test_tensor.py 10.5 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.tensor.utils import astensor1d
20
from megengine.distributed.helper import get_device_count_by_fork
21 22 23 24


def test_eye():
    dtype = np.float32
25
    cases = [{"input": [10, 20]}, {"input": [30]}]
26
    for case in cases:
27
        np.testing.assert_allclose(
28 29 30
            F.eye(case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
31 32 33 34 35 36 37 38
        np.testing.assert_allclose(
            F.eye(*case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
        np.testing.assert_allclose(
            F.eye(tensor(case["input"]), dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def test_concat():
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]))


56 57 58 59 60 61 62 63
def test_concat_device():
    data1 = tensor(np.random.random((3, 2, 2)).astype("float32"), device="cpu0")
    data2 = tensor(np.random.random((2, 2, 2)).astype("float32"), device="cpu1")

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def test_stack():
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

        opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai))


def test_split():
    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
80 81 82 83
    inp = tensor(data)

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
84 85 86

    np_out = np.split(data, [3, 5], axis=3)

87 88 89 90
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
91 92
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
        F.split(inp, [3, 3, 5], axis=3)
        assert False
    except ValueError as e:
        assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

def test_reshape():
    x = np.arange(6, dtype="float32")
    xx = tensor(x)
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
        (1, tensor(-1), 3),
        np.array([1, -1, 3], dtype="int32"),
        tensor([1, -1, 3]),
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


def test_squeeze():
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
    xx = tensor(x)

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
131
        yy = F.squeeze(xx, axis)
132 133 134 135 136 137 138 139 140
        np.testing.assert_equal(y, yy.numpy())


def test_expand_dims():
    x = np.arange(6, dtype="float32").reshape(2, 3)
    xx = tensor(x)

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
141
        yy = F.expand_dims(xx, axis)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        np.testing.assert_equal(y, yy.numpy())


def test_elemwise_dtype_promotion():
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
    xx = tensor(x)
    yy = tensor(y)
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


def test_linspace():
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
179 180 181 182 183 184 185 186 187 188
    )

    cases = [
        {"input": [1, tensor(9), 9]},
        {"input": [tensor(1), 9, tensor(9)]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    )


def test_arange():
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )


def test_round():
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
    opr_test(cases, F.round, ref_fn=np.round)


234 235 236 237 238 239 240
def test_flatten():
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
241
        assert x.shape[0] == y
242 243 244 245

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
246 247
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
248 249 250 251 252 253
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn)

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
254 255
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
256 257 258 259 260 261
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1)

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
262 263
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
264 265 266 267 268 269
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2)

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
270 271
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
272 273 274 275
    ]
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2)


276 277 278 279 280
def test_broadcast():
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

281
    input2_shape = (10, 1)
282 283 284 285
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

    def compare_fn(x, y):
286
        assert x.shape[0] == y
287 288 289 290 291

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
    ]
292
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn)
293

294
    x = F.ones((2, 1, 3))
295
    with pytest.raises(RuntimeError):
296
        F.broadcast_to(x, (2, 3, 4))
297

298
    with pytest.raises(RuntimeError):
299
        F.broadcast_to(x, (4, 1, 3))
300

301
    with pytest.raises(RuntimeError):
302
        F.broadcast_to(x, (1, 3))
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

def test_utils_astensor1d():
    reference = tensor(0)

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
    x = tensor([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
    x = [1, tensor(2), 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
345
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
346 347 348 349 350
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
351 352


353 354
def test_identity():
    x = tensor(np.random.random((5, 10)).astype(np.float32))
M
Megvii Engine Team 已提交
355
    y = F.copy(x)
356 357 358
    np.testing.assert_equal(y.numpy(), x)


359 360 361 362 363
def copy_test(dst, src):
    data = np.random.random((2, 3)).astype(np.float32)
    x = tensor(data, device=src)
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
364 365
    z = x.to(dst)
    assert np.allclose(data, z.numpy())
366 367


368
@pytest.mark.require_ngpu(1)
369 370 371 372
def test_copy_h2d():
    copy_test("cpu0", "gpu0")


373
@pytest.mark.require_ngpu(1)
374 375 376 377
def test_copy_d2h():
    copy_test("gpu0", "cpu0")


378
@pytest.mark.require_ngpu(2)
379 380 381
def test_copy_d2d():
    copy_test("gpu0", "gpu1")
    copy_test("gpu0:0", "gpu0:1")
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397


def test_q_dict():
    x = tensor(1)
    assert x.q_dict["scale"] is None
    x.q_dict["scale"] = tensor(1.0)

    y = tensor(1)
    assert y.q_dict["scale"] is None
    y.q_dict["scale"] = tensor(2.0)

    assert x.q_dict["scale"].numpy() == 1.0
    assert y.q_dict["scale"].numpy() == 2.0

    z = x + y
    assert z.q_dict["scale"] is None