test_tensor.py 25.5 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
import os
3 4
import platform

5 6
import numpy as np
import pytest
7
from utils import get_var_value, make_tensor, opr_test
8 9

import megengine.functional as F
M
Megvii Engine Team 已提交
10
from megengine import tensor
11
from megengine.core._trace_option import use_symbolic_shape
12
from megengine.core.tensor import megbrain_graph as G
13
from megengine.core.tensor.utils import astensor1d
14
from megengine.jit import trace
15
from megengine.utils.network import Network, set_symbolic_shape
16
from megengine.utils.network_node import VarNode
17 18 19


def test_eye():
20
    dtypes = [np.float32, np.bool]
21
    cases = [{"input": [10, 20]}, {"input": [30]}]
22 23 24 25 26 27 28 29 30 31 32 33 34 35
    for dtype in dtypes:
        for case in cases:
            np.testing.assert_allclose(
                F.eye(case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(*case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(tensor(case["input"]), dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
@pytest.mark.parametrize("is_varnode", [False, True])
def test_diag(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    shapes = [(10, 10), (6, 9), (8, 7), (8,)]
    cases = []
    for shp in shapes:
        cases.append({"input": [np.random.random(shp).astype("float32")]})

    for axis in range(-2, 3):

        def run(data):
            return F.diag(data, k=axis)

        opr_test(cases, run, ref_fn=lambda x: np.diag(x, axis), network=network)


58 59 60 61 62 63 64 65
def test_full():
    shape = (2, 3)
    values = [True, 4, 5.0]
    for value in values:
        np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value))
        assert F.full(shape, value).dtype == tensor(value).dtype


66 67 68 69 70 71 72
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

73 74 75 76 77 78 79 80 81 82 83
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
84
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
85 86


87 88 89 90 91 92 93 94 95 96 97 98
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
99 100 101 102 103 104
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
105 106


107 108 109 110 111 112 113 114 115
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
116 117 118 119 120

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


121 122 123 124 125 126 127
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

128 129 130 131 132 133 134 135 136 137
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

138 139 140 141
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

142

143
@pytest.mark.parametrize("is_varnode", [True, False])
144
def test_split_basic(is_varnode):
145 146
    if is_varnode:
        network = Network()
147
        saved_symbolic_shape = set_symbolic_shape(False)
148 149
    else:
        network = None
150 151

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
152
    inp = make_tensor(data, network)
153 154 155

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
156 157 158

    np_out = np.split(data, [3, 5], axis=3)

159 160 161 162
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
163 164
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

165 166 167 168 169 170 171 172 173 174
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
175
        F.split(inp, [3, 2, 5], axis=3)
176 177
        assert False
    except ValueError as e:
178
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
179

180 181 182
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
            out = fn(tensor(case[0]), case[1], case[2])
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


217 218 219 220 221 222 223 224 225 226 227 228
@pytest.mark.parametrize("is_varnode", [True, False])
def test_swapaxes(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = tensor(np.array([[1, 2, 3]], dtype=np.int32))
    y = F.swapaxes(x, 0, 1)
    np.testing.assert_equal(y.numpy(), np.array([[1], [2], [3]]).astype(np.int32))


229 230 231 232 233 234 235
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

236
    x = np.arange(6, dtype="float32")
237
    xx = make_tensor(x, network)
238 239 240 241 242
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
243
        (1, make_tensor(-1, network), 3),
244
        np.array([1, -1, 3], dtype="int32"),
245
        make_tensor([1, -1, 3], network),
246 247 248 249 250
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast_auto_infer(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.random.random((1, 2, 3)).astype(np.float32)
    xx = make_tensor(x, network)

    for shape in [
        (1, 2, 3),
        (1, None, 3),
    ]:
        yy = F.broadcast_to(xx, shape)
        np.testing.assert_equal(yy.numpy(), x)

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (1, -1, 3))

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (None, 1, 2, 3))

    F.broadcast_to(xx, (1, None, 2, 3))
275
    t = make_tensor(2, network)
276 277 278
    F.broadcast_to(xx, (t, None, 2, 3))


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (0,)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


321 322 323 324
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
325
        saved_symbolic_shape = set_symbolic_shape(False)
326 327 328 329 330 331 332 333 334 335
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
336 337 338 339 340 341 342
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
        if isinstance(source, tensor):
            source = source.numpy()
343
        np.testing.assert_equal(source, target.shape)
344 345 346 347 348

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
349 350 351 352 353 354
        {"input": [x_shape_known, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
355
    ]
356
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
357 358
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
359

360

361 362 363 364
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
365
        saved_symbolic_shape = set_symbolic_shape(False)
366 367
    else:
        network = None
368

369
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
370
    xx = make_tensor(x, network)
371 372 373

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
374
        yy = F.squeeze(xx, axis)
375 376
        np.testing.assert_equal(y, yy.numpy())

377 378 379
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

380

381 382 383 384 385 386 387
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

388
    x = np.arange(6, dtype="float32").reshape(2, 3)
389
    xx = make_tensor(x, network)
390 391 392

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
393
        yy = F.expand_dims(xx, axis)
394 395 396
        np.testing.assert_equal(y, yy.numpy())


397 398 399 400 401 402 403 404 405 406
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
407
        np.testing.assert_raises(RuntimeError, F.expand_dims, xx, axis)
408 409


410 411 412 413 414 415 416
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

417 418
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
419 420
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
421 422 423 424 425 426 427 428 429 430
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


431 432 433 434 435 436 437
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

438 439 440 441 442 443 444 445
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
446
        network=network,
447 448 449 450 451 452 453 454 455 456
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
457
        network=network,
458 459 460
    )

    cases = [
461 462
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
463 464 465 466 467
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
468
        network=network,
469 470 471
    )


472 473 474 475 476 477 478
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

479 480 481 482 483 484 485 486
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
487
        network=network,
488 489 490 491 492 493 494 495 496 497
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
498
        network=network,
499 500 501 502 503 504 505 506 507 508
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
509
        network=network,
510 511 512
    )


513 514 515 516 517 518 519
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

520 521 522 523 524 525
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
526
    opr_test(cases, F.round, ref_fn=np.round, network=network)
527 528


529 530 531 532 533 534 535
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

536 537 538 539 540 541
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    cases = [
542 543
        {"input": data0, "output": data0.flatten()},
        {"input": data1, "output": data1.flatten()},
544
    ]
545
    opr_test(cases, F.flatten, network=network)
546 547

    cases = [
548 549
        {"input": data0, "output": data0.reshape(2, -1)},
        {"input": data1, "output": data1.reshape(4, -1)},
550
    ]
551
    opr_test(cases, F.flatten, start_axis=1, network=network)
552 553

    cases = [
554 555
        {"input": data0, "output": data0.reshape(2, 3, -1)},
        {"input": data1, "output": data1.reshape(4, 5, -1)},
556
    ]
557
    opr_test(cases, F.flatten, start_axis=2, network=network)
558 559

    cases = [
560 561
        {"input": data0, "output": data0.reshape(2, -1, 5)},
        {"input": data1, "output": data1.reshape(4, -1, 7)},
562
    ]
563
    opr_test(
564
        cases, F.flatten, start_axis=1, end_axis=2, network=network,
565 566
    )

567

568 569 570 571 572 573
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
574

575 576 577 578
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

579
    input2_shape = (10, 1)
580 581 582
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

583 584 585 586
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

587
    cases = [
588 589 590 591 592 593 594 595 596 597 598 599
        {
            "input": [data1, output1_shape],
            "output": np.broadcast_to(data1, output1_shape),
        },
        {
            "input": [data2, output2_shape],
            "output": np.broadcast_to(data2, output2_shape),
        },
        {
            "input": [data3, output3_shape],
            "output": np.broadcast_to(data3, output3_shape),
        },
600
    ]
601 602

    opr_test(cases, F.broadcast_to, network=network)
603

604
    x = F.ones((2, 1, 3))
605
    with pytest.raises(RuntimeError):
606
        F.broadcast_to(x, (2, 3, 4))
607

608
    with pytest.raises(RuntimeError):
609
        F.broadcast_to(x, (4, 1, 3))
610

611
    with pytest.raises(RuntimeError):
612
        F.broadcast_to(x, (1, 3))
613

614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


657 658 659 660 661 662 663 664
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
665 666 667 668 669

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
670
        assert isinstance(xx, type(reference))
671 672 673 674 675 676
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
677
        assert isinstance(xx, type(reference))
678 679 680
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
681
    x = make_tensor([1, 2, 3], network)
682 683
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
684
        assert isinstance(xx, type(reference))
685 686 687
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
688
    x = [1, make_tensor(2, network), 3]
689 690
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
691
        assert isinstance(xx, type(reference))
692 693
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])

694 695 696 697 698 699 700 701 702 703 704 705
    # varnode
    if is_varnode:
        a = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
        b = np.array([[True, False, True], [False, True, True]])
        aa = make_tensor(a, network)
        bb = make_tensor(b, network)
        x, y = F.cond_take(bb, aa)
        for dtype in [None, "float32"]:
            xx = astensor1d(x, reference, dtype=dtype)
            assert isinstance(xx, type(reference))
            np.testing.assert_equal(get_var_value(xx), get_var_value(x))

706 707 708 709 710 711 712 713 714

def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
715
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
716 717 718 719 720
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
721 722


723 724 725 726 727 728 729 730
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
731
    y = F.copy(x)
732 733 734
    np.testing.assert_equal(y.numpy(), x)


735
def copy_test(dst, src, network):
736
    data = np.random.random((2, 3)).astype(np.float32)
737
    x = make_tensor(data, device=src, network=network)
738 739
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
740 741 742
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
743 744


745
@pytest.mark.require_ngpu(1)
746 747 748 749 750 751 752 753
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
754 755


756
@pytest.mark.require_ngpu(1)
757 758 759 760 761 762 763 764
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
765 766


767
@pytest.mark.require_ngpu(2)
768 769 770 771 772 773 774 775 776
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
777 778


779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
    "shape, device_src, device_dst",
    [
        ((0,), "cpu0", "cpu0"),
        ((10, 0), "cpu0", "cpu1"),
        ((2, 0, 3), "cpu0", "gpu0"),
        ((1, 0, 1, 0), "gpu0", "cpu0"),
        ((2, 3, 4, 5, 0), "gpu0", "gpu1"),
    ],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_copy_empty(shape, device_src, device_dst, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"), device=device_src)

    def func(inp):
        return F.copy(inp, device_dst)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    for _ in range(3):
        out = func(inp)
        assert out.numpy().shape == shape
        assert out.device == device_dst
        if is_symbolic is None:
            break


808 809 810 811 812 813 814 815 816 817 818 819
@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
820 821 822 823 824 825 826
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

827 828 829 830 831 832 833 834 835 836 837
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
838 839 840 841
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
842 843 844 845 846 847 848 849 850
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
851 852
        # FIXME: tile does not support ndim 7
        # ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
853 854
    ],
)
855 856 857 858 859 860 861
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

862 863 864
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

865
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
866

867
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
868 869 870 871 872 873 874


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
875 876
        ((2, 3), 100, 0),
        ((2, 3), -100, 0),
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920


@pytest.mark.parametrize(
    "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_roll_empty_tensor(shape, shifts, axis, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"))

    def func(inp):
        return F.roll(inp, shifts, axis)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    out_ref = np.roll(inp.numpy(), shifts, axis)
    for _ in range(3):
        out = F.roll(inp, shifts, axis)
        np.testing.assert_equal(out.numpy(), out_ref)
        if is_symbolic is None:
            break