 281
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
282
            {
283
                HostTensorND ret(cn);
284
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
285 286 287
            }

            m_tensor = std::make_shared<Tensor>(handle);
288
            m_tensor->user_custom_name = name;
289

290 291 292
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
293 294 295 296 297
        }
    }
}


298 299 300 301 302 303 304 305 306 307 308
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
309
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
310 311 312 313

#undef REGISTE_TENSORWRAPPER_FUNC


314 315
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
316 317 318 319 320
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
321 322
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
323 324 325 326 327 328 329
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
330 331 332 333 334 335 336 337
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


338 339 340 341 342 343 344 345 346 347 348 349 350
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME


351 352 353 354 355 356 357 358 359 360 361 362
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


363
PyObject* TensorWrapper::shape() {
364
    // if it's tracing compiled mode, get value from compiled_info 
365 366 367 368
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
369 370 371 372 373
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
374
    }
375 376

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
377 378
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
379
    }
380

381 382 383
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
384 385

    TensorShape shape;
386
    if (m_tensor->m_var) {      // get shape from m_var
387
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
388 389 390 391 392
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.shape & (InferType::CONST | InferType::RT_STATIC))) {
            Py_RETURN_NONE;
        }
393 394 395 396 397
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
398
    } else {
399
        py::gil_scoped_release _;
400 401 402
        shape = m_tensor->shape();
    }

403 404 405 406 407 408 409 410 411 412 413 414
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
415 416 417
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
418 419 420 421 422
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
423 424 425
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
426 427 428 429 430
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
431 432
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
433
        if (!np_val) throw py::error_already_set();
434 435 436
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
437
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
438 439 440
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
441 442 443
        }
        return np_val;
    }
444

445 446
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
447
    }
448

449 450 451 452 453
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
454
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
455 456 457 458
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
459
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
460 461
            return nullptr;
        }
462 463 464 465 466
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
467
    }
468 469 470 471
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
472
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
473 474 475 476
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
477

478 479 480 481 482 483 484
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

485 486 487 488
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
489
    Py_RETURN_NONE;
490 491
}

492
void TensorWrapper::reset(PyObject* tensor) {
493
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
494 495 496
    if (!t) {
        throw py::type_error("expect Tensor");
    }
497 498
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
499
    m_tensor = t->m_tensor;
500 501
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
502 503
}

504 505 506 507
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

508 509 510
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
511 512 513 514 515 516 517

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
518
    new_tensor->m_trace_info = m_tensor->m_trace_info;
519 520

    new_tensor->m_flags = m_tensor->m_flags;
521 522 523 524
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();
}

525
PyObject* TensorWrapper::_dev_tensor(){
526 527
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
528
        if (!dev_tensor) throw py::error_already_set();
529 530 531
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
532 533

        // set m_handle to make it a real tensor
534 535 536
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
537 538

        // compiled info is useless after m_handle is set
539 540
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
541 542

        return dev_tensor;
543 544 545
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
546
    }
547 548 549 550
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


567 568 569 570 571 572 573 574
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

575

576 577 578 579 580
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


581 582 583 584 585
void TensorWrapper::unsetscalar() {
    m_tensor->m_flags &= ~Tensor::Flags::SCALAR;
}


586 587 588 589 590 591 592 593 594 595 596
struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
597
    int _use_cnt() { return wptr.use_count(); }
598 599
};

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

626
// Returns the data type with sufficient size to hold all types of
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
672
    PyObject* tuple = nullptr;
673 674 675 676 677 678 679 680 681 682 683 684 685 686
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
687
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
688 689 690 691 692 693 694 695 696 697 698
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
699

700 701 702
            if (py::isinstance<PySymbolVar>(py::handle(handle))){
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
703 704 705 706 707 708
                auto && descr = npy::dtype_mgb2np_descr(type);
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
731
    Py_XDECREF(tuple);
732 733 734 735 736
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
737
    PyObject* tuple = nullptr;
738 739 740 741 742 743 744 745 746 747 748 749 750
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
751
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
752
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
753

754 755
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
756
            if (!valid) {
757 758 759 760
                cn = tw ? tw->m_tensor->comp_node()
                        : py::handle(handle)
                                     .cast<PySymbolVar*>()
                                     ->m_node->comp_node();
761 762
                valid = true;
            } else {
763 764 765 766
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
767 768
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
769 770
                                                   cn.to_string().c_str(),
                                                   cn1.to_string().c_str()));
771 772 773 774 775
                }
            }
        }
    }
    if (!valid) {
776
        return CompNode::load(get_default_device());
777
    }
778
    Py_XDECREF(tuple);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

830

831
void init_tensor(py::module m) {
832 833 834
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
835 836 837 838 839 840 841

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
842 843 844
        .def<&TensorWrapper::isscalar>("_isscalar")
        .def<&TensorWrapper::setscalar>("_setscalar")
        .def<&TensorWrapper::unsetscalar>("_unsetscalar")
845
        .def<&TensorWrapper::detach>("detach")
846 847 848 849
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
850
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
851
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
852
        .def_getset<&TensorWrapper::varnode>("_varnode")
853 854
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
855
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
856 857
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
858 859
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
860 861 862 863 864 865
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
866 867
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
            .def_property("var", [](PySymbolVar* v) { return v->m_node; },
                          [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
            .def_property_readonly(
                    "device",
                    [](PySymbolVar* v) { return v->m_node->comp_node(); })
            .def_property_readonly(
                    "graph",
                    [](PySymbolVar* v) { return v->m_node->owner_graph(); })
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
                        auto&& mgr = v->m_node->owner_graph()
                                             ->static_infer_manager();
                        return mgr.infer_shape_fallible(v->m_node);
                    })
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            .def("numpy", [](PySymbolVar* v){
                auto&& mgr = v->m_node->owner_graph()->static_infer_manager();
                auto&& type = mgr.get_infer_type(v->m_node);
                using InferType = cg::static_infer::InferType;
                if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
                    throw py::value_error("value invalid!");
                }
                auto* val = mgr.infer_value_fallible(v->m_node);
                if (!val) {
                    throw py::value_error("value invalid!");
                }
                auto np_val = py::cast(*val).attr("numpy")();
                if (v->is_scalar) {
                    return py::object(py::array(np_val).squeeze());
                }
                return np_val; 

            })
905 906 907 908 909 910 911 912
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def("_setscalar",
                 [](PySymbolVar* v) { return v->is_scalar = true; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

913
    static PyMethodDef method_defs[] = {
914 915 916 917
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
918 919 920 921 922 923 924
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
925

926 927 928 929
    static constexpr auto sync_py_task_q = []{
        py_task_q.wait_all_task_finish();
    };

930
    m.def("set_option",
931
          [](std::string name, size_t value){ interpreter_for_py->set_option(name, value); });
932 933
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
934
    m.def("_set_swap_flag",
935
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
936
    m.def("_set_drop_flag",
937
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
938
    m.def("config_async_level",
939 940 941 942
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
943
    m.def("get_async_level",
944
          []() { return interpreter_for_py->get_option("async_level"); });
945
    m.def("set_buffer_length",
946 947 948 949 950 951 952 953 954
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
955 956 957 958 959
          [](imperative::Profiler::options_t options) {
              interpreter_for_py->sync();
              imperative::Profiler::load_options(std::move(options));
              imperative::Profiler::start_profile();
              interpreter_for_py->start_profile();
960
          }, py::call_guard<py::gil_scoped_release>());
961
    m.def("stop_profile",
962 963 964 965 966 967 968 969 970
          []() -> std::function<void(std::string, std::string)> {
              interpreter_for_py->stop_profile();
              interpreter_for_py->sync();
              imperative::Profiler::stop_profile();
              auto results = imperative::Profiler::collect();
              auto options = imperative::Profiler::get_options();
              return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){
                  imperative::Profiler::dump_profile(basename, format, results, options);
              };
971
          }, py::call_guard<py::gil_scoped_release>());
972 973 974
    m.def("sync",
          []() {
              interpreter_for_py->sync();
975
              sync_py_task_q();
976
          }, py::call_guard<py::gil_scoped_release>());
977 978 979 980
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
981
              sync_py_task_q();
982
          }, py::call_guard<py::gil_scoped_release>());
983 984 985 986
    m.def("close",
          []() {
              interpreter_for_py->close();
              sync_py_task_q();
987
          }, py::call_guard<py::gil_scoped_release>());
988

989 990
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
991 992
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
993
        .def_getset<&GradKeyWrapper::get_priority, &GradKeyWrapper::set_priority>("priority")
994 995 996
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
997 998
    m.def("backward", &GradKeyWrapper::backward);

999 1000 1001 1002 1003 1004 1005
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
1006 1007 1008 1009 1010 1011 1012 1013
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
1014 1015 1016

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
1017 1018 1019
    m.def("set_allow_higher_order_directive", [](bool value){
        GradKey::allow_higher_order_directive = value;
    });
1020 1021
}

1022 1023
#undef MGE_PY_INTERFACE

1024
} // namespace mgb::imperative::python