test_tensor.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_tensor_shape
19
from megengine.core.tensor.utils import astensor1d
20
from megengine.distributed.helper import get_device_count_by_fork
21 22 23 24


def test_eye():
    dtype = np.float32
25
    cases = [{"input": [10, 20]}, {"input": [30]}]
26
    for case in cases:
27
        np.testing.assert_allclose(
28 29 30
            F.eye(case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
31 32 33 34 35 36 37 38
        np.testing.assert_allclose(
            F.eye(*case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
        np.testing.assert_allclose(
            F.eye(tensor(case["input"]), dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def test_concat():
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]))


56 57 58 59 60 61 62 63
def test_concat_device():
    data1 = tensor(np.random.random((3, 2, 2)).astype("float32"), device="cpu0")
    data2 = tensor(np.random.random((2, 2, 2)).astype("float32"), device="cpu1")

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def test_stack():
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

        opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai))


def test_split():
    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
    mge_out1 = F.split(tensor(data), 2, axis=3)
    mge_out2 = F.split(tensor(data), [3, 5], axis=3)

    np_out = np.split(data, [3, 5], axis=3)

    np.testing.assert_equal(mge_out1[0].numpy(), mge_out2[0].numpy())
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])


def test_reshape():
    x = np.arange(6, dtype="float32")
    xx = tensor(x)
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
        (1, tensor(-1), 3),
        np.array([1, -1, 3], dtype="int32"),
        tensor([1, -1, 3]),
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


def test_squeeze():
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
    xx = tensor(x)

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
111
        yy = F.squeeze(xx, axis)
112 113 114 115 116 117 118 119 120
        np.testing.assert_equal(y, yy.numpy())


def test_expand_dims():
    x = np.arange(6, dtype="float32").reshape(2, 3)
    xx = tensor(x)

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
121
        yy = F.expand_dims(xx, axis)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        np.testing.assert_equal(y, yy.numpy())


def test_elemwise_dtype_promotion():
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
    xx = tensor(x)
    yy = tensor(y)
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


def test_linspace():
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
    )


def test_arange():
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )


def test_round():
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
    opr_test(cases, F.round, ref_fn=np.round)


204 205 206 207 208 209 210
def test_flatten():
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
211
        assert x.shape[0] == y
212 213 214 215

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
216 217
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
218 219 220 221 222 223
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn)

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
224 225
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
226 227 228 229 230 231
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1)

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
232 233
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
234 235 236 237 238 239
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2)

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
240 241
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
242 243 244 245
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2)


246 247 248 249 250
def test_broadcast():
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

251
    input2_shape = (10, 1)
252 253 254 255
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

    def compare_fn(x, y):
256
        assert x.shape[0] == y
257 258 259 260 261

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
    ]
262
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn)
263

264 265
    x = F.ones((2, 1, 3))
    with pytest.raises(ValueError):
266
        F.broadcast_to(x, (2, 3, 4))
267 268

    with pytest.raises(ValueError):
269
        F.broadcast_to(x, (4, 1, 3))
270 271

    with pytest.raises(ValueError):
272
        F.broadcast_to(x, (1, 3))
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

def test_utils_astensor1d():
    reference = tensor(0)

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
    x = tensor([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
    x = [1, tensor(2), 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
    y4 = F.eye(x.shape, dtype="float32", device=x.device.to_c())
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
321 322


323 324
def test_identity():
    x = tensor(np.random.random((5, 10)).astype(np.float32))
M
Megvii Engine Team 已提交
325
    y = F.copy(x)
326 327 328
    np.testing.assert_equal(y.numpy(), x)


329 330 331 332 333
def copy_test(dst, src):
    data = np.random.random((2, 3)).astype(np.float32)
    x = tensor(data, device=src)
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
334 335
    z = x.to(dst)
    assert np.allclose(data, z.numpy())
336 337


338 339 340 341 342 343 344
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
@pytest.mark.skipif(
    platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
)
@pytest.mark.skipif(get_device_count_by_fork("gpu") == 0, reason="CUDA is disabled")
345 346 347 348
def test_copy_h2d():
    copy_test("cpu0", "gpu0")


349 350 351 352 353 354 355
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
@pytest.mark.skipif(
    platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
)
@pytest.mark.skipif(get_device_count_by_fork("gpu") == 0, reason="CUDA is disabled")
356 357 358 359
def test_copy_d2h():
    copy_test("gpu0", "cpu0")


360 361 362 363 364 365 366
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
@pytest.mark.skipif(
    platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
)
@pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device")
367 368 369
def test_copy_d2d():
    copy_test("gpu0", "gpu1")
    copy_test("gpu0:0", "gpu0:1")