test_tensor.py 22.2 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import get_var_value, make_tensor, opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.tensor import megbrain_graph as G
20
from megengine.core.tensor.utils import astensor1d
21
from megengine.jit import trace
22
from megengine.utils.network import Network, set_symbolic_shape
23
from megengine.utils.network_node import VarNode
24 25 26 27


def test_eye():
    dtype = np.float32
28
    cases = [{"input": [10, 20]}, {"input": [30]}]
29
    for case in cases:
30
        np.testing.assert_allclose(
31 32 33
            F.eye(case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
34 35 36 37 38 39 40 41
        np.testing.assert_allclose(
            F.eye(*case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
        np.testing.assert_allclose(
            F.eye(tensor(case["input"]), dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
42 43


44 45 46 47 48 49 50
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

51 52 53 54 55 56 57 58 59 60 61
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
62
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
63 64


65 66 67 68 69 70 71 72 73 74 75 76
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
77 78 79 80 81 82
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
83 84


85 86 87 88 89 90 91 92 93
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
94 95 96 97 98

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


99 100 101 102 103 104 105
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

106 107 108 109 110 111 112 113 114 115
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

116 117 118 119
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

120

121
@pytest.mark.parametrize("is_varnode", [True, False])
122
def test_split_basic(is_varnode):
123 124
    if is_varnode:
        network = Network()
125
        saved_symbolic_shape = set_symbolic_shape(False)
126 127
    else:
        network = None
128 129

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
130
    inp = make_tensor(data, network)
131 132 133

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
134 135 136

    np_out = np.split(data, [3, 5], axis=3)

137 138 139 140
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
141 142
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

143 144 145 146 147 148 149 150 151 152
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
153
        F.split(inp, [3, 2, 5], axis=3)
154 155
        assert False
    except ValueError as e:
156
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
157

158 159 160
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
            out = fn(tensor(case[0]), case[1], case[2])
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


195 196 197 198 199 200 201
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

202
    x = np.arange(6, dtype="float32")
203
    xx = make_tensor(x, network)
204 205 206 207 208
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
209
        (1, make_tensor(-1, network), 3),
210
        np.array([1, -1, 3], dtype="int32"),
211
        make_tensor([1, -1, 3], network),
212 213 214 215 216
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (0,)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


259 260 261 262
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
263
        saved_symbolic_shape = set_symbolic_shape(False)
264 265 266 267 268 269 270 271 272 273
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
        if isinstance(source, tensor):
            source = source.numpy()
        np.testing.assert_equal(source, target)

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
        {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
    ]
294
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
295 296
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
297

298

299 300 301 302
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
303
        saved_symbolic_shape = set_symbolic_shape(False)
304 305
    else:
        network = None
306

307
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
308
    xx = make_tensor(x, network)
309 310 311

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
312
        yy = F.squeeze(xx, axis)
313 314
        np.testing.assert_equal(y, yy.numpy())

315 316 317
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

318

319 320 321 322 323 324 325
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

326
    x = np.arange(6, dtype="float32").reshape(2, 3)
327
    xx = make_tensor(x, network)
328 329 330

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
331
        yy = F.expand_dims(xx, axis)
332 333 334
        np.testing.assert_equal(y, yy.numpy())


335 336 337 338 339 340 341 342 343 344 345 346 347
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
        np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)


348 349 350 351 352 353 354
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

355 356
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
357 358
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
359 360 361 362 363 364 365 366 367 368
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


369 370 371 372 373 374 375
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

376 377 378 379 380 381 382 383
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
384
        network=network,
385 386 387 388 389 390 391 392 393 394
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
395
        network=network,
396 397 398
    )

    cases = [
399 400
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
401 402 403 404 405
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
406
        network=network,
407 408 409
    )


410 411 412 413 414 415 416
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

417 418 419 420 421 422 423 424
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
425
        network=network,
426 427 428 429 430 431 432 433 434 435
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
436
        network=network,
437 438 439 440 441 442 443 444 445 446
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
447
        network=network,
448 449 450
    )


451 452 453 454 455 456 457
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

458 459 460 461 462 463
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
464
    opr_test(cases, F.round, ref_fn=np.round, network=network)
465 466


467 468 469 470 471 472 473
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

474 475 476 477 478 479
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
480
        assert x._tuple_shape[0] == y
481 482 483 484

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
485 486
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
487
    ]
488
    opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
489 490 491 492

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
493 494
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
495
    ]
496
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
497 498 499 500

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
501 502
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
503
    ]
504
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
505 506 507 508

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
509 510
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
511
    ]
512 513 514 515 516 517 518 519 520
    opr_test(
        cases,
        F.flatten,
        compare_fn=compare_fn,
        start_axis=1,
        end_axis=2,
        network=network,
    )

521

522 523 524 525 526 527
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
528

529 530 531 532
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

533
    input2_shape = (10, 1)
534 535 536
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

537 538 539 540
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

541
    def compare_fn(x, y):
542
        assert x._tuple_shape[0] == y
543 544 545 546

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
547
        {"input": [data3, output3_shape], "output": output3_shape},
548
    ]
549
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
550

551
    x = F.ones((2, 1, 3))
552
    with pytest.raises(RuntimeError):
553
        F.broadcast_to(x, (2, 3, 4))
554

555
    with pytest.raises(RuntimeError):
556
        F.broadcast_to(x, (4, 1, 3))
557

558
    with pytest.raises(RuntimeError):
559
        F.broadcast_to(x, (1, 3))
560

561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


604 605 606 607 608 609 610 611
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
612 613 614 615 616

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
617
        assert isinstance(xx, type(reference))
618 619 620 621 622 623
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
624
        assert isinstance(xx, type(reference))
625 626 627
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
628
    x = make_tensor([1, 2, 3], network)
629 630
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
631
        assert isinstance(xx, type(reference))
632 633 634
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
635
    x = [1, make_tensor(2, network), 3]
636 637
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
638
        assert isinstance(xx, type(reference))
639 640 641 642 643 644 645 646 647 648 649
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
650
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
651 652 653 654 655
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
656 657


658 659 660 661 662 663 664 665
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
666
    y = F.copy(x)
667 668 669
    np.testing.assert_equal(y.numpy(), x)


670
def copy_test(dst, src, network):
671
    data = np.random.random((2, 3)).astype(np.float32)
672
    x = make_tensor(data, device=src, network=network)
673 674
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
675 676 677
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
678 679


680
@pytest.mark.require_ngpu(1)
681 682 683 684 685 686 687 688
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
689 690


691
@pytest.mark.require_ngpu(1)
692 693 694 695 696 697 698 699
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
700 701


702
@pytest.mark.require_ngpu(2)
703 704 705 706 707 708 709 710 711
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
712 713 714 715 716 717 718 719 720 721 722 723 724 725


@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
726 727 728 729 730 731 732
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

733 734 735 736 737 738 739 740 741 742 743
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
744 745 746 747
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
748 749 750 751 752 753 754 755 756 757 758 759
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
        ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
    ],
)
760 761 762 763 764 765 766
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

767 768 769
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

770
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
771

772
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )