test_tensor.py 30.8 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
import os
3 4
import platform

5 6
import numpy as np
import pytest
7
from utils import get_var_value, make_tensor, opr_test
8 9

import megengine.functional as F
10
from megengine import Tensor
11
from megengine.core._trace_option import use_symbolic_shape
12
from megengine.core.tensor import megbrain_graph as G
13
from megengine.core.tensor.utils import astensor1d
14
from megengine.jit import trace
15
from megengine.utils.network import Network, set_symbolic_shape
16
from megengine.utils.network_node import VarNode
17 18 19


def test_eye():
20
    dtypes = [np.float32, np.bool]
21
    cases = [{"input": [10, 20]}, {"input": [30]}]
22 23 24 25 26 27 28 29 30 31 32
    for dtype in dtypes:
        for case in cases:
            np.testing.assert_allclose(
                F.eye(case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(*case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
33
                F.eye(Tensor(case["input"]), dtype=dtype).numpy(),
34 35
                np.eye(*case["input"]).astype(dtype),
            )
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
@pytest.mark.parametrize("is_varnode", [False, True])
def test_diag(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    shapes = [(10, 10), (6, 9), (8, 7), (8,)]
    cases = []
    for shp in shapes:
        cases.append({"input": [np.random.random(shp).astype("float32")]})

    for axis in range(-2, 3):

        def run(data):
            return F.diag(data, k=axis)

        opr_test(cases, run, ref_fn=lambda x: np.diag(x, axis), network=network)


58 59 60 61 62
def test_full():
    shape = (2, 3)
    values = [True, 4, 5.0]
    for value in values:
        np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value))
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        assert F.full(shape, value).dtype == Tensor(value).dtype


@pytest.mark.parametrize("is_varnode", [True, False])
def test_cumsum(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = Tensor([[1, 2, 3], [4, 5, 6]], np.int32)
    y = F.cumsum(x, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[1, 3, 6], [4, 9, 15]]).astype(np.int32)
    )
78 79


80 81 82 83 84 85 86
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

87 88 89 90 91 92 93 94 95 96 97
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
98
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
99

100 101 102 103 104 105 106 107
    x1 = Tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
    x2 = Tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
    y = F.concat([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(),
        np.array([[0, 1, 2, 6, 7, 8], [3, 4, 5, 9, 10, 11]]).astype(np.float32),
    )

108

109 110 111 112 113 114 115 116 117 118 119 120
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
121 122 123 124 125 126
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
127 128


129
@pytest.mark.parametrize("is_varnode", [True, False])
130
def test_concat_stack_device(is_varnode):
131 132 133 134 135
    if is_varnode:
        network = Network()
    else:
        network = None

136
    data1 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu0")
137
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
138
    data3 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu0")
139

140 141 142 143 144 145 146 147 148 149 150
    for func in [F.concat, F.stack]:
        out = F.concat([data1, data2], device="cpu1")
        assert str(out.device).split(":")[0] == "cpu1"
        out = F.concat([data1, data3])
        assert str(out.device).split(":")[0] == "cpu0"

        with pytest.raises(RuntimeError):
            try:
                out = F.concat([data1, data2])
            except:
                raise RuntimeError("inputs have different devices")
151 152


153 154 155 156 157 158 159
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

160 161 162 163 164 165 166 167 168 169
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

170 171 172 173
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

174 175 176 177 178 179 180 181 182 183 184 185 186 187
    x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3)))
    x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3)))
    y = F.stack([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32)
    )

    x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3)))
    x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3)))
    y = F.stack([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32)
    )

188 189 190 191 192 193 194 195 196
    x1 = Tensor(np.random.rand(600))
    x2 = F.broadcast_to(Tensor(np.array(3)), (600,))

    y = F.stack([x2, x1], axis=0)
    np.testing.assert_equal(y.numpy(), np.stack((x2.numpy(), x1.numpy()), axis=0))

    y = F.stack([x2, x2], axis=0)
    np.testing.assert_equal(y.numpy(), np.stack((x2.numpy(), x2.numpy()), axis=0))

197

198
@pytest.mark.parametrize("is_varnode", [True, False])
199
def test_split_basic(is_varnode):
200 201
    if is_varnode:
        network = Network()
202
        saved_symbolic_shape = set_symbolic_shape(False)
203 204
    else:
        network = None
205 206

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
207
    inp = make_tensor(data, network)
208 209 210

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
211 212 213

    np_out = np.split(data, [3, 5], axis=3)

214 215 216 217
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
218 219
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

220 221 222 223 224 225 226 227 228 229
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
230
        F.split(inp, [3, 2, 5], axis=3)
231 232
        assert False
    except ValueError as e:
233
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
234

235 236 237
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

238

239 240
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
241 242 243 244 245 246
    x = Tensor(np.random.random((10, 20)), dtype=np.float32)
    y = F.split(x, 3, axis=-1)
    z = F.split(x, [6, 17], axis=-1)
    assert str([i.numpy().shape for i in y]) == "[(10, 7), (10, 7), (10, 6)]"
    assert str([i.numpy().shape for i in z]) == "[(10, 6), (10, 11), (10, 3)]"

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
272
            out = fn(Tensor(case[0]), case[1], case[2])
273 274 275 276 277
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
def test_gather():
    x = Tensor([[1, 2], [3, 4], [5, 6],])
    index = Tensor([[0, 1], [1, 0], [1, 1]])
    y = F.gather(x, 1, index)
    np.testing.assert_equal(
        y.numpy(), np.array([[1, 2], [4, 3], [6, 6]]).astype(np.int32)
    )


def test_scatter():
    x = Tensor(np.zeros(shape=(3, 5), dtype=np.float32))
    source = Tensor(
        [
            [0.9935, 0.9465, 0.2256, 0.8926, 0.4396],
            [0.7723, 0.0718, 0.5939, 0.357, 0.4576],
        ]
    )
    index = Tensor([[0, 2, 0, 2, 1], [2, 0, 1, 1, 2]])
    y = F.scatter(x, -2, index, source)
    np.testing.assert_equal(
        y.numpy().round(decimals=4),
        np.array(
            [
                [0.9935, 0.0718, 0.2256, 0.0, 0.0],
                [0.0, 0.0, 0.5939, 0.357, 0.4396],
                [0.7723, 0.9465, 0.0, 0.8926, 0.4576],
            ]
        ).astype(np.float32),
    )


309 310 311 312 313 314 315
@pytest.mark.parametrize("is_varnode", [True, False])
def test_swapaxes(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

316
    x = Tensor(np.array([[1, 2, 3]], dtype=np.int32))
317 318 319 320
    y = F.swapaxes(x, 0, 1)
    np.testing.assert_equal(y.numpy(), np.array([[1], [2], [3]]).astype(np.int32))


321 322 323 324 325 326 327
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

328
    x = np.arange(6, dtype="float32")
329
    xx = make_tensor(x, network)
330 331 332 333 334
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
335
        (1, make_tensor(-1, network), 3),
336
        np.array([1, -1, 3], dtype="int32"),
337
        make_tensor([1, -1, 3], network),
338 339 340 341 342
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast_auto_infer(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.random.random((1, 2, 3)).astype(np.float32)
    xx = make_tensor(x, network)

    for shape in [
        (1, 2, 3),
        (1, None, 3),
    ]:
        yy = F.broadcast_to(xx, shape)
        np.testing.assert_equal(yy.numpy(), x)

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (1, -1, 3))

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (None, 1, 2, 3))

    F.broadcast_to(xx, (1, None, 2, 3))
367
    t = make_tensor(2, network)
368 369 370
    F.broadcast_to(xx, (t, None, 2, 3))


371 372 373 374
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
375
    data1 = Tensor(np.random.random(input1_shape).astype(np.float32))
376 377 378

    input2_shape = (10, 0)
    output2_shape = (0,)
379
    data2 = Tensor(np.random.random(input2_shape).astype(np.float32))
380 381 382

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
383
    data3 = Tensor(np.random.random(input3_shape).astype(np.float32))
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


413 414 415 416
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
417
        saved_symbolic_shape = set_symbolic_shape(False)
418 419 420 421 422 423 424 425 426 427
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
428 429 430 431 432
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
433
        if isinstance(source, Tensor):
434
            source = source.numpy()
435
        np.testing.assert_equal(source, target.shape)
436 437 438 439 440

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
441 442 443 444 445 446
        {"input": [x_shape_known, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
447
    ]
448
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
449 450
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
451

452

453 454 455 456
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
457
        saved_symbolic_shape = set_symbolic_shape(False)
458 459
    else:
        network = None
460

461 462 463 464
    x = Tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1))
    y = F.squeeze(x, -1)
    np.testing.assert_equal(y.numpy(), np.array([[[1, 2]]]).astype(np.int32))

465
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
466
    xx = make_tensor(x, network)
467 468 469

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
470
        yy = F.squeeze(xx, axis)
471 472
        np.testing.assert_equal(y, yy.numpy())

473 474 475
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

476

477 478 479 480 481 482 483
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

484 485 486 487 488 489
    x = Tensor(np.arange(1, 7, dtype=np.int32).reshape(2, 3))
    y = F.expand_dims(x, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[[1], [2], [3]], [[4], [5], [6]]]).astype(np.int32)
    )

490
    x = np.arange(6, dtype="float32").reshape(2, 3)
491
    xx = make_tensor(x, network)
492 493 494

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
495
        yy = F.expand_dims(xx, axis)
496 497 498
        np.testing.assert_equal(y, yy.numpy())


499 500 501 502 503 504 505 506 507 508
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
509
        np.testing.assert_raises(RuntimeError, F.expand_dims, xx, axis)
510 511


512 513 514 515 516 517 518
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

519 520
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
521 522
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
523 524 525 526 527 528 529 530 531 532
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


533 534 535 536 537 538 539
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

540 541 542 543 544 545 546 547
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
548
        network=network,
549 550 551 552 553 554 555 556 557 558
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
559
        network=network,
560 561 562
    )

    cases = [
563 564
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
565 566 567 568 569
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
570
        network=network,
571 572 573
    )


574 575 576 577 578 579 580
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

581 582 583 584 585 586 587 588
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
589
        network=network,
590 591 592 593 594 595 596 597 598 599
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
600
        network=network,
601 602 603 604 605 606 607 608 609 610
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
611
        network=network,
612 613 614
    )


615 616 617 618 619 620 621
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

622 623 624 625 626 627
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
628
    opr_test(cases, F.round, ref_fn=np.round, network=network)
629 630


631 632 633 634 635 636 637
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    inp_shape = (2, 2, 3, 3)
    x = Tensor(np.arange(36, dtype=np.int32).reshape(inp_shape),)
    y = F.flatten(x, -2, -1)
    np.testing.assert_equal(
        y.numpy(),
        np.array(
            [
                [[0, 1, 2, 3, 4, 5, 6, 7, 8], [9, 10, 11, 12, 13, 14, 15, 16, 17]],
                [
                    [18, 19, 20, 21, 22, 23, 24, 25, 26],
                    [27, 28, 29, 30, 31, 32, 33, 34, 35],
                ],
            ]
        ).astype(np.int32),
    )

654 655 656 657 658 659
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    cases = [
660 661
        {"input": data0, "output": data0.flatten()},
        {"input": data1, "output": data1.flatten()},
662
    ]
663
    opr_test(cases, F.flatten, network=network)
664 665

    cases = [
666 667
        {"input": data0, "output": data0.reshape(2, -1)},
        {"input": data1, "output": data1.reshape(4, -1)},
668
    ]
669
    opr_test(cases, F.flatten, start_axis=1, network=network)
670 671

    cases = [
672 673
        {"input": data0, "output": data0.reshape(2, 3, -1)},
        {"input": data1, "output": data1.reshape(4, 5, -1)},
674
    ]
675
    opr_test(cases, F.flatten, start_axis=2, network=network)
676 677

    cases = [
678 679
        {"input": data0, "output": data0.reshape(2, -1, 5)},
        {"input": data1, "output": data1.reshape(4, -1, 7)},
680
    ]
681
    opr_test(
682
        cases, F.flatten, start_axis=1, end_axis=2, network=network,
683 684
    )

685

686 687 688 689 690 691
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
692

693 694 695 696
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

697
    input2_shape = (10, 1)
698 699 700
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

701 702 703 704
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

705
    cases = [
706 707 708 709 710 711 712 713 714 715 716 717
        {
            "input": [data1, output1_shape],
            "output": np.broadcast_to(data1, output1_shape),
        },
        {
            "input": [data2, output2_shape],
            "output": np.broadcast_to(data2, output2_shape),
        },
        {
            "input": [data3, output3_shape],
            "output": np.broadcast_to(data3, output3_shape),
        },
718
    ]
719 720

    opr_test(cases, F.broadcast_to, network=network)
721

722
    x = F.ones((2, 1, 3))
723
    with pytest.raises(RuntimeError):
724
        F.broadcast_to(x, (2, 3, 4))
725

726
    with pytest.raises(RuntimeError):
727
        F.broadcast_to(x, (4, 1, 3))
728

729
    with pytest.raises(RuntimeError):
730
        F.broadcast_to(x, (1, 3))
731

732

733 734 735 736
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
737
    data1 = Tensor(np.random.random(input1_shape).astype(np.float32))
738 739 740

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
741
    data2 = Tensor(np.random.random(input2_shape).astype(np.float32))
742 743 744

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
745
    data3 = Tensor(np.random.random(input3_shape).astype(np.float32))
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
@pytest.mark.parametrize(
    "input_shape, target_shapes",
    [
        ((3,), [(2, 1, 3), (1, 2, 3), (2, 2, 3)]),
        ((1, 3, 1), [(2, None, 3), (3, None, 3), (1, None, 1)]),
    ],
)
@pytest.mark.parametrize("is_symbolic", [True, False])
def test_broadcast_on_trace(is_symbolic, input_shape, target_shapes):
    x = F.ones(input_shape)

    @trace(symbolic=is_symbolic)
    def broadcast(inp, shape):
        return F.broadcast_to(inp, shape)

    for target_shape in target_shapes:
        if None in target_shape:
            symbolic_target_shape = tuple(
                map(lambda x: None if x is None else Tensor(x), target_shape)
            )
            output = broadcast(x, symbolic_target_shape)
            for i in range(len(target_shape)):
                if target_shape[i] is not None:
                    assert output._tuple_shape[i] == target_shape[i]
                else:
                    assert (
                        output._tuple_shape[i] == x._tuple_shape[i - len(target_shape)]
                    )
        else:
            symbolic_target_shape = Tensor(target_shape)
            output = broadcast(x, symbolic_target_shape)
            assert output._tuple_shape == target_shape


809 810 811 812 813 814 815 816
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
817 818 819 820 821

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
822
        assert isinstance(xx, type(reference))
823 824 825 826 827 828
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
829
        assert isinstance(xx, type(reference))
830 831 832
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
833
    x = make_tensor([1, 2, 3], network)
834 835
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
836
        assert isinstance(xx, type(reference))
837 838 839
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
840
    x = [1, make_tensor(2, network), 3]
841 842
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
843
        assert isinstance(xx, type(reference))
844 845
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])

846 847 848 849 850 851 852 853 854 855 856 857
    # varnode
    if is_varnode:
        a = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
        b = np.array([[True, False, True], [False, True, True]])
        aa = make_tensor(a, network)
        bb = make_tensor(b, network)
        x, y = F.cond_take(bb, aa)
        for dtype in [None, "float32"]:
            xx = astensor1d(x, reference, dtype=dtype)
            assert isinstance(xx, type(reference))
            np.testing.assert_equal(get_var_value(xx), get_var_value(x))

858 859

def test_device():
860
    x = Tensor([1, 2, 3], dtype="float32")
861 862 863 864 865 866

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
867
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
868 869 870 871 872
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
873 874


875 876 877 878 879 880 881 882
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
883
    y = F.copy(x)
884 885 886
    np.testing.assert_equal(y.numpy(), x)


887
def copy_test(dst, src, network):
888
    data = np.random.random((2, 3)).astype(np.float32)
889
    x = make_tensor(data, device=src, network=network)
890 891
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
892 893 894
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
895 896


897
@pytest.mark.require_ngpu(1)
898 899 900 901 902 903 904 905
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
906 907


908
@pytest.mark.require_ngpu(1)
909 910 911 912 913 914 915 916
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
917 918


919
@pytest.mark.require_ngpu(2)
920 921 922 923 924 925 926 927 928
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
929 930


931 932 933 934 935 936 937 938 939 940 941 942 943
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
    "shape, device_src, device_dst",
    [
        ((0,), "cpu0", "cpu0"),
        ((10, 0), "cpu0", "cpu1"),
        ((2, 0, 3), "cpu0", "gpu0"),
        ((1, 0, 1, 0), "gpu0", "cpu0"),
        ((2, 3, 4, 5, 0), "gpu0", "gpu1"),
    ],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_copy_empty(shape, device_src, device_dst, is_symbolic):
944
    inp = Tensor(np.random.randn(*shape).astype("float32"), device=device_src)
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

    def func(inp):
        return F.copy(inp, device_dst)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    for _ in range(3):
        out = func(inp)
        assert out.numpy().shape == shape
        assert out.device == device_dst
        if is_symbolic is None:
            break


960 961 962 963 964 965 966 967 968 969 970 971
@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
972 973 974 975 976 977 978
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

979 980 981 982 983 984 985 986 987 988 989
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
990 991 992 993
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
994 995 996 997 998 999 1000 1001 1002
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
1003 1004
        # FIXME: tile does not support ndim 7
        # ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
1005 1006
    ],
)
1007 1008 1009 1010 1011 1012 1013
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

1014 1015 1016
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

1017
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
1018

1019
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
1020 1021 1022 1023 1024 1025 1026


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
1027 1028
        ((2, 3), 100, 0),
        ((2, 3), -100, 0),
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

1040 1041 1042 1043 1044 1045
    x = Tensor([[1, 2], [3, 4], [5, 6]], np.int32)
    y = F.roll(x, 1, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[2, 1], [4, 3], [6, 5]]).astype(np.int32)
    )

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )
1058 1059 1060 1061 1062 1063 1064


@pytest.mark.parametrize(
    "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_roll_empty_tensor(shape, shifts, axis, is_symbolic):
1065
    inp = Tensor(np.random.randn(*shape).astype("float32"))
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

    def func(inp):
        return F.roll(inp, shifts, axis)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    out_ref = np.roll(inp.numpy(), shifts, axis)
    for _ in range(3):
        out = F.roll(inp, shifts, axis)
        np.testing.assert_equal(out.numpy(), out_ref)
        if is_symbolic is None:
            break