test_tensor.py 24.0 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import get_var_value, make_tensor, opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.tensor import megbrain_graph as G
20
from megengine.core.tensor.utils import astensor1d
21
from megengine.jit import trace
22
from megengine.utils.network import Network, set_symbolic_shape
23
from megengine.utils.network_node import VarNode
24 25 26


def test_eye():
27
    dtypes = [np.float32, np.bool]
28
    cases = [{"input": [10, 20]}, {"input": [30]}]
29 30 31 32 33 34 35 36 37 38 39 40 41 42
    for dtype in dtypes:
        for case in cases:
            np.testing.assert_allclose(
                F.eye(case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(*case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(tensor(case["input"]), dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
43 44


45 46 47 48 49 50 51 52
def test_full():
    shape = (2, 3)
    values = [True, 4, 5.0]
    for value in values:
        np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value))
        assert F.full(shape, value).dtype == tensor(value).dtype


53 54 55 56 57 58 59
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

60 61 62 63 64 65 66 67 68 69 70
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
71
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
72 73


74 75 76 77 78 79 80 81 82 83 84 85
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
86 87 88 89 90 91
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
92 93


94 95 96 97 98 99 100 101 102
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
103 104 105 106 107

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


108 109 110 111 112 113 114
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

115 116 117 118 119 120 121 122 123 124
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

125 126 127 128
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

129

130
@pytest.mark.parametrize("is_varnode", [True, False])
131
def test_split_basic(is_varnode):
132 133
    if is_varnode:
        network = Network()
134
        saved_symbolic_shape = set_symbolic_shape(False)
135 136
    else:
        network = None
137 138

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
139
    inp = make_tensor(data, network)
140 141 142

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
143 144 145

    np_out = np.split(data, [3, 5], axis=3)

146 147 148 149
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
150 151
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

152 153 154 155 156 157 158 159 160 161
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
162
        F.split(inp, [3, 2, 5], axis=3)
163 164
        assert False
    except ValueError as e:
165
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
166

167 168 169
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
            out = fn(tensor(case[0]), case[1], case[2])
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


204 205 206 207 208 209 210
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

211
    x = np.arange(6, dtype="float32")
212
    xx = make_tensor(x, network)
213 214 215 216 217
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
218
        (1, make_tensor(-1, network), 3),
219
        np.array([1, -1, 3], dtype="int32"),
220
        make_tensor([1, -1, 3], network),
221 222 223 224 225
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (0,)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


268 269 270 271
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
272
        saved_symbolic_shape = set_symbolic_shape(False)
273 274 275 276 277 278 279 280 281 282
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
        if isinstance(source, tensor):
            source = source.numpy()
        np.testing.assert_equal(source, target)

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
        {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
    ]
303
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
304 305
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
306

307

308 309 310 311
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
312
        saved_symbolic_shape = set_symbolic_shape(False)
313 314
    else:
        network = None
315

316
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
317
    xx = make_tensor(x, network)
318 319 320

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
321
        yy = F.squeeze(xx, axis)
322 323
        np.testing.assert_equal(y, yy.numpy())

324 325 326
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

327

328 329 330 331 332 333 334
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

335
    x = np.arange(6, dtype="float32").reshape(2, 3)
336
    xx = make_tensor(x, network)
337 338 339

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
340
        yy = F.expand_dims(xx, axis)
341 342 343
        np.testing.assert_equal(y, yy.numpy())


344 345 346 347 348 349 350 351 352 353 354 355 356
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
        np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)


357 358 359 360 361 362 363
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

364 365
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
366 367
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
368 369 370 371 372 373 374 375 376 377
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


378 379 380 381 382 383 384
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

385 386 387 388 389 390 391 392
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
393
        network=network,
394 395 396 397 398 399 400 401 402 403
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
404
        network=network,
405 406 407
    )

    cases = [
408 409
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
410 411 412 413 414
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
415
        network=network,
416 417 418
    )


419 420 421 422 423 424 425
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

426 427 428 429 430 431 432 433
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
434
        network=network,
435 436 437 438 439 440 441 442 443 444
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
445
        network=network,
446 447 448 449 450 451 452 453 454 455
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
456
        network=network,
457 458 459
    )


460 461 462 463 464 465 466
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

467 468 469 470 471 472
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
473
    opr_test(cases, F.round, ref_fn=np.round, network=network)
474 475


476 477 478 479 480 481 482
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

483 484 485 486 487 488
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
489
        assert x._tuple_shape[0] == y
490 491 492 493

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
494 495
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
496
    ]
497
    opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
498 499 500 501

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
502 503
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
504
    ]
505
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
506 507 508 509

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
510 511
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
512
    ]
513
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
514 515 516 517

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
518 519
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
520
    ]
521 522 523 524 525 526 527 528 529
    opr_test(
        cases,
        F.flatten,
        compare_fn=compare_fn,
        start_axis=1,
        end_axis=2,
        network=network,
    )

530

531 532 533 534 535 536
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
537

538 539 540 541
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

542
    input2_shape = (10, 1)
543 544 545
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

546 547 548 549
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

550
    def compare_fn(x, y):
551
        assert x._tuple_shape[0] == y
552 553 554 555

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
556
        {"input": [data3, output3_shape], "output": output3_shape},
557
    ]
558
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
559

560
    x = F.ones((2, 1, 3))
561
    with pytest.raises(RuntimeError):
562
        F.broadcast_to(x, (2, 3, 4))
563

564
    with pytest.raises(RuntimeError):
565
        F.broadcast_to(x, (4, 1, 3))
566

567
    with pytest.raises(RuntimeError):
568
        F.broadcast_to(x, (1, 3))
569

570

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


613 614 615 616 617 618 619 620
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
621 622 623 624 625

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
626
        assert isinstance(xx, type(reference))
627 628 629 630 631 632
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
633
        assert isinstance(xx, type(reference))
634 635 636
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
637
    x = make_tensor([1, 2, 3], network)
638 639
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
640
        assert isinstance(xx, type(reference))
641 642 643
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
644
    x = [1, make_tensor(2, network), 3]
645 646
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
647
        assert isinstance(xx, type(reference))
648 649 650 651 652 653 654 655 656 657 658
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
659
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
660 661 662 663 664
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
665 666


667 668 669 670 671 672 673 674
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
675
    y = F.copy(x)
676 677 678
    np.testing.assert_equal(y.numpy(), x)


679
def copy_test(dst, src, network):
680
    data = np.random.random((2, 3)).astype(np.float32)
681
    x = make_tensor(data, device=src, network=network)
682 683
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
684 685 686
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
687 688


689
@pytest.mark.require_ngpu(1)
690 691 692 693 694 695 696 697
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
698 699


700
@pytest.mark.require_ngpu(1)
701 702 703 704 705 706 707 708
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
709 710


711
@pytest.mark.require_ngpu(2)
712 713 714 715 716 717 718 719 720
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
721 722


723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
    "shape, device_src, device_dst",
    [
        ((0,), "cpu0", "cpu0"),
        ((10, 0), "cpu0", "cpu1"),
        ((2, 0, 3), "cpu0", "gpu0"),
        ((1, 0, 1, 0), "gpu0", "cpu0"),
        ((2, 3, 4, 5, 0), "gpu0", "gpu1"),
    ],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_copy_empty(shape, device_src, device_dst, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"), device=device_src)

    def func(inp):
        return F.copy(inp, device_dst)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    for _ in range(3):
        out = func(inp)
        assert out.numpy().shape == shape
        assert out.device == device_dst
        if is_symbolic is None:
            break


752 753 754 755 756 757 758 759 760 761 762 763
@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
764 765 766 767 768 769 770
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

771 772 773 774 775 776 777 778 779 780 781
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
782 783 784 785
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
786 787 788 789 790 791 792 793 794 795 796 797
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
        ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
    ],
)
798 799 800 801 802 803 804
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

805 806 807
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

808
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
809

810
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
811 812 813 814 815 816 817


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
818 819
        ((2, 3), 100, 0),
        ((2, 3), -100, 0),
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863


@pytest.mark.parametrize(
    "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_roll_empty_tensor(shape, shifts, axis, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"))

    def func(inp):
        return F.roll(inp, shifts, axis)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    out_ref = np.roll(inp.numpy(), shifts, axis)
    for _ in range(3):
        out = F.roll(inp, shifts, axis)
        np.testing.assert_equal(out.numpy(), out_ref)
        if is_symbolic is None:
            break