mod.rs 102.2 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::const_val::ConstVal;
26
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
27
use middle::privacy::AccessLevels;
28
use middle::resolve_lifetime::ObjectLifetimeDefault;
29
use mir::Mir;
30
use mir::interpret::{GlobalId, Value, PrimVal};
J
John Kåre Alsaker 已提交
31
use mir::GeneratorLayout;
32
use session::CrateDisambiguator;
33
use traits::{self, Reveal};
34
use ty;
35
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
36
use ty::util::{IntTypeExt, Discr};
37
use ty::walk::TypeWalker;
38
use util::captures::Captures;
39
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
40

41
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
42
use std::cell::RefCell;
43
use std::cmp;
44
use std::fmt;
45
use std::hash::{Hash, Hasher};
46
use std::ops::Deref;
47
use rustc_data_structures::sync::Lrc;
48
use std::slice;
49
use std::vec::IntoIter;
50
use std::mem;
J
Jeffrey Seyfried 已提交
51
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
52
use syntax::attr;
53
use syntax::ext::hygiene::Mark;
54
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
55
use syntax_pos::{DUMMY_SP, Span};
56

57
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
58 59
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
60

61
use hir;
62

63
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
64
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
65
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
66
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
67
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
68
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
69
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
70
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
71
pub use self::sty::RegionKind;
72
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
73 74
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
75
pub use self::sty::RegionKind::*;
76 77
pub use self::sty::TypeVariants::*;

78 79 80
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

81
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
82
pub use self::context::{Lift, TypeckTables, InterpretInterner};
83

84 85
pub use self::instance::{Instance, InstanceDef};

86
pub use self::trait_def::TraitDef;
87

88 89
pub use self::maps::queries;

90
pub mod adjustment;
91
pub mod binding;
92
pub mod cast;
93
#[macro_use]
94
pub mod codec;
95
pub mod error;
96
mod erase_regions;
97 98
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
99
pub mod inhabitedness;
100
pub mod item_path;
101
pub mod layout;
102
pub mod _match;
103
pub mod maps;
104 105
pub mod outlives;
pub mod relate;
106
pub mod steal;
107
pub mod subst;
108
pub mod trait_def;
109 110
pub mod walk;
pub mod wf;
111
pub mod util;
112

113 114
mod context;
mod flags;
115
mod instance;
116 117 118
mod structural_impls;
mod sty;

119
// Data types
120

121 122
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
123 124 125
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
126
#[derive(Clone)]
127
pub struct CrateAnalysis {
128
    pub access_levels: Lrc<AccessLevels>,
129
    pub name: String,
130
    pub glob_map: Option<hir::GlobMap>,
131 132
}

133 134 135 136 137
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
138
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
139
    pub export_map: ExportMap,
140 141
}

142
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
143
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
144 145
    TraitContainer(DefId),
    ImplContainer(DefId),
146 147
}

148
impl AssociatedItemContainer {
149 150 151 152 153 154 155 156 157
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
158
    pub fn id(&self) -> DefId {
159 160 161 162 163 164 165
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
166 167 168 169 170 171 172 173 174 175 176
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
177
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
178 179 180 181 182 183 184
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
185

186 187 188 189
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
190

191
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
192 193 194 195 196
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
197

198 199 200 201 202 203
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
204 205
        }
    }
A
Andrew Cann 已提交
206 207 208 209 210 211 212

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
213
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
214 215 216
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
217 218 219 220 221 222 223 224

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
225
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
226 227 228 229 230 231 232
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
233 234
}

235
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
236 237 238 239
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
240
    Restricted(DefId),
241
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
242
    Invisible,
243 244
}

245 246
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
261 262
}

263 264 265
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
266 267 268
    }
}

269
impl Visibility {
270
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
271 272
        match *visibility {
            hir::Public => Visibility::Public,
273
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
274
            hir::Visibility::Restricted { ref path, .. } => match path.def {
275 276
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
277
                Def::Err => Visibility::Public,
278
                def => Visibility::Restricted(def.def_id()),
279
            },
280
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
281
                Visibility::Restricted(tcx.hir.get_module_parent(id))
282
            }
283 284
        }
    }
285 286

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
287
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
288 289 290 291
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
292
            Visibility::Invisible => return false,
293
            // Restricted items are visible in an arbitrary local module.
294
            Visibility::Restricted(other) if other.krate != module.krate => return false,
295 296 297
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
298
        tree.is_descendant_of(module, restriction)
299
    }
300 301

    /// Returns true if this visibility is at least as accessible as the given visibility
302
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
303 304
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
305
            Visibility::Invisible => return true,
306 307 308
            Visibility::Restricted(module) => module,
        };

309
        self.is_accessible_from(vis_restriction, tree)
310
    }
311 312 313 314 315 316 317 318 319

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
320 321
}

322
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
323
pub enum Variance {
324 325 326 327
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
328
}
329

330 331 332 333
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
334
/// `tcx.variances_of()` to get the variance for a *particular*
335 336 337 338 339
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
340
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
341 342

    /// An empty vector, useful for cloning.
343
    pub empty_variance: Lrc<Vec<ty::Variance>>,
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

406 407 408
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
409
pub struct CReaderCacheKey {
410 411 412 413
    pub cnum: CrateNum,
    pub pos: usize,
}

414 415 416 417
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
418
bitflags! {
419 420 421 422 423 424
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
425 426 427 428 429

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
430
        const HAS_RE_EARLY_BOUND = 1 << 5;
431 432 433

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
434
        const HAS_FREE_REGIONS   = 1 << 6;
435 436

        /// Is an error type reachable?
437 438
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
439 440

        // FIXME: Rename this to the actual property since it's used for generators too
441
        const HAS_TY_CLOSURE     = 1 << 9;
442 443 444

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
445
        const HAS_LOCAL_NAMES    = 1 << 10;
446

447 448
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
449
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
450

451 452
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
453
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
454

455 456 457 458
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

459 460
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
461
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
462 463

        // Flags representing the nominal content of a type,
464 465
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
466 467 468 469
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
470
                                  TypeFlags::HAS_RE_SKOL.bits |
471 472
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
473
                                  TypeFlags::HAS_TY_ERR.bits |
474
                                  TypeFlags::HAS_PROJECTION.bits |
475
                                  TypeFlags::HAS_TY_CLOSURE.bits |
476
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
477 478
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
479
    }
480 481
}

482
pub struct TyS<'tcx> {
483
    pub sty: TypeVariants<'tcx>,
484
    pub flags: TypeFlags,
485 486

    // the maximal depth of any bound regions appearing in this type.
487
    region_depth: u32,
488 489
}

490
impl<'tcx> PartialEq for TyS<'tcx> {
491
    #[inline]
492 493 494 495 496
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
497
impl<'tcx> Eq for TyS<'tcx> {}
498

A
Alex Crichton 已提交
499 500
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
501
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
502 503
    }
}
504

G
Guillaume Gomez 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
            TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
            _ => false,
        }
    }
521 522 523 524 525 526 527 528

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
529
            TypeVariants::TyInfer(..) |
530 531 532 533
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
534 535
}

536
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
537
    fn hash_stable<W: StableHasherResult>(&self,
538
                                          hcx: &mut StableHashingContext<'a>,
539 540 541 542 543 544 545 546 547 548 549 550 551 552
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

553
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
554

555 556
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
557

558 559 560 561 562 563 564 565 566 567 568
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
569
/// A wrapper for slices with the additional invariant
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

608 609 610 611 612 613 614 615
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
616 617 618
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
619
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
620
pub struct UpvarId {
621
    pub var_id: hir::HirId,
622
    pub closure_expr_id: LocalDefId,
623 624
}

J
Jorge Aparicio 已提交
625
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
626 627 628 629 630 631
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
632
    /// implicit closure bindings. It is needed when the closure
633 634
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
635
    ///    let x: &mut isize = ...;
636 637 638 639 640
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
641 642
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
643 644 645 646 647 648 649
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
650 651
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

671 672
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
673
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
674
pub enum UpvarCapture<'tcx> {
675 676 677 678 679 680
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
681
    ByRef(UpvarBorrow<'tcx>),
682 683
}

684
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
685
pub struct UpvarBorrow<'tcx> {
686 687 688
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
689
    pub kind: BorrowKind,
690 691

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
692
    pub region: ty::Region<'tcx>,
693 694
}

695
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
696

697 698
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
699
    pub def: Def,
700 701 702 703
    pub span: Span,
    pub ty: Ty<'tcx>,
}

704
#[derive(Clone, Copy, PartialEq, Eq)]
705
pub enum IntVarValue {
706 707
    IntType(ast::IntTy),
    UintType(ast::UintTy),
708 709
}

710 711 712
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

713 714
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
715
    pub name: InternedString,
N
Niko Matsakis 已提交
716
    pub def_id: DefId,
717
    pub index: u32,
718 719
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
720 721 722 723 724

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
725 726

    pub synthetic: Option<hir::SyntheticTyParamKind>,
727 728
}

729 730
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
731
    pub name: InternedString,
N
Niko Matsakis 已提交
732
    pub def_id: DefId,
733
    pub index: u32,
734 735 736 737 738

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
739 740
}

741
impl RegionParameterDef {
742 743
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
744
            def_id: self.def_id,
745 746
            index: self.index,
            name: self.name,
747
        }
748
    }
749

750 751 752 753 754 755
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
756
    pub fn to_bound_region(&self) -> ty::BoundRegion {
757
        ty::BoundRegion::BrNamed(self.def_id, self.name)
758
    }
759 760 761
}

/// Information about the formal type/lifetime parameters associated
762
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
763 764 765 766 767 768 769
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
770
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
771
pub struct Generics {
772 773 774
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
775
    pub regions: Vec<RegionParameterDef>,
776 777
    pub types: Vec<TypeParameterDef>,

778 779
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
780

781
    pub has_self: bool,
782
    pub has_late_bound_regions: Option<Span>,
783 784
}

785
impl<'a, 'gcx, 'tcx> Generics {
786 787 788 789 790 791 792 793 794 795 796
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }
797

798 799 800 801 802 803 804 805 806 807 808
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count() as u32) {
            &self.regions[index as usize - self.has_self as usize]
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
809 810
    }

A
Ariel Ben-Yehuda 已提交
811
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
812 813
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
814
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
815
                      -> &TypeParameterDef {
816
        if let Some(idx) = param.idx.checked_sub(self.parent_count() as u32) {
A
Ariel Ben-Yehuda 已提交
817 818
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
819
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
820 821
            // for the regions:
            //
822 823 824 825 826 827 828 829 830 831 832
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
833 834 835 836 837 838 839
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
840 841 842 843
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
A
Ariel Ben-Yehuda 已提交
844
            let type_param_offset = self.regions.len();
845 846 847 848

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

A
Ariel Ben-Yehuda 已提交
849
            if let Some(idx) = (idx as usize).checked_sub(type_param_offset) {
850
                assert!(!is_separated_self, "found a Self after type_param_offset");
A
Ariel Ben-Yehuda 已提交
851
                &self.types[idx]
A
Ariel Ben-Yehuda 已提交
852
            } else {
853
                assert!(is_separated_self, "non-Self param before type_param_offset");
A
Ariel Ben-Yehuda 已提交
854
                &self.types[0]
A
Ariel Ben-Yehuda 已提交
855
            }
856 857 858 859
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
860
    }
861 862
}

863
/// Bounds on generics.
864
#[derive(Clone, Default)]
865
pub struct GenericPredicates<'tcx> {
866
    pub parent: Option<DefId>,
867
    pub predicates: Vec<Predicate<'tcx>>,
868 869
}

870 871 872
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

873 874
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
875
                       -> InstantiatedPredicates<'tcx> {
876 877 878 879 880 881
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
882
        InstantiatedPredicates {
883 884 885 886 887 888 889 890
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
891
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
892
        }
893
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
894
    }
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

911
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
912 913 914
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
915
        assert_eq!(self.parent, None);
916
        InstantiatedPredicates {
917
            predicates: self.predicates.iter().map(|pred| {
918
                pred.subst_supertrait(tcx, poly_trait_ref)
919
            }).collect()
920 921
        }
    }
922 923
}

924
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
925
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
926 927
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
928
    /// would be the type parameters.
929
    Trait(PolyTraitPredicate<'tcx>),
930 931

    /// where 'a : 'b
932
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
933 934

    /// where T : 'a
935
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
936

N
Niko Matsakis 已提交
937 938
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
939
    Projection(PolyProjectionPredicate<'tcx>),
940 941 942 943 944

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
945
    ObjectSafe(DefId),
946

947 948 949
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
950
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
951 952 953

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
954 955 956

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

975 976 977 978 979 980
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

981
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
982
    /// Performs a substitution suitable for going from a
983 984 985 986
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
987
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1051
        let substs = &trait_ref.skip_binder().substs;
1052
        match *self {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1063 1064 1065 1066
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1067 1068
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1069 1070
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1071 1072 1073 1074
        }
    }
}

1075
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1076
pub struct TraitPredicate<'tcx> {
1077
    pub trait_ref: TraitRef<'tcx>
1078 1079 1080 1081
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1082
    pub fn def_id(&self) -> DefId {
1083 1084 1085
        self.trait_ref.def_id
    }

1086
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1087
        self.trait_ref.input_types()
1088 1089 1090 1091 1092 1093 1094 1095
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1096
    pub fn def_id(&self) -> DefId {
1097
        // ok to skip binder since trait def-id does not care about regions
1098
        self.skip_binder().def_id()
1099
    }
1100 1101
}

1102
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1103 1104
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1105 1106 1107 1108 1109 1110
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1111

1112
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1113 1114 1115 1116 1117 1118 1119
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1120 1121 1122 1123 1124 1125 1126 1127 1128
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1129 1130
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1131
/// instances to normalize the LHS.
1132
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1133 1134 1135 1136 1137 1138 1139
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1140
impl<'tcx> PolyProjectionPredicate<'tcx> {
1141 1142 1143 1144 1145
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1146 1147 1148 1149 1150 1151
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1152
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1153
    }
1154 1155

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1166
    }
1167 1168
}

1169 1170 1171 1172
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1173
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1174
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1175
        ty::Binder::dummy(self.clone())
1176 1177 1178 1179 1180
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1181
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1182 1183 1184
    }
}

1185 1186
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1187 1188
}

1189 1190
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1191
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1192 1193 1194 1195 1196
            trait_ref: self.clone()
        }))
    }
}

1197 1198
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1199
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1200 1201 1202
    }
}

1203
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1204
    fn to_predicate(&self) -> Predicate<'tcx> {
1205 1206 1207 1208
        Predicate::RegionOutlives(self.clone())
    }
}

1209 1210
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1211 1212
        Predicate::TypeOutlives(self.clone())
    }
1213 1214
}

1215 1216
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1217 1218 1219 1220
        Predicate::Projection(self.clone())
    }
}

1221
impl<'tcx> Predicate<'tcx> {
1222 1223 1224 1225 1226 1227
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1228
                data.skip_binder().input_types().collect()
1229
            }
1230 1231
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1232 1233
                vec![a, b]
            }
1234 1235
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1236 1237 1238 1239 1240
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1241 1242
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1243
            }
1244 1245 1246 1247 1248 1249
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1250 1251
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1252
            }
1253 1254 1255
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1266
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1267 1268
        match *self {
            Predicate::Trait(ref t) => {
1269
                Some(t.to_poly_trait_ref())
1270
            }
1271
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1272
            Predicate::Subtype(..) |
1273
            Predicate::RegionOutlives(..) |
1274 1275
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1276
            Predicate::ClosureKind(..) |
1277 1278
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1279 1280
                None
            }
1281 1282
        }
    }
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1301 1302
}

S
Steve Klabnik 已提交
1303 1304
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1305 1306 1307 1308 1309
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1310 1311 1312 1313 1314 1315 1316 1317
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1318
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1319
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1320 1321
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1322
#[derive(Clone)]
1323
pub struct InstantiatedPredicates<'tcx> {
1324
    pub predicates: Vec<Predicate<'tcx>>,
1325 1326
}

1327 1328
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1329
        InstantiatedPredicates { predicates: vec![] }
1330 1331
    }

1332 1333
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1334
    }
1335 1336
}

N
Niko Matsakis 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1373
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1374 1375 1376 1377 1378
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1379
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1408
    }
N
Niko Matsakis 已提交
1409 1410
}

1411
/// When type checking, we use the `ParamEnv` to track
1412 1413 1414
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1415
pub struct ParamEnv<'tcx> {
1416 1417
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1418
    /// into Obligations, and elaborated and normalized.
1419
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1420 1421 1422 1423 1424

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1425
}
1426

1427
impl<'tcx> ParamEnv<'tcx> {
1428 1429 1430 1431 1432
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1433
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1444
        Self::new(ty::Slice::empty(), Reveal::All)
1445 1446 1447 1448
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1449
               reveal: Reveal)
1450
               -> Self {
S
Sean Griffin 已提交
1451
        ty::ParamEnv { caller_bounds, reveal }
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1469
    /// Creates a suitable environment in which to perform trait
1470 1471 1472 1473 1474
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1475
    ///
1476 1477
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1478
    /// `where Box<u32>: Copy`, which are clearly never
1479 1480
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1481
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1482 1483 1484 1485 1486 1487
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1488
            }
1489 1490

            Reveal::All => {
1491 1492 1493 1494 1495
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1506
            }
1507 1508 1509
        }
    }
}
1510

1511
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1512 1513
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1514
    pub value: T,
1515 1516
}

1517 1518
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1519
        (self.param_env, self.value)
1520
    }
1521 1522
}

1523 1524
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1525 1526
{
    fn hash_stable<W: StableHasherResult>(&self,
1527
                                          hcx: &mut StableHashingContext<'a>,
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1539 1540 1541 1542 1543 1544
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1545
bitflags! {
1546 1547 1548 1549 1550 1551 1552
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1553 1554 1555 1556
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1557
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1558
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1559 1560 1561
    }
}

1562
#[derive(Debug)]
1563
pub struct VariantDef {
1564 1565
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1566 1567
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1568
    pub discr: VariantDiscr,
1569
    pub fields: Vec<FieldDef>,
1570
    pub ctor_kind: CtorKind,
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1586
#[derive(Debug)]
1587
pub struct FieldDef {
1588
    pub did: DefId,
1589
    pub name: Name,
1590
    pub vis: Visibility,
1591 1592
}

A
Ariel Ben-Yehuda 已提交
1593 1594 1595 1596
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1597
pub struct AdtDef {
1598
    pub did: DefId,
1599
    pub variants: Vec<VariantDef>,
1600
    flags: AdtFlags,
1601
    pub repr: ReprOptions,
1602 1603
}

1604 1605
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1606 1607 1608 1609
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1610
impl Eq for AdtDef {}
1611

1612
impl Hash for AdtDef {
1613 1614
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1615
        (self as *const AdtDef).hash(s)
1616 1617 1618
    }
}

1619
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1620
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1621 1622 1623 1624
        self.did.encode(s)
    }
}

1625
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1626

1627

1628
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1629
    fn hash_stable<W: StableHasherResult>(&self,
1630
                                          hcx: &mut StableHashingContext<'a>,
1631
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1632 1633 1634 1635
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1636

W
Wesley Wiser 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1658 1659 1660
    }
}

1661
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1662
pub enum AdtKind { Struct, Union, Enum }
1663

1664 1665
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1666 1667
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1668 1669
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1670
        // Internal only for now. If true, don't reorder fields.
1671
        const IS_LINEAR          = 1 << 3;
1672 1673 1674 1675

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1676
                                   ReprFlags::IS_LINEAR.bits;
1677 1678 1679 1680 1681 1682 1683 1684 1685
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1686 1687 1688 1689
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1690
    pub align: u32,
1691
    pub pack: u32,
1692
    pub flags: ReprFlags,
1693 1694
}

1695
impl_stable_hash_for!(struct ReprOptions {
1696
    align,
1697
    pack,
1698
    int,
1699
    flags
1700 1701
});

1702
impl ReprOptions {
1703
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1704 1705
        let mut flags = ReprFlags::empty();
        let mut size = None;
1706
        let mut max_align = 0;
1707
        let mut min_pack = 0;
1708 1709
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1710
                flags.insert(match r {
1711
                    attr::ReprC => ReprFlags::IS_C,
1712 1713 1714 1715 1716 1717 1718 1719
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1720
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1721 1722 1723 1724 1725
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1726 1727 1728 1729
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1730
                });
1731 1732
            }
        }
1733

1734
        // This is here instead of layout because the choice must make it into metadata.
1735 1736 1737
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1738
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1739
    }
1740

1741 1742 1743 1744 1745
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1746
    pub fn packed(&self) -> bool { self.pack > 0 }
1747
    #[inline]
R
Robin Kruppe 已提交
1748 1749
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1750 1751
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1752
    pub fn discr_type(&self) -> attr::IntType {
1753
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1754
    }
1755 1756 1757 1758 1759

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1760
        self.c() || self.int.is_some()
1761
    }
1762 1763 1764 1765 1766 1767

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1768 1769
}

1770
impl<'a, 'gcx, 'tcx> AdtDef {
1771
    fn new(tcx: TyCtxt,
1772
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1773
           kind: AdtKind,
1774 1775
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1776
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1777
        let attrs = tcx.get_attrs(did);
1778
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1779
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1780
        }
1781
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1782
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1783
        }
1784
        if Some(did) == tcx.lang_items().owned_box() {
1785 1786
            flags = flags | AdtFlags::IS_BOX;
        }
1787 1788 1789
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1790 1791 1792 1793
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1794
        }
1795
        AdtDef {
1796 1797 1798 1799
            did,
            variants,
            flags,
            repr,
1800 1801 1802
        }
    }

1803 1804 1805 1806 1807 1808 1809
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1810
        self.flags.intersects(AdtFlags::IS_UNION)
1811 1812 1813 1814
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1815
        self.flags.intersects(AdtFlags::IS_ENUM)
1816 1817
    }

1818 1819 1820 1821 1822
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1823
    /// Returns the kind of the ADT - Struct or Enum.
1824
    #[inline]
A
Ariel Ben-Yehuda 已提交
1825
    pub fn adt_kind(&self) -> AdtKind {
1826
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1827
            AdtKind::Enum
1828
        } else if self.is_union() {
1829
            AdtKind::Union
1830
        } else {
A
Ariel Ben-Yehuda 已提交
1831
            AdtKind::Struct
1832 1833 1834
        }
    }

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1851 1852
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1853 1854
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1855
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1856 1857
    }

A
Ariel Ben-Yehuda 已提交
1858
    /// Returns true if this is PhantomData<T>.
1859 1860
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1861
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1862 1863
    }

1864 1865 1866
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1867
        self.flags.intersects(AdtFlags::IS_BOX)
1868 1869
    }

A
Ariel Ben-Yehuda 已提交
1870
    /// Returns whether this type has a destructor.
1871 1872
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1873 1874
    }

1875 1876 1877
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1878
        &self.variants[0]
1879 1880 1881
    }

    #[inline]
1882
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1883
        tcx.predicates_of(self.did)
1884
    }
1885

A
Ariel Ben-Yehuda 已提交
1886 1887
    /// Returns an iterator over all fields contained
    /// by this ADT.
1888
    #[inline]
1889 1890
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1891 1892 1893 1894 1895 1896 1897
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1898
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1899 1900 1901 1902 1903 1904
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1905 1906 1907 1908 1909 1910 1911
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1912
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1913
        match def {
1914 1915
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1916
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1917
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1918 1919
        }
    }
1920

O
Oliver Schneider 已提交
1921
    #[inline]
1922
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1923 1924 1925 1926
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1927
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
            Ok(&ty::Const {
                val: ConstVal::Value(Value::ByVal(PrimVal::Bytes(b))),
1938
                ty,
O
Oliver Schneider 已提交
1939 1940
            }) => {
                trace!("discriminants: {} ({:?})", b, repr_type);
1941 1942 1943 1944
                Some(Discr {
                    val: b,
                    ty,
                })
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
            },
            Ok(&ty::Const {
                val: ConstVal::Value(other),
                ..
            }) => {
                info!("invalid enum discriminant: {:#?}", other);
                ::middle::const_val::struct_error(
                    tcx,
                    tcx.def_span(expr_did),
                    "constant evaluation of enum discriminant resulted in non-integer",
                ).emit();
                None
O
Oliver Schneider 已提交
1957
            }
1958 1959
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
1960 1961 1962 1963 1964 1965 1966
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
1967
            _ => span_bug!(tcx.def_span(expr_did), "const eval "),
O
Oliver Schneider 已提交
1968 1969 1970
        }
    }

1971
    #[inline]
1972 1973 1974 1975
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
1976
        let repr_type = self.repr.discr_type();
1977
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
1978
        let mut prev_discr = None::<Discr<'tcx>>;
1979
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
1980
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
1981
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
1982 1983
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
1984 1985 1986 1987 1988 1989 1990 1991
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1992 1993 1994 1995 1996 1997 1998 1999
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2000
                                    -> Discr<'tcx> {
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2015
        let mut explicit_index = variant_index;
2016
        let expr_did;
2017 2018
        loop {
            match self.variants[explicit_index].discr {
2019 2020 2021 2022
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2023 2024 2025
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2026 2027 2028
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2029 2030 2031
                }
            }
        }
2032
        (expr_did, variant_index - explicit_index)
2033 2034
    }

2035
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2036
        tcx.adt_destructor(self.did)
2037 2038
    }

2039
    /// Returns a list of types such that `Self: Sized` if and only
2040
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2041 2042 2043 2044 2045 2046 2047 2048
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2049
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2050
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2051
            Ok(tys) => tys,
2052
            Err(mut bug) => {
2053 2054 2055 2056
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2057 2058 2059 2060
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2061
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2062
            }
2063 2064
        }
    }
2065

2066 2067 2068 2069
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2070 2071
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2072
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2073
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2074
                vec![]
2075 2076
            }

2077 2078 2079 2080 2081 2082
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2083
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2084
                vec![ty]
2085 2086
            }

A
Andrew Cann 已提交
2087
            TyTuple(ref tys) => {
2088 2089
                match tys.last() {
                    None => vec![],
2090
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2091
                }
2092 2093
            }

2094
            TyAdt(adt, substs) => {
2095
                // recursive case
2096
                let adt_tys = adt.sized_constraint(tcx);
2097
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2098 2099 2100 2101 2102
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2103 2104
            }

2105
            TyProjection(..) | TyAnon(..) => {
2106 2107
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2108
                vec![ty]
2109 2110 2111
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2112 2113 2114 2115
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2116
                let sized_trait = match tcx.lang_items().sized_trait() {
2117
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2118
                    _ => return vec![ty]
2119
                };
2120
                let sized_predicate = Binder::dummy(TraitRef {
2121
                    def_id: sized_trait,
2122
                    substs: tcx.mk_substs_trait(ty, &[])
2123
                }).to_predicate();
2124
                let predicates = tcx.predicates_of(self.did).predicates;
2125
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2126
                    vec![]
2127
                } else {
A
Ariel Ben-Yehuda 已提交
2128
                    vec![ty]
2129 2130 2131
                }
            }

A
Ariel Ben-Yehuda 已提交
2132
            TyInfer(..) => {
2133 2134 2135 2136 2137 2138 2139
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2140 2141
}

2142
impl<'a, 'gcx, 'tcx> FieldDef {
2143
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2144
        tcx.type_of(self.did).subst(tcx, subst)
2145
    }
2146 2147
}

2148 2149 2150 2151 2152 2153
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2154
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2155
pub enum ClosureKind {
2156 2157 2158
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2159 2160 2161
    Fn,
    FnMut,
    FnOnce,
2162 2163
}

2164
impl<'a, 'tcx> ClosureKind {
2165 2166 2167
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2168
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2169 2170
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2171
            ClosureKind::FnMut => {
2172
                tcx.require_lang_item(FnMutTraitLangItem)
2173
            }
2174
            ClosureKind::FnOnce => {
2175
                tcx.require_lang_item(FnOnceTraitLangItem)
2176 2177 2178
            }
        }
    }
2179 2180 2181 2182 2183

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2184 2185 2186 2187 2188 2189
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2190 2191 2192
            _ => false,
        }
    }
2193 2194 2195 2196 2197 2198 2199 2200 2201

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2202
    }
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2218 2219
    }

2220 2221 2222
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2223
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2224
        walk::walk_shallow(self)
2225 2226
    }

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2241
    }
2242
}
2243

2244
impl BorrowKind {
2245
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2246
        match m {
2247 2248
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2249 2250
        }
    }
2251

2252 2253 2254 2255
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2256
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2257
        match self {
2258 2259
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2260 2261 2262 2263

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2264
            UniqueImmBorrow => hir::MutMutable,
2265
        }
2266
    }
2267

2268 2269 2270 2271 2272 2273
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2274 2275 2276
    }
}

2277 2278
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2279
    Owned(Lrc<[ast::Attribute]>),
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2294
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2295
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2296
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2297 2298
    }

N
Niko Matsakis 已提交
2299 2300 2301
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2302 2303 2304
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2305 2306 2307 2308 2309 2310
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2311
    pub fn expr_span(self, id: NodeId) -> Span {
2312
        match self.hir.find(id) {
2313
            Some(hir_map::NodeExpr(e)) => {
2314 2315 2316
                e.span
            }
            Some(f) => {
2317
                bug!("Node id {} is not an expr: {:?}", id, f);
2318 2319
            }
            None => {
2320
                bug!("Node id {} is not present in the node map", id);
2321
            }
2322
        }
2323 2324
    }

2325 2326
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2327
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2328
            .collect()
2329 2330
    }

A
Andrew Cann 已提交
2331 2332 2333 2334 2335 2336
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2337 2338 2339 2340 2341 2342 2343
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2344
            match self.describe_def(def_id).expect("no def for def-id") {
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2357 2358
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2359
                                           parent_vis: &hir::Visibility,
2360
                                           trait_item_ref: &hir::TraitItemRef)
2361
                                           -> AssociatedItem {
2362
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2363 2364 2365 2366
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2367
            }
2368
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2369 2370 2371
        };

        AssociatedItem {
2372
            name: trait_item_ref.name,
2373
            kind,
2374 2375
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2376
            defaultness: trait_item_ref.defaultness,
2377
            def_id,
2378 2379 2380 2381 2382 2383 2384 2385 2386
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2387
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2398
            kind,
2399 2400
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2401
            defaultness: impl_item_ref.defaultness,
2402
            def_id,
2403 2404 2405 2406 2407
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2419 2420 2421 2422
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2423
        let def_ids = self.associated_item_def_ids(def_id);
2424 2425
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2426 2427
    }

2428 2429 2430
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2431
        if !self.features().overlapping_marker_traits {
2432 2433
            return false;
        }
2434 2435 2436 2437 2438 2439 2440 2441
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2442
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2443 2444
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2445 2446
    }

2447 2448
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2449
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2450
        match def {
2451
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2452
                let enum_did = self.parent_def_id(did).unwrap();
2453
                self.adt_def(enum_did).variant_with_id(did)
2454
            }
2455
            Def::Struct(did) | Def::Union(did) => {
2456
                self.adt_def(did).non_enum_variant()
2457 2458 2459
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2460
                self.adt_def(did).non_enum_variant()
2461 2462 2463 2464 2465
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2480
    pub fn item_name(self, id: DefId) -> InternedString {
2481
        if id.index == CRATE_DEF_INDEX {
2482
            self.original_crate_name(id.krate).as_interned_str()
2483
        } else {
2484
            let def_key = self.def_key(id);
2485
            // The name of a StructCtor is that of its struct parent.
2486
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2487 2488 2489 2490 2491 2492 2493 2494 2495
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2496 2497 2498
        }
    }

2499 2500
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2501
                        -> &'gcx Mir<'gcx>
2502 2503
    {
        match instance {
N
Niko Matsakis 已提交
2504
            ty::InstanceDef::Item(did) => {
2505
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2506 2507 2508 2509 2510
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2511
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2512
            ty::InstanceDef::CloneShim(..) => {
2513
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2514
            }
2515 2516 2517
        }
    }

2518 2519
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2520 2521 2522 2523 2524
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2525 2526 2527
        }
    }

2528
    /// Get the attributes of a definition.
2529
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2530
        if let Some(id) = self.hir.as_local_node_id(did) {
2531
            Attributes::Borrowed(self.hir.attrs(id))
2532
        } else {
A
achernyak 已提交
2533
            Attributes::Owned(self.item_attrs(did))
2534
        }
2535 2536
    }

2537
    /// Determine whether an item is annotated with an attribute
2538
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2539
        attr::contains_name(&self.get_attrs(did), attr)
2540
    }
2541

2542 2543
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2544
        self.trait_def(trait_def_id).has_auto_impl
2545
    }
2546

J
John Kåre Alsaker 已提交
2547 2548 2549 2550
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2551 2552
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2553
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2554
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2555
    }
2556 2557 2558

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2559
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2560
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2561
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2562 2563 2564 2565 2566
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2567
            self.opt_associated_item(def_id)
2568 2569 2570
        };

        match item {
2571
            Some(trait_item) => {
2572
                match trait_item.container {
2573 2574 2575
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2576
            }
2577
            None => None
2578 2579 2580
        }
    }

2581 2582
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2583
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2584
        if impl_did.is_local() {
2585 2586
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2587
        } else {
2588
            Err(self.crate_name(impl_did.krate))
2589 2590
        }
    }
J
Jeffrey Seyfried 已提交
2591

2592 2593 2594 2595 2596 2597 2598
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2608
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2609
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2610
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2611 2612 2613 2614
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2615
}
2616

2617
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2618
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2619
        F: FnOnce(&[hir::Freevar]) -> T,
2620
    {
A
Alex Crichton 已提交
2621 2622
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2623
            None => f(&[]),
2624
            Some(d) => f(&d),
2625 2626
        }
    }
2627
}
2628 2629 2630 2631 2632 2633 2634 2635 2636

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2637
        hir::ItemImpl(.., ref impl_item_refs) => {
2638
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2639 2640
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2641 2642
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2643 2644 2645 2646
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2647
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2648 2649 2650
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2651 2652
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2653 2654 2655
            }
        }

2656
        _ => { }
2657
    }
2658 2659 2660 2661

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2662 2663
}

2664 2665
/// Calculates the Sized-constraint.
///
2666
/// In fact, there are only a few options for the types in the constraint:
2667 2668 2669 2670 2671 2672 2673 2674
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2675
                                  -> &'tcx [Ty<'tcx>] {
2676
    let def = tcx.adt_def(def_id);
2677

2678
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2679 2680
        v.fields.last()
    }).flat_map(|f| {
2681
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2682
    }).collect::<Vec<_>>());
2683

2684
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2685

2686
    result
2687 2688
}

2689 2690
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2691
                                     -> Lrc<Vec<DefId>> {
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2707
        hir::ItemTraitAlias(..) => vec![],
2708 2709
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2710
    Lrc::new(vec)
2711 2712
}

A
achernyak 已提交
2713
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2714
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2715 2716
}

A
achernyak 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2730
/// See `ParamEnv` struct def'n for details.
2731
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2732 2733
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2751
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2752
                                             traits::Reveal::UserFacing);
2753 2754 2755 2756 2757 2758 2759

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2760

2761
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2762
                                 crate_num: CrateNum) -> CrateDisambiguator {
2763 2764 2765 2766
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2767 2768 2769 2770 2771 2772
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2773 2774 2775 2776 2777 2778 2779
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2780 2781 2782 2783
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2784 2785 2786
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2787 2788
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2789
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2790 2791 2792 2793
        _ => 1
    }
}

2794
pub fn provide(providers: &mut ty::maps::Providers) {
2795
    context::provide(providers);
2796
    erase_regions::provide(providers);
2797 2798
    layout::provide(providers);
    util::provide(providers);
2799 2800
    *providers = ty::maps::Providers {
        associated_item,
2801
        associated_item_def_ids,
2802
        adt_sized_constraint,
A
achernyak 已提交
2803
        def_span,
2804
        param_env,
A
achernyak 已提交
2805
        trait_of_item,
2806
        crate_disambiguator,
2807
        original_crate_name,
2808
        crate_hash,
2809
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2810
        instance_def_size_estimate,
2811 2812 2813 2814
        ..*providers
    };
}

2815 2816 2817
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2818 2819
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2820 2821
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2822
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2823
}
A
Ariel Ben-Yehuda 已提交
2824

2825
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2826 2827 2828 2829 2830 2831
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2832 2833 2834 2835
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2836 2837 2838
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2839
            name: Symbol::intern(name).as_interned_str()
2840 2841
        }
    }
2842

2843 2844 2845
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2846 2847 2848 2849 2850 2851 2852
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2853 2854 2855 2856 2857 2858

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}