test_tensor.py 28.9 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
import os
3 4
import platform

5 6
import numpy as np
import pytest
7
from utils import get_var_value, make_tensor, opr_test
8 9

import megengine.functional as F
10
from megengine import Tensor
11
from megengine.core._trace_option import use_symbolic_shape
12
from megengine.core.tensor import megbrain_graph as G
13
from megengine.core.tensor.utils import astensor1d
14
from megengine.jit import trace
15
from megengine.utils.network import Network, set_symbolic_shape
16
from megengine.utils.network_node import VarNode
17 18 19


def test_eye():
20
    dtypes = [np.float32, np.bool]
21
    cases = [{"input": [10, 20]}, {"input": [30]}]
22 23 24 25 26 27 28 29 30 31 32
    for dtype in dtypes:
        for case in cases:
            np.testing.assert_allclose(
                F.eye(case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(*case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
33
                F.eye(Tensor(case["input"]), dtype=dtype).numpy(),
34 35
                np.eye(*case["input"]).astype(dtype),
            )
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
@pytest.mark.parametrize("is_varnode", [False, True])
def test_diag(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    shapes = [(10, 10), (6, 9), (8, 7), (8,)]
    cases = []
    for shp in shapes:
        cases.append({"input": [np.random.random(shp).astype("float32")]})

    for axis in range(-2, 3):

        def run(data):
            return F.diag(data, k=axis)

        opr_test(cases, run, ref_fn=lambda x: np.diag(x, axis), network=network)


58 59 60 61 62
def test_full():
    shape = (2, 3)
    values = [True, 4, 5.0]
    for value in values:
        np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value))
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        assert F.full(shape, value).dtype == Tensor(value).dtype


@pytest.mark.parametrize("is_varnode", [True, False])
def test_cumsum(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = Tensor([[1, 2, 3], [4, 5, 6]], np.int32)
    y = F.cumsum(x, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[1, 3, 6], [4, 9, 15]]).astype(np.int32)
    )
78 79


80 81 82 83 84 85 86
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

87 88 89 90 91 92 93 94 95 96 97
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
98
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
99

100 101 102 103 104 105 106 107
    x1 = Tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
    x2 = Tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
    y = F.concat([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(),
        np.array([[0, 1, 2, 6, 7, 8], [3, 4, 5, 9, 10, 11]]).astype(np.float32),
    )

108

109 110 111 112 113 114 115 116 117 118 119 120
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
121 122 123 124 125 126
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
127 128


129 130 131 132 133 134 135 136 137
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
138 139 140 141 142

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


143 144 145 146 147 148 149
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

150 151 152 153 154 155 156 157 158 159
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

160 161 162 163
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

164 165 166 167 168 169 170 171 172 173 174 175 176 177
    x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3)))
    x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3)))
    y = F.stack([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32)
    )

    x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3)))
    x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3)))
    y = F.stack([x1, x2], axis=-1)
    np.testing.assert_equal(
        y.numpy(), np.array([[0, 6], [1, 7], [2, 8]]).astype(np.float32)
    )

178

179
@pytest.mark.parametrize("is_varnode", [True, False])
180
def test_split_basic(is_varnode):
181 182
    if is_varnode:
        network = Network()
183
        saved_symbolic_shape = set_symbolic_shape(False)
184 185
    else:
        network = None
186 187

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
188
    inp = make_tensor(data, network)
189 190 191

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
192 193 194

    np_out = np.split(data, [3, 5], axis=3)

195 196 197 198
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
199 200
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

201 202 203 204 205 206 207 208 209 210
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
211
        F.split(inp, [3, 2, 5], axis=3)
212 213
        assert False
    except ValueError as e:
214
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
215

216 217 218
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

219

220 221
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
222 223 224 225 226 227
    x = Tensor(np.random.random((10, 20)), dtype=np.float32)
    y = F.split(x, 3, axis=-1)
    z = F.split(x, [6, 17], axis=-1)
    assert str([i.numpy().shape for i in y]) == "[(10, 7), (10, 7), (10, 6)]"
    assert str([i.numpy().shape for i in z]) == "[(10, 6), (10, 11), (10, 3)]"

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
253
            out = fn(Tensor(case[0]), case[1], case[2])
254 255 256 257 258
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def test_gather():
    x = Tensor([[1, 2], [3, 4], [5, 6],])
    index = Tensor([[0, 1], [1, 0], [1, 1]])
    y = F.gather(x, 1, index)
    np.testing.assert_equal(
        y.numpy(), np.array([[1, 2], [4, 3], [6, 6]]).astype(np.int32)
    )


def test_scatter():
    x = Tensor(np.zeros(shape=(3, 5), dtype=np.float32))
    source = Tensor(
        [
            [0.9935, 0.9465, 0.2256, 0.8926, 0.4396],
            [0.7723, 0.0718, 0.5939, 0.357, 0.4576],
        ]
    )
    index = Tensor([[0, 2, 0, 2, 1], [2, 0, 1, 1, 2]])
    y = F.scatter(x, -2, index, source)
    np.testing.assert_equal(
        y.numpy().round(decimals=4),
        np.array(
            [
                [0.9935, 0.0718, 0.2256, 0.0, 0.0],
                [0.0, 0.0, 0.5939, 0.357, 0.4396],
                [0.7723, 0.9465, 0.0, 0.8926, 0.4576],
            ]
        ).astype(np.float32),
    )


290 291 292 293 294 295 296
@pytest.mark.parametrize("is_varnode", [True, False])
def test_swapaxes(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

297
    x = Tensor(np.array([[1, 2, 3]], dtype=np.int32))
298 299 300 301
    y = F.swapaxes(x, 0, 1)
    np.testing.assert_equal(y.numpy(), np.array([[1], [2], [3]]).astype(np.int32))


302 303 304 305 306 307 308
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

309
    x = np.arange(6, dtype="float32")
310
    xx = make_tensor(x, network)
311 312 313 314 315
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
316
        (1, make_tensor(-1, network), 3),
317
        np.array([1, -1, 3], dtype="int32"),
318
        make_tensor([1, -1, 3], network),
319 320 321 322 323
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast_auto_infer(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.random.random((1, 2, 3)).astype(np.float32)
    xx = make_tensor(x, network)

    for shape in [
        (1, 2, 3),
        (1, None, 3),
    ]:
        yy = F.broadcast_to(xx, shape)
        np.testing.assert_equal(yy.numpy(), x)

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (1, -1, 3))

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (None, 1, 2, 3))

    F.broadcast_to(xx, (1, None, 2, 3))
348
    t = make_tensor(2, network)
349 350 351
    F.broadcast_to(xx, (t, None, 2, 3))


352 353 354 355
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
356
    data1 = Tensor(np.random.random(input1_shape).astype(np.float32))
357 358 359

    input2_shape = (10, 0)
    output2_shape = (0,)
360
    data2 = Tensor(np.random.random(input2_shape).astype(np.float32))
361 362 363

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
364
    data3 = Tensor(np.random.random(input3_shape).astype(np.float32))
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


394 395 396 397
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
398
        saved_symbolic_shape = set_symbolic_shape(False)
399 400 401 402 403 404 405 406 407 408
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
409 410 411 412 413
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
414
        if isinstance(source, Tensor):
415
            source = source.numpy()
416
        np.testing.assert_equal(source, target.shape)
417 418 419 420 421

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
422 423 424 425 426 427
        {"input": [x_shape_known, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known], "output": [np.zeros((2, 2)),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [np.zeros((2, 2)),]},
428
    ]
429
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
430 431
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
432

433

434 435 436 437
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
438
        saved_symbolic_shape = set_symbolic_shape(False)
439 440
    else:
        network = None
441

442 443 444 445
    x = Tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1))
    y = F.squeeze(x, -1)
    np.testing.assert_equal(y.numpy(), np.array([[[1, 2]]]).astype(np.int32))

446
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
447
    xx = make_tensor(x, network)
448 449 450

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
451
        yy = F.squeeze(xx, axis)
452 453
        np.testing.assert_equal(y, yy.numpy())

454 455 456
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

457

458 459 460 461 462 463 464
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

465 466 467 468 469 470
    x = Tensor(np.arange(1, 7, dtype=np.int32).reshape(2, 3))
    y = F.expand_dims(x, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[[1], [2], [3]], [[4], [5], [6]]]).astype(np.int32)
    )

471
    x = np.arange(6, dtype="float32").reshape(2, 3)
472
    xx = make_tensor(x, network)
473 474 475

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
476
        yy = F.expand_dims(xx, axis)
477 478 479
        np.testing.assert_equal(y, yy.numpy())


480 481 482 483 484 485 486 487 488 489
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
490
        np.testing.assert_raises(RuntimeError, F.expand_dims, xx, axis)
491 492


493 494 495 496 497 498 499
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

500 501
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
502 503
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
504 505 506 507 508 509 510 511 512 513
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


514 515 516 517 518 519 520
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

521 522 523 524 525 526 527 528
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
529
        network=network,
530 531 532 533 534 535 536 537 538 539
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
540
        network=network,
541 542 543
    )

    cases = [
544 545
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
546 547 548 549 550
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
551
        network=network,
552 553 554
    )


555 556 557 558 559 560 561
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

562 563 564 565 566 567 568 569
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
570
        network=network,
571 572 573 574 575 576 577 578 579 580
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
581
        network=network,
582 583 584 585 586 587 588 589 590 591
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
592
        network=network,
593 594 595
    )


596 597 598 599 600 601 602
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

603 604 605 606 607 608
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
609
    opr_test(cases, F.round, ref_fn=np.round, network=network)
610 611


612 613 614 615 616 617 618
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    inp_shape = (2, 2, 3, 3)
    x = Tensor(np.arange(36, dtype=np.int32).reshape(inp_shape),)
    y = F.flatten(x, -2, -1)
    np.testing.assert_equal(
        y.numpy(),
        np.array(
            [
                [[0, 1, 2, 3, 4, 5, 6, 7, 8], [9, 10, 11, 12, 13, 14, 15, 16, 17]],
                [
                    [18, 19, 20, 21, 22, 23, 24, 25, 26],
                    [27, 28, 29, 30, 31, 32, 33, 34, 35],
                ],
            ]
        ).astype(np.int32),
    )

635 636 637 638 639 640
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    cases = [
641 642
        {"input": data0, "output": data0.flatten()},
        {"input": data1, "output": data1.flatten()},
643
    ]
644
    opr_test(cases, F.flatten, network=network)
645 646

    cases = [
647 648
        {"input": data0, "output": data0.reshape(2, -1)},
        {"input": data1, "output": data1.reshape(4, -1)},
649
    ]
650
    opr_test(cases, F.flatten, start_axis=1, network=network)
651 652

    cases = [
653 654
        {"input": data0, "output": data0.reshape(2, 3, -1)},
        {"input": data1, "output": data1.reshape(4, 5, -1)},
655
    ]
656
    opr_test(cases, F.flatten, start_axis=2, network=network)
657 658

    cases = [
659 660
        {"input": data0, "output": data0.reshape(2, -1, 5)},
        {"input": data1, "output": data1.reshape(4, -1, 7)},
661
    ]
662
    opr_test(
663
        cases, F.flatten, start_axis=1, end_axis=2, network=network,
664 665
    )

666

667 668 669 670 671 672
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
673

674 675 676 677
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

678
    input2_shape = (10, 1)
679 680 681
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

682 683 684 685
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

686
    cases = [
687 688 689 690 691 692 693 694 695 696 697 698
        {
            "input": [data1, output1_shape],
            "output": np.broadcast_to(data1, output1_shape),
        },
        {
            "input": [data2, output2_shape],
            "output": np.broadcast_to(data2, output2_shape),
        },
        {
            "input": [data3, output3_shape],
            "output": np.broadcast_to(data3, output3_shape),
        },
699
    ]
700 701

    opr_test(cases, F.broadcast_to, network=network)
702

703
    x = F.ones((2, 1, 3))
704
    with pytest.raises(RuntimeError):
705
        F.broadcast_to(x, (2, 3, 4))
706

707
    with pytest.raises(RuntimeError):
708
        F.broadcast_to(x, (4, 1, 3))
709

710
    with pytest.raises(RuntimeError):
711
        F.broadcast_to(x, (1, 3))
712

713

714 715 716 717
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
718
    data1 = Tensor(np.random.random(input1_shape).astype(np.float32))
719 720 721

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
722
    data2 = Tensor(np.random.random(input2_shape).astype(np.float32))
723 724 725

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
726
    data3 = Tensor(np.random.random(input3_shape).astype(np.float32))
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


756 757 758 759 760 761 762 763
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
764 765 766 767 768

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
769
        assert isinstance(xx, type(reference))
770 771 772 773 774 775
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
776
        assert isinstance(xx, type(reference))
777 778 779
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
780
    x = make_tensor([1, 2, 3], network)
781 782
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
783
        assert isinstance(xx, type(reference))
784 785 786
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
787
    x = [1, make_tensor(2, network), 3]
788 789
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
790
        assert isinstance(xx, type(reference))
791 792
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])

793 794 795 796 797 798 799 800 801 802 803 804
    # varnode
    if is_varnode:
        a = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
        b = np.array([[True, False, True], [False, True, True]])
        aa = make_tensor(a, network)
        bb = make_tensor(b, network)
        x, y = F.cond_take(bb, aa)
        for dtype in [None, "float32"]:
            xx = astensor1d(x, reference, dtype=dtype)
            assert isinstance(xx, type(reference))
            np.testing.assert_equal(get_var_value(xx), get_var_value(x))

805 806

def test_device():
807
    x = Tensor([1, 2, 3], dtype="float32")
808 809 810 811 812 813

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
814
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
815 816 817 818 819
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
820 821


822 823 824 825 826 827 828 829
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
830
    y = F.copy(x)
831 832 833
    np.testing.assert_equal(y.numpy(), x)


834
def copy_test(dst, src, network):
835
    data = np.random.random((2, 3)).astype(np.float32)
836
    x = make_tensor(data, device=src, network=network)
837 838
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
839 840 841
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
842 843


844
@pytest.mark.require_ngpu(1)
845 846 847 848 849 850 851 852
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
853 854


855
@pytest.mark.require_ngpu(1)
856 857 858 859 860 861 862 863
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
864 865


866
@pytest.mark.require_ngpu(2)
867 868 869 870 871 872 873 874 875
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
876 877


878 879 880 881 882 883 884 885 886 887 888 889 890
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
    "shape, device_src, device_dst",
    [
        ((0,), "cpu0", "cpu0"),
        ((10, 0), "cpu0", "cpu1"),
        ((2, 0, 3), "cpu0", "gpu0"),
        ((1, 0, 1, 0), "gpu0", "cpu0"),
        ((2, 3, 4, 5, 0), "gpu0", "gpu1"),
    ],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_copy_empty(shape, device_src, device_dst, is_symbolic):
891
    inp = Tensor(np.random.randn(*shape).astype("float32"), device=device_src)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

    def func(inp):
        return F.copy(inp, device_dst)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    for _ in range(3):
        out = func(inp)
        assert out.numpy().shape == shape
        assert out.device == device_dst
        if is_symbolic is None:
            break


907 908 909 910 911 912 913 914 915 916 917 918
@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
919 920 921 922 923 924 925
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

926 927 928 929 930 931 932 933 934 935 936
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
937 938 939 940
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
941 942 943 944 945 946 947 948 949
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
950 951
        # FIXME: tile does not support ndim 7
        # ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
952 953
    ],
)
954 955 956 957 958 959 960
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

961 962 963
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

964
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
965

966
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
967 968 969 970 971 972 973


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
974 975
        ((2, 3), 100, 0),
        ((2, 3), -100, 0),
976 977 978 979 980 981 982 983 984 985 986
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

987 988 989 990 991 992
    x = Tensor([[1, 2], [3, 4], [5, 6]], np.int32)
    y = F.roll(x, 1, -1)
    np.testing.assert_equal(
        y.numpy(), np.array([[2, 1], [4, 3], [6, 5]]).astype(np.int32)
    )

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )
1005 1006 1007 1008 1009 1010 1011


@pytest.mark.parametrize(
    "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_roll_empty_tensor(shape, shifts, axis, is_symbolic):
1012
    inp = Tensor(np.random.randn(*shape).astype("float32"))
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    def func(inp):
        return F.roll(inp, shifts, axis)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    out_ref = np.roll(inp.numpy(), shifts, axis)
    for _ in range(3):
        out = F.roll(inp, shifts, axis)
        np.testing.assert_equal(out.numpy(), out_ref)
        if is_symbolic is None:
            break